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Abstract—Traumatic Brain Injury (TBI) is a significant 

global health concern, often leading to long-term disabilities and 

cognitive impairments. Accurate and timely diagnosis of TBI is 

crucial for effective treatment and management. In this paper, 

we propose a novel federated convolutional neural network 

(FedCNN) framework for predictive analysis of TBI in 

decentralized health monitoring. The framework is implemented 

in Python, leveraging three diverse datasets: CQ500, RSNA, and 

CENTER-TBI, each containing annotated brain CT images 

associated with TBI. The methodology encompasses data 

preprocessing, feature extraction using gray level co-occurrence 

matrix (GLCM), feature selection employing the Grasshopper 

Optimization Algorithm (GOA), and classification using 

FedCNN. Our approach achieves superior performance 

compared to existing methods such as DANN, RF and DT, and 

LSTM, with an accuracy of 99.2%, surpassing other approaches 

by 1.6%. The FedCNN framework offers decentralized privacy-

preserving training across individual networks while sharing 

model parameters with a central server, ensuring data privacy 

and decentralization in health monitoring. Evaluation metrics 

including accuracy, precision, recall, and F1-score demonstrate 

the effectiveness of our approach in accurately classifying normal 

and abnormal brain CT images associated with TBI. The ROC 

analysis further validates the discriminative ability of the 

FedCNN framework, highlighting its potential as an advanced 

tool for TBI diagnosis. Our study contributes to the field of 

decentralized health monitoring by providing a reliable and 

efficient approach for TBI management, offering significant 

advancements in patient care and healthcare management. 

Future research could explore extending the FedCNN framework 

to incorporate additional modalities and datasets, as well as 

integrating advanced deep learning architectures and 

optimization algorithms to further improve performance and 

scalability in healthcare applications. 
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I. INTRODUCTION 

Traumatic brain injury (TBI) occurs when the brain 
becomes dysfunctional and neuropath logically damaged due 
to abrupt and either immediate or secondary external 
pressures, such as a bump, blow to the head, or another type of 
injury [1]. Traumatic brain injury can cause a major 
disturbance in the brain's regular operating, which may 
outcome in either short-term or long-term neurological 
impairments. Each year, millions of individuals worldwide are 
impacted by this invisible spreading, which has significant 
rates of illness as well as death [2]. According to estimates, 
there are 1.7 million traumatic brain injuries in the US each 
year, and lifetime hospital expenses associated with TBI are 
predicted to reach over $76.5 billion dollars. India has the 
largest prevalence of brain damage worldwide, in accordance 
with the Indian Head damage Foundation; most occurrences of 
mortality occur within a two-hour period of the accident, and 
one in seven TBI patients pass immediately [3]. 

Traumatic brain injury causes a diverse range of 
impairments that can alter regular brain activity and lead to 
behavioural, physical, mental, and cognitive impairments. 
Initial and additional damages are the most common 
categories for injuries that accompany traumatic brain injury 
since the consequences usually arise either immediately or 
indirectly following the event [4]. Basic accidents, including 
diffused axonal damage and intracranial, subdural, and 
extradural hemorrhage, are the immediate outcome of trauma. 
Abrupt exterior mechanical pressures have the potential for 
bursting blood vessels, causing blood to collect in the brain's 
cranial partitions and produce hemorrhage [5]. Depending on 
where in the brain material the hematoma occurs, it can be 
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classified as an extra-axial or intra-axial hematoma. Subdural 
hemorrhaging, subarachnoid hemorrhage, intraventricular 
hemorrhage, and intracerebral hemorrhage are examples of 
intra-axial hemorrhages while epidural hemorrhage is an 
example of an extra-axial hemorrhage. In the initial year, 
approximately fifty percent of ICH patients die. The original 
damage can manifest in as little as one hundred milliseconds, 
and in the initial hours following its commencement, the 
patient's condition begins to deteriorate [6]. 

The development of additional complications, which 
include a range of molecules, chemical-based, inflamed, and 
changes in metabolism, can occur minutes to days following 
the main brain damage. The adult skull is a rigid container 
filled with blood, brain, and the cerebrospinal fluid that has an 
uninterrupted capacity [7]. According to the Monro–Kellie 
philosophy, the total of these three significant elements' 
volumes never changes. Consequently, the amount of a 
minimum one of the two elements should be decreased in 
conjunction with any rise in intracranial contents. Moreover, 
raised ICP levels will result from this possible volume rise. 
Because of the hematoma's enlargement within the stiff skull, 
blood and CSF will gradually move into the cerebral region 
[8]. Because of good treatment in accordance with the Monro-
Kellie philosophy, the ICP values stay low throughout the 
early stages of hemorrhage development. Elevated intracranial 
pressure has been shown to have greater consequences, 
including midline displacement, brain hernia, and eventually 
death, by damaging different brain regions [9]. 

A medical disorder known as midline shifting can result 
from the uncontrolled ICP levels caused by the mass impact of 
hemorrhage which may relocate the centre of structures 
toward the sides of the brain. The midline, which is linear in 
typical, healthy individuals, may be thought of as an imagined 
middle line because of the uniformity of the brain's 
organization [10]. The amount of MLS is calculated by taking 
into account the movement of any one of each of the three 
brain midline frameworks: the pineal glands, third ventricular, 
or septum pellucidum from the optimum midline. The 
enlargement of brain structures is caused by the massive 
impact caused by hematoma, which raises the pressure inside 
the head and moves the brain out of its normal position. Death 
may result from this in the end. MLS is thus regarded as an 
effective indicator of the most adverse patient experiences 
following a traumatic brain injury and a substantial 
determinant of ICP [11]. 

Since non-contrast CT scanning is quick, accessible, and 
provides a clear distinction between brains and blood 
connective tissue, it is the technique favoured for the 
identification and treatment of traumatic brain injury in the 
acute situation. Finding a hemorrhage in the CT images and 
evaluating its three main components—location, volume, and 
size—are essential for making choices about the outcome 
[12]. The utilization of an exterior ventricle loss, an intrusive 
operation that is very prone to diseases and consequences, is 
the most appropriate option for monitoring ICP. Moreover, CT 
scans are required in order to identify elevated ICP because 
different healthcare environments lacking competent 
neurosurgeons and intrusive ICP surveillance [13]. Numerous 
studies demonstrate that accurate visual examination and 

manual calculation of TBI outcomes according to CT are 
labour-intensive, prone to mistake and misinterpretation due to 
inter- and intra-observer variability and require a lot of time 
[14]. The level of accuracy of measurement is crucial for 
making decisions and additional diagnosis, since the degree of 
movement is essential in determining the degree of brain 
injury [15]. 

