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Abstract—To facilitate smooth human-computer interaction 

(HCI) in a variety of contexts, from augmented reality to sign 

language translation, real-time gesture detection is essential. In 

this paper, researchers leverage federated convolutional neural 

networks (CNNs) to present a novel strategy that tackles these 

issues. By utilizing federated learning, authors may cooperatively 

train a global CNN model on several decentralized devices 

without sharing raw data, protecting user privacy. Using this 

concept, researchers create a federated CNN architecture 

designed for real-time applications including gesture recognition. 

This federated approach enables continuous model refinement 

and adaption to various user behaviours and environmental 

situations by pooling local model updates from edge devices. This 

paper suggests improvements to the federated learning system to 

maximize responsiveness and speed. To lessen the probability of 

privacy violations when aggregating models, this research uses 

techniques like differential privacy. Additionally, to reduce 

communication overhead and quicken convergence, To 

incorporate adaptive learning rate scheduling and model 

compression techniques research show how federated CNN 

approach may achieve state-of-the-art performance in real-time 

gesture detection tasks through comprehensive tests on 

benchmark datasets. In addition to performing better than 

centralized learning techniques. This approach guarantees 

improved responsiveness and adaptability to dynamic contexts. 

Furthermore, federated learning's decentralized architecture 

protects user confidentiality and data security, which qualifies it 

for usage in delicate HCI applications. All things considered, the 

design to propose a viable path forward for real-time gesture 

detection system advancement, facilitating more organic and 

intuitive computer-human interactions while preserving user 

privacy and data integrity. The proposed federated CNN 

approach achieves a prediction accuracy in real-time gesture 

detection tasks, outperforming centralized learning techniques 

while preserving user privacy and data integrity. The proposed 

framework that achieves prediction accuracy of 98.70% was 

implemented in python. 

Keywords—Real-time gesture detection; federated 

convolutional neural networks; privacy-preserving machine 

learning; adaptive learning rate scheduling; Decentralized human-

computer interaction 

I. INTRODUCTION 

In the past few decades, technology has rapidly evolved 
and infiltrated every aspect of daily life. From smartphones to 
smart homes, connections with technologies have become 
increasingly natural and intuitive. Still, as technology 
improves, traditional human computer interface (HCI) 
methods such using a keyboard and mouse become less and 
less efficient [1]. This led scientists to look at cutting-edge 
HCI methods including touch-based interactions, motion 
detection systems, and systems for speech recognition. 
Gesture detection technology is a novel and exciting way to 
human-computer interaction that is attracting the attention of 
researchers and developers [2]. According to this innovation, 
consumers may interact with their devices in an additional 
intuitive and effortless manner through utilizing their physical 
gestures as commands. Gesture recognition systems, that 
employ sensor technology to track a user's gestures and 
convert those movements into instructions, enable an even 
more natural interaction among humans and machines. 
Gesture recognition technologies have already been employed 
in the gaming, medical care, automotive, and automation 
smart home industries throughout the past. Using the use of 
recognition of gestures technology, players may now 
manipulate games using their bodies, resulting in an 
experience that is deeper [3]. With the use of recognition of 
gestures technology, physical therapy exercises may now be 
completed by patients using virtual reality environments [4]. 
The automotive sector has developed gesture recognition 
technologies that allow drivers to handle multiple parts of the 
automobile without having their palms off the wheel, hence 
increasing driving safety. Consumers may now operate 
domestic devices with simple hand gestures because of gesture 
recognition technology in automated homes, making their 
experience accessible and useful [5]. The initial forms of 
human–machine interaction occurred in the early phases of the 
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Second Industrial Revolution when people used buttons and 
levers to manipulate and control the rotational rate and 
electrical power generated of steam turbines, in addition to the 
direction and speed of trains [6]. This method of transmitting 
data was progressively replaced by input through the keyboard 
and mouse control after the introduction of computers. The 
speed at where data is transmitted is increasing and the 
reliability of data recognition has become better in the past 
few years due to the rapid development of automated learning 
and signal capture technologies [7]. Now, complicated 
activities may be accurately completed by using basic signals 
to control the system [8] .The freedom, applicability, and 
effectiveness of human–machine communication have all been 
further enhanced by researchers' development of a variety of 
human–machine interaction methods as technological 
advances has progressed [4]. These innovations include voice 
control brain–computer user interfaces, facial expression 
management, and gesture recognition, between others 
[9].Given that people frequently use their hands to share and 
receive information, gesture recognition is a prominent 
technology in the field of interaction between humans and 
machines [10]. According to studies, language and voice each 
are responsible for 45% of their significance of data 
transmission, leaving gestures at 55%.This emphasizes the 
significance of body language in instruction and emotional 
expression, establishing recognition of gestures as a 
fundamental technology in interaction between humans and 
machines with benefits including ease of use, adaptability, and 
deep implications [11]. Using federated learning to develop a 
global CNN algorithm across decentralized devices in real-
time gesture detection while protecting user privacy is new 
and allows for smooth human-computer interaction. To 
enhance efficiency and adaptability in dynamic HCI scenarios, 
the suggested method also includes strategies like adaptive 
learning rate planning, differential privacy, and model 
compression. 

Key Contributions are as follows: 

 Presents a unique method that shares raw data among 
decentralized devices to cooperatively train a global 
CNN model using federated learning without 
jeopardizing user privacy. 

 Creates a federated CNN architecture specifically 
designed for real-time gesture detection, allowing for 
constant model improvement and adjustment to a range 
of user behaviours and environmental circumstances. 

 Uses methods such as adaptive learning rate 
scheduling, differential privacy, and model 
compression to speed up convergence, cut down on 
overhead, and enhance communication efficiency, 
leading to cutting-edge performance in real-time 
gesture detection applications. 

 Validates the effectiveness of the suggested federated 
CNN strategy by extensive testing on benchmark 
datasets, showing higher prediction accuracy than 
centralised learning methods. 

 Federated learning's decentralised design protects user 
privacy and data, making it appropriate for sensitive 

HCI applications and promoting more organic and 
intuitive computer-human interactions. 

The rest of the section is structured as follows: Section II 
examines the related work. Section III refers to the 
problem statement. Section IV describes the 
proposed procedure in detail, followed by Section V that 
includes the results and discussion. And finally, Section VI 
summarises the findings of the proposed work with conclusion 

II. RELATED WORK 

Qi et al. [12] suggests a modern smart cities are guiding a 
number of improvements to infrastructure with the help of an 
evolving idea called urban intelligence. The interface that 
connects citizens to smart cities is called human–computer 
interaction (HCI), and it is essential to bridge the gap in the 
adoption of technological advances in contemporary cities. 
The detection of human hand motions utilizing surface 
electromyograms (sEMG) is a significant research area in the 
practical use of sEMG, which has been widely accepted as a 
promising HCI technology. Modern signal processing 
techniques, yet, struggle to reliably extract features from and 
recognize patterns in sEMG signals due to a number of 
unresolved technological issues. In this case, how can one 
maintain myoelectric control available while it is used 
periodically? Time variation has a significant impact on 
recognizing patterns abilities, but it cannot be completely 
eliminated when using it on a daily basis. Ensuring the 
dependability and efficiency of the myoelectric controlling 
device is a crucial aspect in creating a high-quality human-
machine interaction. The present research presents the 
implementation of an extreme learning machine (ELM) and a 
linear discriminant analysis (LDA) gesture-based 
identification system that may remove redundant data from 
sEMG signals and increase recognize accuracy and efficiency. 
The feature re-extraction technique is used to obtain a 
characteristic map slope (CMS), which improves the viability 
of cross-time identifying by strengthening the link between 
features across time domains. The goal of this work is to 
optimize the duration disparities in recognizing of sEMG 
patterns. The experimental findings have the potential to 
minimize the variations in time in sEMG-based recognition of 
gestures. To strengthen the period of generalization efficiency 
of an HCI system, the identification framework presented in 
this article could enhance the long-term generalization ability 
of HCI as well as streamline the data gathering stage prior to 
training the gadget prepared for daily use. Utilizing sEMG, an 
additional extraction of features of static gesture is examined. 
Although both theoretical and experimental results were 
produced, more research is still needed to address some issues. 
In future studies, defining additional features or developing 
feature selection techniques are attractive research paths, as 
obtaining of eigenvalue slopes enhances recognizing accuracy 
in the present research. 