By recognizing the characteristics that doctors often 
employ to diagnose abnormalities, an average CAD system 
aims to reduce false negative rates. The CAD systems can 
now execute a variety of image analysis techniques thanks to 
the always expanding research projects. To enhance the 
quality of the paper, incorporating cross-validation or external 
validation techniques would be beneficial. Specifically, 
employing k-fold cross-validation could help assess the 
robustness and generalizability of the proposed FedCNN 
framework across different subsets of the dataset. 
Additionally, external validation involving independent 
datasets from other sources or institutions could further 
validate the effectiveness of the framework in diverse real-
world settings, providing more comprehensive evidence of its 
performance and applicability. Integrating such validation 
methods would strengthen the credibility and reliability of the 
study's findings, enhancing its overall quality and impact in 
the field of decentralized ent. These approaches help 
physicians identify health monitoring for Traumatic Brain 
Injury (TBI) managemy diseases, plan treatments, estimate 
risks, and evaluate prognoses. A number of CAD-based 
methods are suggested to identify abnormalities in the brain 
that are reflected in images utilizing various methods. These 
controlled or uncontrolled partially automated or completely 
autonomous techniques use machine learning or deep learning 
methods to improve precision and effectiveness, and they may 
be used to identify a single brain disorder or a combination of 
disorders. 

The Key contributions of the paper is given as follows: 

 The paper leverages three distinct datasets, namely the 
CQ500 dataset, the RSNA dataset, and the CENTER-
TBI study dataset, each offering comprehensive 
collections of brain CT images annotated for various 
intracranial abnormalities associated with traumatic 
brain injury. This multi-centric and heterogeneous 
dataset approach enhances the robustness and 
generalizability of the proposed predictive analysis 
model. 

 The adoption of gray level co-occurrence matrix for 
feature extraction enables the capture of statistical 
texture features essential for accurately classifying 
normal and abnormal brain CT images. This 
sophisticated feature extraction method contributes to 
the discrimination of subtle patterns and textures 
indicative of traumatic brain injury, thereby enhancing 
the model's predictive capabilities. 

 The implementation of the Grasshopper Optimization 
Algorithm for feature selection addresses the curse of 
dimensionality and optimizes classification 
performance by identifying an optimal subset of 
features from the larger feature space. This novel 
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feature selection strategy ensures the selection of the 
most relevant and discriminative features, thereby 
improving the efficiency and accuracy of the predictive 
analysis model. 

 The adoption of federated convolutional neural 
networks for classification facilitates decentralized 
privacy-preserving training, enabling individual 
networks to independently train their local CNN 
models on their respective datasets while sharing 
model parameters with a central server in iterative 
communication rounds. This decentralized health 
monitoring approach ensures data privacy and security 
while enabling collaborative learning and model 
improvement across diverse healthcare environments. 

 The culmination of these contributions results in an 
accurate predictive analysis model capable of 
distinguishing normal and abnormal brain CT images 
associated with traumatic brain injury. By integrating 
innovative techniques for data preprocessing, feature 
extraction, feature selection, and classification within a 
decentralized health monitoring framework, the paper 
advances the state-of-the-art in predictive analysis of 
traumatic brain injury, offering significant benefits for 
patient care and treatment optimization. 

The following portions of the chapter are organized as 
follows. Section II includes an overview of the literature on 
predictive analysis of traumatic brain injury. The problem 
statement for the study is presented in Section III. Section IV 
covers the recommended approach for predictive analysis of 
traumatic brain injury. Section V compares the method's 
efficacy to previous techniques, and the performance measures 
are displayed, along with an explanation of the results. Section 
VI describes the conclusion. 

II. RELATED WORKS 

Prior studies in the field of intracranial hemorrhage and 
traumatic brain injury diagnosis have mostly depended on CT 
scanning for quick recognition and identification of 
hemorrhagic areas but require skilled interpretation to identify 
ICH subtypes. Nevertheless, specific quantitative information 
such as the thickness and amount of bleeding that is required 
for predictive making decisions in critical care settings is 
frequently absent from CT scans. Recent research has 
suggested deep learning methods for quantitative evaluation 
and subtype identification in ICH in order to overcome these 
shortcomings. In order to discover subtype differences and 
outline ICH zones, these frameworks usually entail 
preprocessing processes such as transforming DICOM to 
NIfTI layout, then performing multi-class segmentation based 
on semantics and optimized classification neural networks. 
These approaches have demonstrated potential, but they are 
not beyond drawbacks. Among the difficulties include the 
restricted applicability to other datasets, the possibility of 
overfitting as a result of fine-tuning on a smaller scale 
information, and the reliance on well datasets with annotations 
for training, which can occasionally not be easily accessible. 
Furthermore, flexibility in responding to different clinical 
scenarios and imaging techniques may be limited by the 
dependence on models that have been trained. Furthermore, to 

ensure durability and therapeutic significance, extensive 
validation on bigger and more varied groups is required, even 
with high accuracy achieved. Furthermore, there is still room 
for improvement and investigation in the actual use as well as 
incorporation of these deep learning technologies into clinical 
processes, taking into account aspects like immediate 
processing and usability by medical practitioners without 
extensive training. Therefore, while these advancements offer 
promise in enhancing ICH diagnosis and treatment decision-
making, continued research efforts are essential to address 
these limitations and realize the full potential of deep learning 
in this critical medical domain [16]. 

In the domain of mild traumatic brain injury, recent efforts 
have aimed to enhance patient management through the 
development of decision rules and predictive models. While 
traditional statistical techniques have been utilized to identify 
low-risk patients for discharge from the emergency 
department, machine learning approaches have been explored 
to potentially improve predictive accuracy. However, findings 
from a retrospective cohort study utilizing gradient boosted 
decision trees on CT-identified TBI patients failed to 
demonstrate clear advantages over traditional methods. 
Despite achieving respectable predictive values, the machine 
learning models exhibited similar specificity to traditional 
approaches and were developed on a smaller dataset due to the 
necessity of partitioning for training, calibration, and 
validation. Key predictors of deterioration remained consistent 
across methods, including Glasgow Coma Scale, injury 
severity, and the number of brain injuries. Limitations include 
the challenge of data partitioning and the absence of 
substantial improvements over established techniques, 
highlighting the need for future research to focus on 
developing models that offer discernible advantages in 
outcome prediction for this patient population. Additionally, 
the modest improvement in predictive performance may not 
justify the added complexity and resource requirements 
associated with machine learning methods, underscoring the 
importance of considering practical implementation and 
clinical utility in advancing predictive models for TBI 
management [17]. 