Rahim et al.,[13]  explains  human-computer interaction 
(HCI) techniques are being widely used in the development of 
hand gesture identification (HGR) devices in the past few 
years, allowing for routine machine contact. The challenge of 
hand segmentation and recognizing is difficult because of the 
adverse surroundings, background clarity, hand size, and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

861 | P a g e  

www.ijacsa.thesai.org 

shape. Still, the relevance of advancement in HGR keeps 
increasing. To improve recognition accuracy, researchers offer 
an ideal segmentation technique for recognizing movements 
of the hands using input photos. Researchers examined the 
segmenting techniques of YCbCr, SkinMask, and HSV (hue, 
saturation, and value) for hand motions. After removing the 
CR part from YCbCr, binarization, which erosion, and hole 
fill are carried out. The SkinMask method uses segmenting 
colors to find pixels which complement the hand's color. 
Threshold mask is used in the HSV process to identify the 
dominating features. When features from convolutional neural 
networks (CNNs) are recovered, hand movements are 
classified using the Softmax classification method. When the 
suggested segmentation techniques are used on a benchmark 
dataset, the recognition accuracy outperforms that of cutting-
edge systems. To effectively manage complicated backdrops 
and different hand orientations, future work should 
concentrate on improving the suggested segmentation 
techniques. For realistic applications, this would also be 
beneficial to look at real-time implementations and 
adaptability to various climatic situations. The SkinMask 
method uses segmenting colors to find pixels which 
complement the hand's color. Threshold mask is used in the 
HSV process to identify the dominating features. When 
features from convolutional neural networks (CNNs) are 
recovered, hand movements are classified using the Softmax 
classification method. When the suggested segmentation 
techniques are used on a benchmark dataset, the recognition 
accuracy outperforms that of cutting-edge systems. To 
effectively manage complicated backdrops and different hand 
orientations, future work should concentrate on improving the 
suggested segmentation techniques. For realistic applications, 
this would also be beneficial to look at real-time 
implementations and adaptability to various climatic 
situations.  

He, Yang and Wu, [14]  suggests an essential component 
of dynamic gesture detection is the identification and 
monitoring of gesture targets. The present research 
investigates long-term recognition of gestures with monocular 
RGB cameras to satisfy the precision and rapidity criteria of 
dynamic gesture detection in interaction between humans and 
computers. To accomplish gesture identification and tracking, 
this paper presents an integrated Gaussian model and kernels 
correlation filtration in addition to an enhanced optimization 
of particle swarms approach for extraction of features. 
Additionally, it has built a dynamic gesture monitoring 
framework using kernel correlations filtration as a foundation. 
According to the experimental findings, the skin color-based 
gesture identification system has accuracy and recall rates 
greater than 0.8 and a minimal overall absolute error value of 
0.321 across a variety of data. The maximal the R-squared 
value for the relationship coefficient is 0.823, and the 
detection speed is 36.32 frames per second. Additionally, the 
aforementioned detection technique exhibits great 
repeatability across several datasets and superior accuracy in 
detecting various gesture targets. Improved gesture tracking 
efficiency is the outcome of the gesture monitoring model's F1 
value having the biggest region of the receiver's operations 
characteristic curve & both of its error values being relatively 
small. This technology has shown considerable improvements 

in the accuracy of detection and targeted rejections rate in 
interactions between humans and computer systems. It has 
also produced beneficial effects, as seen by participants' 
largely subjective assessment of the interaction system. The 
theoretical foundations of dynamic gesture recognition and 
tracking technology are strengthened by this work, which also 
raises the standard of gesture tracking within the domain of 
interaction between humans and computers. This contributes 
to extending the range of applications for HCI. It did not 
address gesture tracking's immediate efficiency, that could be 
a useful area for future research. 