Although they are not very specific, clinical guidelines 
have been developed in an attempt to reduce the misuse of CT 
scans in cases of mild traumatic brain injury. While 
duplicating these criteria using machine learning models has 
showed promise, attaining balanced specificity and sensitivity 
is still a problem. A deep artificial neural network model and 
an instance hardness cutoff technique were used in a study 
aimed at pediatric populations to replicate the Pediatric Urgent 
Services Clinical Research Networks clinical criteria for CT 
scan requirement. There are still restrictions in place despite 
encouraging outcomes with significant specificity and 
sensitivity. The study's use of historical information from the 
PECARN research that took place between 2004 and 2006 
raises the possibility of biases or mistakes, which might have 
an impact on the model's applicability to current patient 
populations or therapeutic settings. Additionally, even though 
the DANN model outperformed the PECARN clinical 
guidelines in terms of sensitivity and specificity, practical 
issues like model understanding and convenience of 
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incorporation into workflows for clinical practice are still 
unsolved. Furthermore, the study's emphasis on juvenile 
groups could restrict the findings' relevance to adult 
populations, calling for additional investigation to confirm the 
model's effectiveness across a range of patient demographics. 
Consequently, even though the DANN model appears to have 
potential for increasing the use of CT scans in paediatric TBI 
patients, further research should focus on resolving these 
issues and guaranteeing the model's reliability and 
applicability in clinical settings [18]. 

Machine learning algorithms have become more and more 
important in the endeavour to forecast the results of treatment 
for individuals with traumatic brain injury. These algorithms 
make use of a variety of data sources, such as imaging indexes 
laboratory information, clinical parameters, and demographic 
factors. But even with these advances, there are still 
restrictions. In order to identify important determinants of in-
hospital mortality and long-term survival, a study carried out 
in a tertiary trauma centre in Iran sought to construct reliable 
prediction models utilizing machine learning techniques. 
While some variables were found to be significant, there are 
some limitations to the findings, such as the possibility of 
biases from retrospective data collection and the exclusion of 
insufficient information, which may compromise the 
generalizability of the model. Furthermore, the study's 
dependence on an Iranian single-centre dataset would restrict 
the findings' generalizability to other patient groups or 
healthcare environments. In addition, even though machine 
learning algorithms demonstrated potential in forecasting both 
short- and long-term mortality, issues like interpretability of 
models and adaptability in clinical settings still need to be 
addressed. Therefore, even though machine learning has the 
potential to predict the outcomes of traumatic brain 
injury patients, these limitations must be addressed through 
bigger and more diversified datasets, prospective research, and 
improved model interpretability in order to assure reliable and 
clinically useful predictions for TBI therapy [19]. 

Investment in models that use machine learning has 
increased as a result of the need to precisely predict results for 
patients with severe brain injuries. The goal of such models is 
to enhance treatment regimens and perhaps provide significant 
economic advantages. Using admission information from 
2,381 patients with severe traumatic brain injury as training 
data, researchers at Rajaee Hospital in Shiraz, Iran. 
Restrictions still exist despite the good performance with high 
levels of specificity, sensitivity, and precision. Particularly, 
using retrospective information collected from a single 
location may restrict generalizability to wider populations or 
healthcare environments and induce biases. Furthermore, the 
focus of the study on predicting positive or negative outcomes 
six months after the event may have obscured subtle 
differences in patient paths and long-term forecasts. 
Additionally, even though machine learning approaches have 
great potential, there are still issues with model 
comprehension, scaling, and the requirement for big and 
varied datasets [20]. 

Recent research in the domain of traumatic brain injury 
diagnosis and outcome prediction has witnessed significant 
advancements, particularly through the application of machine 

learning techniques. Studies have focused on enhancing the 
accuracy of intracranial hemorrhage detection and subtype 
classification using deep learning frameworks, although 
challenges such as dataset generalization and practical 
implementation remain. Additionally, efforts have been made 
to improve the prediction of treatment outcomes in TBI 
patients through ML algorithms, yet limitations persist in 
terms of model interpretability and generalizability across 
diverse patient populations. The sections that have been made 
available emphasise how crucial it is to use machine learning 
especially deep learning to solve practical difficulties with 
TBI diagnosis and treatment. The theoretical framework may 
be enhanced by integrating the knowledge from the literature 
review, with a focus on developing models that have higher 
specificity, sensitivity, and usability in order to further TBI 
research and improve patient outcomes. Furthermore, the 
development of clinical rules and predictive models for mild 
TBI has shown promise, but achieving balanced sensitivity 
and specificity remains a challenge. While machine learning 
approaches offer potential in optimizing treatment procedures 
and predicting clinical outcomes, addressing limitations such 
as biases from retrospective data collection, model 
interpretability, and scalability in clinical practice are crucial 
for realizing their full potential in TBI management. 

III. PROBLEM STATEMENT 

The limitations observed in previous research efforts 
regarding predictive analysis of traumatic brain injury prompt 
the necessity for innovative approaches. Existing studies have 
primarily focused on machine learning techniques, such as 
deep learning frameworks, for TBI diagnosis and outcome 
prediction. However, challenges persist in terms of dataset 
generalization, model interpretability, and scalability in 
clinical practice. Additionally, while efforts have been made 
to develop clinical rules and predictive models, achieving 
balanced sensitivity and specificity remains elusive [21]. 
Moreover, the reliance on retrospective data from single 
centers may introduce biases and limit the applicability of 
findings to broader patient populations or healthcare settings. 
In light of these challenges, our proposed paper aims to 
address these limitations by introducing a novel approach 
utilizing federated convolutional neural networks for 
predictive analysis of TBI. By leveraging federated learning 
techniques, we aim to overcome issues related to data privacy 
and centralization, enabling decentralized health monitoring 
while maintaining patient confidentiality. Through our 
proposed federated CNNs, we seek to enhance predictive 
accuracy and enable real-time monitoring of TBI patients 
across diverse healthcare environments, ultimately 
contributing to improved patient outcomes and healthcare 
delivery in the field of traumatic brain injury management. 

IV. METHODOLOGY 

Three major components make up the methodology 
presented in this paper: gathering data, preprocessing with 
median filtering, feature extraction with grey level co-
occurrence matrix, feature selection with Grasshopper 
Optimization Algorithm, and classification with federated 
convolutional neural networks. For training and assessment, 
three different datasets are used: the CQ500 dataset, the 
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RSNA dataset, and the CENTER-TBI research dataset. All 
three provide extensive and varied sets of brain CT images 
labelled for different intracranial abnormalities related to 
traumatic brain injury. In preprocessing, noise is removed 
from CT images by median filtering, and then statistical 
texture characteristics necessary for differentiating between 
normal and pathological pictures are extracted using GLCM. 
The Grasshopper Optimization Algorithm is utilized for 
feature selection to overcome the dimensionality problem and 
enhance classification performance. This algorithm makes it 
easier to identify the best subset of features from the broader 
feature space. Lastly, federated CNNs are used for 
classification. These are decentralized, privacy-preserving 
training mechanisms that allow separate networks (A, B, and 
C) to train their local CNN models independently on their own 
datasets and share parameter values with a central server 
through iterative communication rounds. By combining 
updated parameters from local models, the global CNN model 
continuously improves through this federated learning setup. 
This leads to an understanding of features that differentiate 
between normal and abnormal images across all networks, 
enabling accurate predictive analysis of traumatic brain injury 
while maintaining data privacy and decentralization in health 
monitoring. Fig. 1 shows the overview of the proposed 
architecture. 

A. Data Collections 

1) Dataset for Network A: Most of the research that have 

been done so far have employed smaller datasets that were 

gathered from individual institutions in an effort to establish 

computer-aided diagnosis systems that can identify various 

disorders connected to traumatic brain injury. A publicly 

accessible brain CT dataset called CQ500 can help with the 

creation of machine learning algorithms that classify and 

recognize different types of abnormalities in the brain [22]. 

The creation of general, computerized CAD systems to 

evaluate the many anomalies connected to traumatic brain 

injury is made easier by these multicentre and heterogeneity 

datasets. 491 brain CT images from various radiology units 

have been collected batch-wise and combined into the varied 

CQ500 dataset by the Centre for Advanced Research in 

Images, Neurosciences and Genomics, located in New Delhi, 

India. Three separate radiologists interpreted each CT image 

to determine whether or whether each had (i) ICH and its five 

forms, (ii) midline shift, (iii) calvarias fractures, and (ICH age 

and afflicted brain hemisphere. An example of the dataset's 

normal and aberrant images is displayed in Fig. 2. 

 

Fig. 1. Overview of the proposed architecture.  
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Fig. 2. Sample CT images from CQ500 dataset. 

2) Dataset for network B: The RSNA dataset, which 

includes 865,032 labeled brain CT images for hemorrhage 

identification and categorization, is the biggest publicly 

accessible dataset. Experienced radiologists have analyzed 

each CT scan in this multinational and multi-institutional 

dataset for the existence or lack of each of the five forms of 

ICH. 652,403 and 123,133 CT images, accordingly, constitute 

the training and test information. There is a group imbalance 

among the hemorrhage subgroups [23]. 

3) Dataset for network C: The study utilized information 

from the CENTER-TBI, which enrolled more than 5000 

individuals from a variety of facilities, including community 

hospitals, trauma groups, and university medical centers. 

Three layers of information are gathered, each distinguished 

by a particular care path: The following three patient groups 

are classified as follows: 1) individuals seen in the emergency 

department and released; 2) patients transferred to the medical 

facility but not to an intensive care unit and 3) patients 

transferred to the ICU. A CT scan was conducted in 

accordance with standard clinical practice on a clinical 

scanner with a wide range of imaging variables. For the 

purpose of assessing the segmentation of immediate 

intracranial lesions, three unique subcohorts of the 

CENTERTBI information set are taken into consideration: 

cistern identification and midline shift estimate. This 

guarantees that each data set provides a significant variety 

when it comes to of TBI severity and imaging parameters of 

interest [24]. 

B. Preprocessing using Median Filtering 

Pre-processing is used to eliminate extraneous information 
from brain CT scans, which can create noise and negatively 
impact CAD system performance. The improved CT images 
in this investigation were obtained by using a median filter. 
The speckle noise in a CT picture is eliminated using the 
median filter. In digital image processing, noise is eliminated 
by using a median filter. This novel approach uses a median 
filter for filtering in order to identify traumatic brain damage. 
A neighbourhood region serves as the filtering window for the 

median filtering method, which modifies its size based on 
certain filtering process setup criteria. A useful technique that 
can separate out of varied isolates from acceptable picture 
alternatives like boundaries and characteristics to a certain 
degree is the median filter. In particular, the median filter 
substitutes the median for a pixel rather than the 
neighbourhood’s average of all the pixels Ѱ. As could 
possibly see in Eq. (1). 

𝑀[𝑅(𝑢) + 𝑆(𝑢)] ≠ 𝑀[𝑅(𝑢]) + 𝑀[𝑆(𝑢)]   (1) 

A statistically based non-linear signal processing technique 
is the median filter. The noisy number will be replaced with 
the digital image's median value. The noisy value is replaced 
by the group median, which is saved after the mask's pixels 
are arranged according to the gray levels. 

C. Feature Extraction using Gray Level Co-Occurrence 

Matrix 

Characteristics are the bits of data that are important for 
representing important aspects of pictures and for solving 
certain applications. The selection of input characteristics 
greatly affects training set parameters and categorization 
accuracy. The technique of extracting an image's visual 
content in order to reduce the number of resources needed is 
known as feature extraction. Gray level co-occurrence matrix 
(GLCM) was developed in this study to extract statistical 
texture information. Texture characteristics are significant 
low-level characteristics that are utilized to measure an 
image's perceived texture and define its contents. 

The widely used GLCM method uses statistical 
distributions of intensity value combinations at various 
locations in relation to one another in an image to determine 
second order statistical texture characteristics. There are three 
categories of statistics: first, second, and higher order, based 
on the quantity of intensity locations within the image. 
Although theoretically feasible, the computational cost 
prevents the implementation of higher levels statistics. Texture 
characteristics hold details about the surface's structural 
organization and how it interacts with its surroundings. 
Energy, correlation, entropy, homogeneity, sum variability, 
autocorrelation, contrary, maximal probability, dissimilarity, 
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IDM normalized, and many more texture-based characteristics 
are acquired—a total of twenty-two are obtained. Some of 
them are expressed as follows: 

1) Energy: Energy can also be defined as "angular second 

moment" or "uniformity." It provides the GLCM matrix's sum 

of square components. From homogeneous to non-

homogeneous regions, it is done this way. When the frequency 

of repeated picture pixels is high, it is high. Eq. (2) displays 

the energy equation. 