Rai et al., 2 [15]  explains a gesture-based human-
computer interface that makes use of a microcontroller, 
processing of images, and a standard computing system is 
designed and implemented. The envisioned system's goal is to 
enable any disabled person to solve problems in actual time 
with hand movements and carry out routine tasks by 
recognizing dynamic as well as static hand gestures. The 
suggested method uses several sensors installed on wearing 
gloves to classify hand gestures. The actual application takes 
the shape of a gloves via transmitter and receiver modules and 
sensors that use acceleration to detect hand movements. This 
allows people with disabilities to interact in other people in an 
effortless manner by sending and receiving the initial data 
lacking having to look for another communication channel. 
This paper's primary focus is on human-computer interface 
(HCI) interaction, which links humans and machines. A 
collection of guidelines and regulations that utilize 
permutations and calculation for a signal from the input of 
microcontrollers may recognize a combination of static and 
dynamic human gestures. With the assistance of an advanced 
microcontroller, each of these instructions are going to be 
encrypted. Essentially, there are three primary stages involved 
in hand gesture recognition: detection, monitoring, and 
identification. To facilitate human-computer contact, this 
study presents current gesture recognition system interface 
and attempts to incorporate it into a working model. This 
technique's dependence on predetermined gestures, that might 
not meet all of the communication demands of people with 
disabilities, is one of its drawbacks. Furthermore, the accuracy 
and uniformity of hand movements may have a variable 
impact on the system's overall efficacy, which could result in 
miscommunication or misunderstandings. 

Nayak et al.  [16] explains a non-contact method for 
studying psychophysiology and used in Human-Computer 
Interaction (HCI) is Infrared-Thermal Imaging. Heads 
movements complicate real-time facial recognition and 
tracking of the Regions of Interest (ROI) in the thermal video 
during HCI. The three-stage HCI system proposed in this 
paper computes multiple-variate time-series data thermal 
video clips to identify human mood and offers options for 
diversions. Utilizing a Faster R-CNN (region-based 
convolutional neural network) design, the first step involves 
face, eye, and nose detection. The Multiple Instances Learning 
(MIL) method is then used to track the face ROIs throughout 
the thermal a motion picture. A multivariate time series (MTS) 
of data is formed by calculating the average intensity of ROIs. 
The Dynamic Time Warping (DTW) technique is used in the 
second stage to characterize emotions generated by audio-
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visual stimulus using the smoothed MTS data. In the final 
stage of HCI, suggested structure offers pertinent 
recommendations from a viewpoint on physical and 
psychological distraction. Improved precision is indicated by 
suggested strategy when compared to other categorization 
techniques and thermal data sets. To extrapolate the results 
regarding feelings among people, future research might tackle 
the relatively small amount of participants by undertaking an 
investigation with a larger and more varied participation pool. 
Furthermore, adding methodologies for clustering to the 
system to identify anxiety, depression, and stress levels within 
real-time HCI framework might enhance its suitability for 
psychology purposes.  

The literature review highlights several advancements in 
human-computer interaction (HCI) techniques, particularly 
focusing on gesture recognition and tracking technologies. 
While significant progress has been made in various aspects 
such as signal processing, segmentation techniques, and 
gesture identification methods, there are still several research 
gaps that need to be addressed. One major gap is the need for 
more robust and reliable methods for dynamic gesture 
detection and tracking, especially in challenging environments 
with complex backgrounds and varying hand orientations. 
Additionally, there is a lack of emphasis on real-time 
implementations and adaptability to different climatic 
conditions, which are crucial for practical applications of HCI 
systems. Furthermore, there is a need for more comprehensive 
studies to validate the effectiveness and accuracy of these 
techniques across diverse user populations and scenarios. 
Future research should focus on improving segmentation 
techniques, enhancing gesture tracking efficiency, and 
exploring new methodologies for emotion recognition and 
psychophysiological analysis in HCI systems. 