𝐸 = ∑ (𝑄𝑥)
2𝑚−1

𝑢,𝑣=0     (2) 

2) Entropy: It determines the image's unpredictability. A 

uniform image will therefore provide a lower entropy rating. 

Eq. (3) displays the entropy equation. 

𝐸𝑇 = ∑ −𝐼𝑛(𝑄𝑥)
𝑚−1
𝑢,𝑣=0 𝑄𝑥   (3) 

3) Contrast: It determines the strength of the contrasts 

that connects a pixel to its neighbour throughout the whole 

image. Eq. (4) displays the equation of contrast. 

𝐶 = ∑ 𝑄𝑥(𝑢 − 𝑣)2𝑚−1
𝑢,𝑣=0    (4) 

4) Correlation: It measures the linear gray tone 

dependency of a picture. It explains how a pixel and its 

neighbour are linked. The correlation equation is shown in Eq. 

(5). 

𝐶𝑜 = ∑ 𝑄𝑥
(𝑢−𝜇∗𝑣−𝜇)

𝜎2
𝑚−1
𝑢,𝑣=0    (5) 

5) Homogeneity: It measures the degree of pixel 

resemblance. The homogenous image's GLCM matrix values 

out to 1. If the texture of the image just needs minor 

adjustments, it is very low. Eq. (6) displays the equation of 

homogeneity. 

𝐻 = ∑
𝑄𝑥

1+(𝑢−𝑣)2
𝑚−1
𝑢,𝑣=0    (6) 

D. Feature Selection Employing Grasshopper Optimization 

Algorithm 

While characteristics are necessary to achieve high 
accuracy, an abundance of characteristics can lead to a 
"dimensionality curse" whereby an excessive number of 
characteristics wastes a significant amount of storage capacity, 
increases calculation time, and complicates categorization. 
Adding more characteristics also increased the risk of 
"overfitting," which reduces the system's generalizability and 
reduces accuracy. Therefore, it is necessary to create feature 
selection strategies, which choose the "optimal subset of 
features" from a wider set. The Grasshopper Optimization 
Algorithm is used in this work to choose characteristics. 

In 2016, the GOA algorithms was introduced. This method 
emulates the natural swarming behaviour of grasshoppers. 
Three factors influence a grasshopper's position in a swarm's 
flight path: wind advection (𝐵𝑢), gravity (𝐻𝑢), and social 
interaction (𝑅𝑢). Eq. (7) defines the social interaction as the 
primary search mechanism in the GOA algorithm. 

𝑅𝑢 = ∑ 𝑟(𝑐𝑢𝑣)𝑐𝑢�̂�
𝑀
𝑣=1,𝑣≠𝑢      (7) 

In this case, r denotes a function that defines the degree of 
societal pressures, 𝑐𝑢𝑣 = |𝑦𝑣 − 𝑦𝑢|  is the distance that exists 

between the u-th and v-th grasshoppers, and 𝑐𝑢�̂� =
𝑦𝑣=𝑦𝑢

𝑐𝑢𝑣
  is 

the vector of units from the u-th grasshopper to the v-th 
grasshopper. The above equation shows that the function of r 
is the primary element of the relationship between people. Eq. 
(8) specifies the value of this function, which determines a 
grasshopper's orientation of travel within the swarm. 

𝑟(𝑠) = 𝑓𝑒
−𝑠

𝑙 − 𝑒−𝑠   (8) 

where, l is the attracting distance scales and f is the 
attraction's strength. The grasshoppers are driven by this 
function to repel one another as well as to be attracted to one 
another. In order to prevent colliding, two grasshoppers will 
repel one another when their distances are within the range of 
[0, 2.079]. To keep the swarm cohesive, the attraction force 
grows while the distance is in [2.079, 4]. The zone of comfort 
is the region where there cannot be a pressure at precisely 
2.079. 

In the event when the distance between them equals 2.079, 
both attraction and repulsion vanish. From 2.079 units of 
distance until almost four the attraction intensity rises and then 
progressively falls. Substantial differences in the values of the 
variables in the equation used for the value of s (l and f) result 
in altered swarming behaviour. To demonstrate how 
grasshoppers communicate with regard to their comfort zones. 
When it comes to modelling grasshopper interactions, the 
swarm approach performs well. But in order to create an 
optimization algorithm, it has to be modified. The subsequent 
mathematical representation of the search during grasshopper 
interactions was suggested by the study. Eq. (9) serves as a 
representation of the computational framework. 

𝑌𝑢
𝑐 = 𝑏 (∑ 𝑏

𝑖𝑎𝑐−𝑙𝑎𝑐

𝑟
𝑟(|𝑦𝑣

𝑐 − 𝑦𝑢
𝑐|)𝑀

𝑣=1,𝑣≠𝑢
𝑦𝑣−𝑦𝑢

𝑐𝑢𝑣
) + 𝑇�̂�  (9) 

where, (𝑇�̂� )  is the average value of the c-th dimensions in 
the objective (best solution discovered so far), c is a 
diminishing parameter to shorten the comfort region, repelling 
region, and attractiveness region, and  𝑖𝑎𝑐  is the maximum 
value in the c-th dimensions and 𝑙𝑎𝑐  is the lowest limit in the 
c−th dimensions. The following equation illustrates how the 

swarm modifies the location around an objective 𝑇�̂�. The 
swarm is brought closer to the target by the parameter c. The 
goal in the GOA algorithms is thought to be the most effective 
approach found thus far. When an improved technique is 
found, the best approach becomes revised while the 
grasshoppers communicate and pursue the objective. 

Eq.  (10) is utilized to modify variable c, which is the 
primary governing variable in the GOA algorithm. 

𝑑 = 𝑑𝑚𝑎𝑥 − 𝑙
𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛

𝐿
    (10) 

where, 𝑑𝑚𝑎𝑥  = 1, and 𝑑𝑚𝑖𝑛= 0.00001, L is the greatest 
number of iterations, and l is the present repetition. 

E. Classification using Federated Convolutional Neural 

Networks 

With federated learning, client edges could discover a 
common global model without sending their confidential local 
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information to a central server. Federated learning is a 
developing distributed privacy-protection learning method. 
Every training cycle, the local machine receives a model that 
everyone uses from the cloud-based global servers, training it 
using each user's personal information, and then updates the 
weights or gradients by sending a request back to the servers. 
The client-uploaded models are combined on the server to 
create an additional global design. The following 
distinguishing characteristics of federated learning set it apart 
from conventional centralized learning: 

1) The global server clouds cannot access the training data 

since they are dispersed on local edges. All clients and the 

serves share the same learning model, nevertheless. 

2) Rather than on the server, model training takes place on 

each local device. In order to create a shared global model, the 

server compiles the local models that the clients contribute, 

sends the completed model returned to the clients. 

3) Compared to typical centralized learning, federated 

learning requires a lot more local computing power and 

capabilities. 

The process of federated learning is described, in which 
every client trains its unique local algorithm utilizing its own 
information after receiving the parameters of the larger 
framework from the central server. Following local training, 
every local device transmits its learned local variables to the 
server, where they are combined to create a revised global 
model that will be utilized for training in the subsequent 
iteration of training. In federated learning, the time patterns, or 
so-called communication phases, are indicated by the 
subscript t. 

Convolutional neural networks have demonstrated 
consistently higher effectiveness for image categorization and 
are appropriate to handle very high dimensional inputs. CNN 
topological architectures are comparable. Three different types 
of layers are often found in a CNN: convolutional, pooling, 
and fully linked layers. Many kernel filters, which can be 
identified as an array of square block neurons, make up the 

convolutional layer. The preceding layer's kernel filters, which 
may be thought of as training weights, are subjected to 
"convolution" processes by the convolutional layer. The CNN 
may be explained mathematically in the following way in Eq. 
(11). 

𝑥𝑢𝑣
𝑙 = 𝜎(∑ ∑ 𝑓𝑔ℎ𝑦(𝑢+𝑔)(𝑣+ℎ)

𝑖−1𝑚−1
ℎ=0

𝑚−1
𝑔=0 )  (11) 

Here, 𝑦𝑙−1 is the convolutional layer's input, 𝑥𝑢𝑣
𝑙   is its 

output, l is the layer number, 𝑓𝑔ℎ  is a n × n kernel filter, and σ 

is the activation constant. The study specifically uses the 
corrected linear unit (relu) as the function that activates of the 
hidden neuron to mitigate the effects of softmax function and 
gradient vanishing in nodes that produce data for multi-class 
categorization problems. Below are the Eq. (12) and (13) for 
the softmax and relu functions. 

𝜎𝑟𝑒𝑙𝑢(𝑘) = max(0, 𝑘)     (12) 

𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑘𝑢) =
𝑒𝑥𝑝(𝑘𝑢)

∑ 𝑒𝑥𝑝(𝑘𝑢)
𝐷
𝑢=1

  (13) 

where, C is the overall amount of label categories that 
require to be classified and k is the result of the preceding 
layer. The amount of label categories that require 
classification. After many convolutional layers of the CNN, a 
pooling layer can be implemented to extract certain features 
from hidden representation. In order to improve the 
representation characteristics of filtered pictures from the 
preceding convolutional layer, a measurement of m × m Max 
pooling windows is often built for obtaining the maximum 
brightness value of pixels inside the associated Max pooling 
windows region. A typical alternative to the Max pooling 
procedure is the Average pooling approach, which involves 
average value distribution of features throughout the window 
region. The flattening image pixels from the result of the layer 
before it provides the input for the fully linked layer, which is 
applied at the rear of the CNN. This layer's primary function is 
to categorize the characteristics that were retrieved from the 
CNN's earlier layers into different groups. Fig. 3 illustrates 
how federated CNN operates. 

 

Fig. 3. Working of federated CNN. 
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In the federated CNN mechanism for classifying images as 
normal or abnormal, each network (A, B, and C) possesses its 
own dataset containing a mix of normal and abnormal images. 
In the federated learning setup, during each communication 
round, the central server sends the parameters of the global 
CNN model to each network. Subsequently, each network 
independently trains its local CNN model using its respective 
dataset, leveraging the local computational resources and 
privacy-preserving nature of federated learning. The CNN 
model consists of convolutional layers, pooling layers, and 
fully connected layers for extracting and classifying features 
from the images. After local training, the updated parameters 
of the local CNN models are sent back to the central server, 
where they are aggregated to form an updated global CNN 
model. This global model represents a collective 
understanding of the features distinguishing normal and 
abnormal images across all networks. The process iterates 
over multiple communication rounds, with the global model 
continuously improving its ability to classify images 
accurately while respecting data privacy constraints inherent 
in federated learning. 

V. RESULTS AND DISCUSSION 

In this section, the study presents the results and discussion 
of the proposed paper. The methodology encompasses data 
collection from three diverse datasets: the CQ500 dataset, the 
RSNA dataset, and the CENTER-TBI study dataset, each 
containing annotated brain CT images associated with 
traumatic brain injury. Preprocessing involves median filtering 
for noise removal, followed by feature extraction using gray 
level co-occurrence matrix to capture statistical texture 
features. Feature selection is conducted employing the 
Grasshopper Optimization Algorithm to optimize 
classification performance by identifying an optimal subset of 
features. Classification is performed using federated CNNs, 
enabling decentralized privacy-preserving training across 
individual networks (A, B, and C) while sharing model 
parameters with a central server. Through federated learning, 
the global CNN model evolves iteratively, aggregating 
updated parameters from local models to achieve a collective 
understanding of features distinguishing normal and abnormal 
images, thus enabling accurate predictive analysis of traumatic 
brain injury while ensuring data privacy and decentralization 
in health monitoring. 

A. Performance Evaluation 

Assessment measures are required to evaluate the 
predictive accuracy. The most common approach for 
accomplishing this is to determine accuracy. The percentage 
of datasets detected correctly by a classifier indicates its 
accuracy for a specific testing dataset. Because employing 
basically the accuracy metric cannot be used for optimal 
decision-making. The recommended technique's performance 
was evaluated utilizing precision, recall, accuracy, and F1-
score measurements. The following describes the definitions 
of each measure: 

 The term 𝑇𝑝𝑜𝑠 (True Positive) describes the total 

amount of accurately found data. 

 The term 𝐹𝑝𝑜𝑠 (False Positive) refers to the proportion 
of accurate data that was mistakenly detected. 