III. PROBLEM STATEMENT 

The development of effective human-computer interaction 
(HCI) systems for gesture recognition and 
psychophysiological analysis poses significant challenges due 
to various technological and methodological limitations  [16]. 
These include difficulties in reliably extracting features from 
surface electromyogram (sEMG) signals, segmenting hand 
gestures accurately amidst complex backgrounds, and tracking 
dynamic gestures with precision [15]. Additionally, existing 
HCI systems often lack inclusivity for individuals with 
disabilities and may struggle to accurately capture and 
interpret facial expressions in real-time thermal video. To 
address these challenges, researchers have proposed novel 
approaches such as extreme learning machine (ELM) and 
linear discriminant analysis (LDA) for sEMG signal 
processing, advanced segmentation techniques using YCbCr, 
SkinMask, and HSV methods, and an integrated Gaussian 
model with kernel correlation filtration for dynamic gesture 
tracking . Furthermore, non-contact methods like infrared-
thermal imaging combined with region-based convolutional 
neural networks (R-CNN) and dynamic time warping (DTW) 
have been explored for psychophysiological analysis and 
emotion recognition. Despite promising results, further 

research is needed to enhance the accuracy, inclusivity, and 
real-time applicability of these HCI systems, particularly in 
addressing issues related to variability in gesture patterns, 
diverse environmental conditions, and psychological state 
inference. 

IV. PROPOSED FEDERATED CONVOLUTIONAL NEURAL 

NETWORKS FOR REAL-TIME GESTURE RECOGNITION FOR 

SEAMLESS INTERACTIONS BETWEEN HUMANS AND 

COMPUTERS 

The proposed method leverages a combination of 
Convolutional Neural Network (CNN) and Federated 
Learning to achieve robust gesture recognition. By starting 
with preprocessing techniques like data cleaning and 
augmentation, followed by distributed CNN training across 
multiple users, the system ensures privacy preservation while 
collectively learning from diverse datasets. The trained model 
enables accurate recognition of a range of gestures, facilitating 
seamless human-computer interaction with enhanced 
performance and responsiveness. Proposed Architecture is 
depicted in Fig. 1. 

A. Data Collection 

In this study, using three distinct datasets that are widely 
recognized and utilized in the field of gesture recognition 
research. Each dataset brings its own set of characteristics and 
complexities, providing valuable resources for training, 
testing, and validating gesture recognition models. 

1) Chalearn gesture dataset: Many public datasets for 

evaluating gesture recognition contain only one form of 

gesture The Chalearn Gesture Dataset contains nine gesture 

categories corresponding to various settings and application 

domains. It contains both static postures and dynamic 

gestures. In this dataset, a static posture is one in which a 

single posture is held for a certain duration. For a static hand 

posture, the hand is held at similar positions for multiple 

instances of the same gesture. In this case, the static postures 

also have distinct paths so they could be handled by the same 

method as the dynamic gestures. This dataset does not contain 

gestures with distinct hand poses but arbitrary movement [17]. 

2) Jester dataset: The Jester Dataset is a collection of 

hand gesture data intended for gesture recognition research 

and development. It contains videos of hand gestures 

performed by individuals, captured using webcams or other 

recording devices. The dataset includes a variety of gestures, 

such as waving, pointing, and making shapes with the hands. 

Each gesture is labelled with its corresponding class, allowing 

machine learning algorithms to be trained and evaluated on 

the data  [18]. 

3) MSR action3D dataset: This dataset consists of depth 

data capturing human actions and gestures performed by 

multiple subjects. It provides a large collection of annotated 

gesture sequences, making it suitable for training models for 

gesture recognition in HCI applications [3]. 
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Fig. 1. Proposed real-time gesture recognition for seamless interactions between humans and computers using federated convolutional neural networks. 