 False negatives (𝐹𝑛𝑒𝑔) occur when erroneous data is 

mistakenly recognized as legitimate. 

 Identification of erroneous information values is known 
as 𝑇𝑛𝑒𝑔 (True Negative). 

 𝑇𝑛𝑒𝑔  (True Negative) is used to identify inaccurate 

data entries. 

1) Accuracy: The classifier's accuracy indicates the extent 

to which it generates the correct prediction. Accuracy is 

measured by the ratio of reliable projections compared to all 

alternative reasonable projections. It is demonstrated by Eq. 

(14). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
  (14) 

2) Precision: The number of properly detected results is 

calculated by determining a classifier's precision, or its degree 

of accuracy. Accuracy improvement results in reduced false 

positives, but lower precision causes numerous additional 

errors. Precision is defined as the percentage of examples that 

correlate appropriately to all incidences. It is defined by Eq. 

(15). 

𝑃= 
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
     (15) 

3) Recall: The degree of sensitivity of a recognition, or 

the amount of relevant information produced, is determined by 

recall. Enhanced recall decreases the total quantity of𝐹𝑛𝑒𝑔. 

Recall is the proportion of properly classified instances to all 

projected events. This is demonstrable by Eq. (16). 

   𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
  (16) 

4) F1-Score: The F1-Score, which represents the 

weighted average of recall and accuracy, is calculated by 

summing both recall and precision. It is characterized by Eq. 

(17). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
  (17) 

5) ROC Curve: In deep learning and machine learning, 

the area under the ROC curve, or AUC, is a well-known 

statistic for binary classification problems. The binary 

recognition algorithm's efficacy is measured by the area under 

the curve, which is visually depicted by the Receiver 

Operating Characteristic curve. The classifier in a binary 

classified problem looks for information that indicates 

whether a division is positive or negative. 

Fig. 4 depicts the training and testing accuracy for 
Network A, Network B, Network C, and the Centralized 
Server in the proposed federated CNN framework for 
predictive analysis of traumatic brain injury. In (a), (b), and 
(c), the training accuracy gradually increases with each 
communication round, indicating that the local CNN models 
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for each network (A, B, and C) improve over successive 
iterations. Similarly, the testing accuracy follows an upward 
trend, signifying enhanced classification performance on 
unseen data as the federated learning process advances. 
Notably, Network B demonstrates the highest testing accuracy 
among the three networks, suggesting superior predictive 
capability in identifying normal and abnormal brain CT 
images associated with traumatic brain injury. In contrast, (d) 
illustrates the training and testing accuracy of the Centralized 
Server, showcasing a comparable performance to the federated 
networks, albeit with a single global model trained on 
aggregated data. Overall, it highlights the effectiveness of 
federated CNNs in achieving accurate predictive analysis of 
traumatic brain injury while preserving data privacy and 
decentralization across multiple networks. 

Fig. 5 illustrates the training and testing loss for Network 
A, Network B, Network C, and the Centralized Server within 
the federated CNN framework for predictive analysis of 
traumatic brain injury. In (a), (b), and (c), the training loss 
gradually decreases over successive communication rounds, 
indicating improved convergence of the local CNN models for 
each network (A, B, and C). Similarly, the testing loss exhibits 
a downward trend, suggesting enhanced generalization 
performance on unseen data as the federated learning process 
advances. Notably, Network B demonstrates the lowest testing 
loss among the three networks, implying superior predictive 

capability in differentiating between normal and abnormal 
brain CT images associated with traumatic brain injury. In 
contrast, (d) presents the training and testing loss of the 
Centralized Server, showcasing comparable performance to 
the federated networks, albeit with a single global model 
trained on aggregated data. Overall, Fig. 5 highlights the 
efficacy of federated CNNs in achieving accurate predictive 
analysis of traumatic brain injury while ensuring data privacy 
and decentralization across multiple networks. 

Fig. 6 depicts the fitness of the Grasshopper Optimization 
Algorithm utilized for feature selection in the proposed 
federated convolutional neural network framework for 
traumatic brain injury predictive analysis. The plot illustrates 
the convergence of the GOA algorithm over successive 
iterations, with the fitness value gradually improving towards 
optimization. As the number of iterations increases, the fitness 
value decreases, indicating the algorithm's effectiveness in 
identifying an optimal subset of features from the larger 
feature space. The diminishing fitness curve reflects the 
algorithm's ability to iteratively refine feature selection, 
ultimately enhancing the classification performance of the 
CNN models. This visualization underscores the utility of the 
GOA in mitigating the curse of dimensionality and optimizing 
feature representation for accurate TBI predictive analysis 
within the federated learning paradigm. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Training and testing accuracy (a) Network A (b) Network B (c) Network C and (d) Centralized server. 
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(a)  

(b) 

 
(c) 

 
(d) 

Fig. 5. Training and testing loss (a) Network A (b) Network B (c) Network C and (d) Centralized server. 

 

Fig. 6. Fitness of the grasshopper optimization algorithm. 

Fig. 7 presents the Receiver Operating Characteristic 
graphs for each network (A, B, and C) and the centralized 
server in the proposed federated convolutional neural network 
framework for predictive analysis of traumatic brain injury. 
The ROC curves plot the true positive rate against the false 
positive rate for varying classification thresholds, providing a 
comprehensive assessment of model performance across 
different operating points. Each curve represents the trade-off 
between sensitivity and specificity, with a higher area under 
the curve indicative of better discriminative ability. The 

curves illustrate the CNN models' capacity to distinguish 
between normal and abnormal brain CT images, with steeper 
slopes and greater AUC values reflecting superior predictive 
accuracy. By comparing the ROC curves of individual 
networks with the centralized server, the graph evaluates the 
efficacy of federated learning in achieving comparable 
performance to centralized approaches while preserving data 
privacy and decentralization. The ROC analysis offers insights 
into the CNN models' classification performance and 
underscores the framework's utility in facilitating accurate TBI 
predictive analysis in decentralized health monitoring settings. 

 

Fig. 7. ROC graph. 
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TABLE I. COMPARISON OF THE DATASETS IN THE PROPOSED SYSTEM 

Datasets Accuracy (%) 

CQ500 98.7 

RSNA 99.5 

CENTER-TBI 97.6 

 

Fig. 8. Comparison of the datasets in the proposed system. 

Table I and Fig. 8 provides a comparative overview of the 
datasets utilized in the proposed federated convolutional 
neural network system for predictive analysis of traumatic 
brain injury. The table lists three datasets: CQ500, RSNA, and 
CENTER-TBI, along with their corresponding accuracy 
percentages. The CQ500 dataset achieves an accuracy of 
98.7%, followed by RSNA with 99.5%, and CENTER-TBI 
with 97.6%. These accuracy scores reflect the performance of 
the CNN models trained on each dataset in accurately 
classifying brain CT images as normal or abnormal, thereby 
demonstrating the efficacy of the proposed system across 
diverse datasets with varying characteristics. The table 
underscores the robustness and generalizability of the 
federated CNN framework in achieving high predictive 
accuracy for TBI diagnosis while leveraging heterogeneous 
data sources, thus facilitating reliable decentralized health 
monitoring for TBI management. 

Table II and Fig. 9 presents a comprehensive comparison 
of performance metrics between the proposed federated 
convolutional neural network (FedCNN) method and other 
existing approaches for predictive analysis of traumatic brain 
injury. The table includes four methods: DANN, RF and DT, 
LSTM, and the proposed FedCNN, with corresponding 
metrics of accuracy, precision, recall, and F1-score expressed 
in percentage values. Among the compared methods, the 
proposed FedCNN demonstrates superior performance across 
all metrics, achieving an accuracy of 99.2%, precision of 
99.1%, recall of 99.1%, and F1-score of 99.1%. This indicates 
the efficacy of the FedCNN approach in accurately classifying 
brain CT images as normal or abnormal, surpassing the 
performance of alternative methods such as DANN, RF and 
DT, and LSTM. The higher performance metrics of the 
proposed FedCNN underscore its potential as an advanced and 
reliable tool for TBI diagnosis and predictive analysis, thus 
offering significant advancements in decentralized health 
monitoring and clinical decision-making in TBI management. 

TABLE II. EVALUATION OF THE PROPOSED METHOD'S PERFORMANCE 

METRICS IN COMPARISON WITH OTHER CURRENT STRATEGIES 

Methods 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

DANN [18] 97.2 97.4 97.4 97.4 

RF and DT 

[19] 
95.6 96.2 95.3 95.5 

LSTM [25] 98.7 98.5 98.7 98.3 

Proposed 

FedCNN 
99.2 99.1 99.1 99.1 

 

Fig. 9. Comparison of the performance metrics of the proposed method with 

other existing approaches. 

B. Discussion 

The results presented in this study showcase the 
effectiveness of the proposed federated convolutional neural 
network framework for predictive analysis of traumatic brain 
injury in decentralized health monitoring. Leveraging three 
diverse datasets, namely CQ500, RSNA, and CENTER-TBI, 
the FedCNN framework demonstrates robust performance in 
accurately classifying brain CT images as normal or abnormal 
across multiple networks (A, B, and C) while ensuring data 
privacy and decentralization. The evaluation metrics including 
accuracy, precision, recall, and F1-score indicate superior 
performance of the FedCNN approach compared to existing 
methods such as DANN [18], RF and DT [19], and LSTM 
[25]. The FedCNN achieves remarkable accuracy scores, with 
Network B exhibiting the highest testing accuracy among the 
three networks. Additionally, the Grasshopper Optimization 
Algorithm effectively optimizes feature selection, mitigating 
the curse of dimensionality and enhancing classification 
performance. ROC analysis further confirms the FedCNN's 
discriminative ability, with steeper slopes and higher AUC 
values reflecting superior predictive accuracy. These findings 
underscore the FedCNN's potential as an advanced tool for 
TBI diagnosis, offering significant advancements in 
decentralized health monitoring and clinical decision-making 
while preserving data privacy and decentralization. Overall, 
the results validate the efficacy and reliability of the proposed 
FedCNN framework in facilitating accurate TBI predictive 
analysis, thereby contributing to improved patient outcomes 
and healthcare management in TBI scenarios. Integrating 
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more sophisticated deep learning architectures and 
optimization techniques could potentially further optimize the 
FedCNN framework's performance and scalability in broader 
healthcare applications while broadening its scope to include a 
wider range of modalities and datasets could greatly improve 
its adaptability in addressing various TBI scenarios. However, 
it is essential to acknowledge the limitations that are intrinsic 
to this research. The usefulness of the FedCNN may be 
limited by small and homogenous annotated datasets, 
requiring efforts to expand and diversify the data sources. 
Furthermore, overcoming the computational complexity of 
feature extraction and selection techniques is necessary to 
guarantee effective scalability, and managing legal and 
privacy issues in decentralized health monitoring systems is 
essential to encouraging the FedCNN approach's broad 
acceptance and application in actual healthcare settings. 

VI. CONCLUSION AND FUTURE SCOPE 

In conclusion, this study presents a novel federated 
convolutional neural network (FedCNN) framework for 
predictive analysis of traumatic brain injury in decentralized 
health monitoring. Leveraging three diverse datasets and 
employing preprocessing, feature extraction, feature selection, 
and classification techniques, the proposed FedCNN 
framework achieves remarkable accuracy in classifying brain 
CT images as normal or abnormal while ensuring data privacy 
and decentralization. The results demonstrate superior 
performance of the FedCNN approach compared to existing 
methods, indicating its potential as an advanced tool for TBI 
diagnosis and clinical decision-making. Moreover, the 
Grasshopper Optimization Algorithm effectively optimizes 
feature selection, enhancing classification performance and 
mitigating the curse of dimensionality. The ROC analysis 
confirms the FedCNN's discriminative ability, further 
validating its efficacy in TBI predictive analysis. The study 
contributes to the field of decentralized health monitoring by 
providing a reliable and efficient approach for TBI 
management, offering significant advancements in patient care 
and healthcare management. For future research, further 
exploration could focus on extending the FedCNN framework 
to incorporate additional modalities and datasets, such as MRI 
and EEG data, to enhance the accuracy and scope of TBI 
diagnosis. Additionally, investigating the integration of 
advanced deep learning architectures and optimization 
algorithms could further improve the FedCNN's performance 
and scalability. Moreover, exploring the application of 
federated learning techniques in other healthcare domains 
beyond TBI could broaden the impact of decentralized health 
monitoring, paving the way for more comprehensive and 
personalized healthcare solutions. Overall, the proposed 
FedCNN framework holds promise for revolutionizing TBI 
diagnosis and healthcare management, offering a scalable and 
privacy-preserving approach for decentralized health 
monitoring in diverse clinical settings. 
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