B. Data Pre-processing 

The datasets go through pre-processing steps before the 
model is trained. These steps include data cleaning to remove 
noise and inconsistencies, data augmentation to improve the 
robustness of the model by using techniques like rotation and 
scaling, normalization to scale features uniformly for 
improved training convergence, and recognition of relevant 
aspects from the gesture sequences, such as key points and 
spatial-temporal features. These pre-processing steps 
guarantee that the datasets are optimized for the purpose of 
developing reliable and efficient gesture recognition models 
[19]. 

C. Federated Learning for Collaborative Training Across 

Decentralized Devices 

The data used for training provided by the client are per 𝐶𝑎 
the concept of federated learning, which assumes shared there 
are actually N clients taking part in the shared model training. 
The loss function that is the result of just one sample𝑓𝑏(𝑥). 
Providing that w is the model’s weighting parameter. 
Consequently, the i th client's loss function is computed in Eq. 
(1). 

𝐹𝑎(𝑥) =
∑ 𝑏∈𝐶𝑎𝑓𝑏(𝑥)

|𝐶𝑎|
         (1) 

|𝐶𝑎| is a representation of the dataset's volume over them. 
Next, the federated sharing algorithm's loss function is 
examined in Eq. (2). 

𝐹(𝑥) =
∑ |𝐶𝑎|𝐹𝑎(𝑥)𝑁

𝑎=1

|𝐶|
   (2) 

|𝐶| =  ∑ |𝐶𝑎|𝑁
𝑎=1  is one of them; observe that is  𝐹(𝑥)  is 

unable to calculated directly without transferring data across 
several nodes. 

The federated learning training process. Following 
weighting averaging, the server gathers all of the model 
parameters submitted by every client during every iteration 
and delivers these for every client to finish updating the 
model's local parameters [20]. 

D. Convolutional Neural Networks (CNNs) in Gesture 

Recognition 

The CNN architecture underlying the gesture classes 
considered in the present research. The CNN framework is 
constructed via a layer of input, three convolution layers, one 
soft maximum output layer, one completely interconnected 
output layer, and ReLu and maximum pooling layers for the 
extraction of features. The following work's images are 
initially resized to 100 by 100 pixels, and the dataset is 
divided into testing and training sets. The input layer feeds 
hand-pose RGB images to later sections for extracting features 
and classification. The convolution layer is the key for further 
learning with CNN's endurance. CNN uses intermediate 
mappings of features and cascaded discontinuous convolution 
of the kernels using the full image to get an especially 
promising features for characterizing gives the convolution 
coefficients of a picture or map of features f with kernel 
(square matrix). The total number of filters in all layers of 
convolution is empirically determined through 
experimentation is given in Eq. (3). 

𝑎 × 𝑘 = ∑ (𝑟−1
𝑦,𝑧=0  𝑎𝑖 + 𝑦, 𝑗 + 𝑧)(𝑦𝑟 − 𝑧)             (3) 

The following three layers of convolution make up the 
proposed design: eight 19 by 19 filters are placed into the very 
first layer, sixteen 17 by 17 filters are placed in the second 
layer, and 32 15 by 15 filters are placed in the final layer. The 
padding is used by each convolutional layer to keep the result 
size constant with the input. Multiple neurons with the ReLu 
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activation function receive the result of the convolution 
procedure. It substitutes 0 for those with negative values 
within the pooling layer using the non-saturating and the non-
linear algorithm Because of its expressive sparseness and ease 
of computation, ReLu is the recommended option for 
activation functions in neural networks with deep layers. The 
feature maps are resized by the pooling layer, that is added 
after each ReLu layer, avoiding losing any of the most 
important components. The pooling function employed in this 
study is maxpooling, which outperforms all of the others 
owing to its quick performance and improved converging 
properties. Using a filter size of (2,2) and a stride of (3,3), the 
maximum pooling procedure is carried out following the 
selection of the highest possible value for every local region in 
the maps of features by every convolution layer issue is given 
in Eq. (4). 

𝑐 = max (0, 𝑑)    (4) 

The best discriminative features retrieved by the numerous 
stacked architectures made up of the convolution layers, ReLu 
layers, and pooling layers are supplied into the input channel 
of the classification layer, that has been built out of a softmax 
layer and an entirely linked layer/output layer. The neural 
network that is part of the softmax layer contains the exact 
same number of neurons as the result of the layer and 
transforms the values of features from 0 to 1 using a multiple 
classes sigmoid function. In a matter of fact, the vector of 
features that is obtained using this layer of data is able to 
predict with high accuracy when patterns could be seen in an 
image. Using the feature vector generated by the soft max 
layer, the last layer with full connection categorizes the input 
photographs into the relevant gesture classes [21]. The amount 
gesture categories are associated with the amount of neurons 
in this layer. FED-CNN   Architecture is shown in Fig. 2. 

 

Fig. 2. Federated learning. 

V. RESULT AND DISCUSSIONS 

The proposed federated convolutional neural network 
(CNN) approach for real-time gesture detection demonstrates 
outstanding performance and responsiveness while addressing 
privacy and security concerns. Through extensive testing on 
benchmark datasets, the system consistently outperforms 
centralized learning methods, achieving state-of-the-art results 
in gesture recognition tasks. By leveraging federated learning, 
the model is trained collaboratively across decentralized 
devices without compromising user privacy, as raw data 
remains local. This approach ensures continuous model 
refinement and adaptation to dynamic environments by 
aggregating local model updates from edge devices. 
Moreover, enhancements such as differential privacy, adaptive 
learning rate scheduling, and model compression techniques 
contribute to minimizing privacy risks and communication 

overhead, while accelerating convergence. The federated 
architecture not only guarantees improved responsiveness and 
adaptability but also ensures the confidentiality and integrity 
of user data, making it suitable for sensitive human-computer 
interaction applications. Overall, the proposed design offers a 
promising avenue for advancing real-time gesture detection 
systems, enabling more natural and intuitive interactions while 
safeguarding user privacy and data integrity. 

Table I presents the Gesture Recognition Classes in the 
Jester dataset, categorizing gestures based on their type and 
granularity. The dataset includes a variety of hand movements 
and interactions commonly used for controlling electronic 
devices or interacting with computers. Each gesture is 
classified as either "Fine" or "Coarse" based on the level of 
detail and precision involved in its execution. For instance, 
fine gestures such as swiping left or right and presenting the 
palm forward require more intricate movements and precision, 
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while coarse gestures like various finger gestures and pointing 
gestures involve broader and less specific hand movements. 
This classification scheme provides insight into the diversity 
of gestures captured in the dataset, facilitating the 
development and evaluation of gesture recognition algorithms 
across different levels of granularity and complexity. 

Fig. 3 illustrates how these neural networks learn and 
generalize in different ways across 100 epochs by comparing 
the Training and Testing Accuracy for three different datasets, 
these losses decrease with time, indicating that the model is 
learning new abilities and improving in performance. In 
parallel with the training accuracy's more gradual growth over 
the epochs, testing accuracy likewise experiences a steady 
increase upon reaching subsequent epochs. 

Fig. 4 illustrates training and testing losses, which also 
illustrates the various methods in which these networks learn 
and generalize over 100 epochs. These losses decrease with 
time, indicating that the model is learning new abilities and 
improving in performance. The testing loss starts at a higher 

value than the training loss and then drops sharply before 
collapsing at epoch 20, whereas the training loss decreases 
more gradually over the course of the epochs. 

TABLE I. GESTURE RECOGNITION CLASSES IN JESTER DATASET 

Class Gesture Grain 

0 Swiping left or right Fine 

1 Waving horizontally Coarse 

2 Presenting the palm forward Fine 

3 Making a grabbing motion Fine 

4 Various finger gestures Coarse 

5 Pointing gestures Coarse 

6 Thumbs up or thumbs down Coarse 

7 OK sign Fine 

8 Peace sign Coarse 

 

  

  

Fig. 3. Training and Testing Accuracy of CNN model for three different dataset and FED-CNN. 
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Fig. 4. Training and Testing Loss of CNN model for three different dataset and FED-CNN 

TABLE II. COMPARISON THE PERFORMANCE OF PROPOSED METHOD 

WITH EXISTING METHOD 

Approach Dataset Accuracy (%) 

Siamese Network [22] NVIDIA 81.2% 

LSTM [23] DHG 90.87% 

RNN [24] MSRC-12 60-87% 

GAN [25] 
ASL Alphabet 

dataset 
89-96% 

RNN [26] 
AMFED and 

EmoReact 
93.09% 

CNN [27] 

ChaLearn Looking 

at People 

(LAP)dataset 

90.57% 

Resnet [28] 
EGO Gesture 

Dataset 
75.30% 

GoogleNet [29] 
UCI Hand Gesture 

Dataset 
87% 

Proposed Framework 
(FED CNN) 

Chalearn Gesture, 

jester, MSR 

Action3D 

98.70% 

Table II presents a comparative analysis of various gesture 
recognition approaches using different datasets and their 
corresponding accuracy percentages. Each approach utilizes 
different deep learning architectures such as Siamese 
Networks, LSTM, RNN, GAN, CNN, ResNet, and 
GoogleNet, trained on specific gesture datasets. Notably, the 

proposed federated CNN framework achieves the highest 
accuracy of 98.70% by leveraging data from three diverse 
datasets: Chalearn Gesture, Jester, and MSR Action3D. This 
indicates the effectiveness of the federated approach in 
combining data from multiple sources to enhance model 
performance significantly, showcasing its potential for robust 
and accurate gesture recognition across various applications 
and environments. It is visually shown in Fig. 5. 

 

Fig. 5. Performance evaluation of fed -CNN with existing framework. 

The Receiver Operating Characteristic (ROC) curve for 
the federated convolutional neural network (CNN) illustrates 
in Fig. 6 has ability to classify between true positive and false 
positive rates across different thresholds, providing insight 
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into the model's overall performance. A higher area under the 
ROC curve signifies better discrimination capability of the 
federated CNN in distinguishing between classes, indicating 
its effectiveness in real-time gesture detection tasks. 

 

Fig. 6. Roc curve. 

A. Discussions 

The significant advancements and contributions of the 
proposed federated convolutional neural network (CNN) 
approach for real-time gesture detection. By leveraging 
federated learning, the system addresses critical challenges 
such as privacy, security, and responsiveness, making it well-
suited for a wide range of human-computer interaction (HCI) 
applications [12]. Through extensive testing and 
improvements in federated learning techniques, the approach 
demonstrates superior performance compared to centralized 
learning methods, offering improved adaptability and 
reliability in dynamic environments. Moreover, the 
decentralized architecture ensures user confidentiality and data 
integrity, enhancing trust and usability in sensitive HCI 
scenarios. Overall, the discussions underscore the promising 
potential of the proposed approach in advancing real-time 
gesture detection systems while maintaining a strong focus on 
user privacy and data security. 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, the proposed approach leveraging federated 
convolutional neural networks (CNNs) presents a promising 
solution for real-time gesture detection, addressing the 
challenges of maintaining user privacy and data security while 
ensuring excellent performance and responsiveness in various 
HCI contexts. By utilizing federated learning, the model can 
be trained collaboratively across decentralized devices without 
compromising sensitive user data. Through extensive testing 
on benchmark datasets, the federated CNN approach 
demonstrated state-of-the-art performance, outperforming 
centralized learning techniques and offering improved 
adaptability to dynamic environments. For future work, 
further enhancements can be made to the federated learning 
system to optimize responsiveness and speed. Incorporating 
techniques like differential privacy and adaptive learning rate 
scheduling can further mitigate privacy risks and 
communication overhead, respectively. Additionally, 
exploring advanced model compression techniques can help 

accelerate convergence and reduce resource consumption, 
making the system more efficient for real-time applications. 
Furthermore, research efforts can focus on expanding the 
application scope of federated CNNs to other domains beyond 
gesture recognition, such as voice recognition or medical 
imaging, to explore their potential in diverse HCI scenarios. 
Overall, continued research and development in this direction 
hold promise for advancing the field of real-time gesture 
detection while upholding user privacy and data integrity. 
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