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Abstract—Assisted evaluation through retinal vessel 

segmentation facilitates the early prevention and diagnosis of 

retinal lesions. To address the scarcity of medical samples, 

current research commonly employs image patching techniques 

to augment the training dataset. However, the vascular features 

in fundus images exhibit complex distribution, patch-based 

methods frequently encounter the challenge of isolated patches 

lacking contextual information, consequently resulting in issues 

such as vessel discontinuity and loss. Additionally, there are a 

higher number of samples with strong contrast vessels compared 

to those with weak contrast vessels in retinal images. Moreover, 

within individual patches, there are more pixels of strong 

contrast vessels compared to weak contrast vessels, leading to 

lower segmentation accuracy for small vessels. Hence, this study 

introduces a patch-based deep neural network method for retinal 

vessel segmentation to address the issues. Firstly, a novel 

architecture, termed Double U-Net with a Feature Fusion 

Module (DUF-Net), is proposed. This network structure 

effectively supplements missing contextual information and 

improves the problem of vessel discontinuity. Furthermore, an 

algorithm is introduced to classify vascular patches based on 

their contrast levels. Subsequently, conventional data 

augmentation methods were employed to achieve a balance in the 

number of samples with strong and weak contrast vessels. 

Additionally, method with skeleton fitting assistance is 

introduced to improve the segmentation of vessels with weak 

contrast. Finally, the proposed method is evaluated across four 

publicly available datasets: DRIVE, CHASE_DB1, STARE, and 

HRF. The results demonstrate that the proposed method 

effectively ensures the continuity of segmented blood vessels 

while maintaining accuracy. 

Keywords—Fundus image; vessel segmentation; skeleton 

fitting; data augmentation; patch classification 

I. INTRODUCTION 

The eye stands as one of the paramount sensory organs in 
the human body, serving as the primary conduit for external 
stimuli reception. Presently, propelled by societal 
advancements and the proliferation of electronic devices, there 
is a sustained escalation in the prevalence of ophthalmic 
diseases among patients. Today, with the development of 
society and the widespread use of electronic devices, the 
number of patients with ophthalmic diseases continues to 
increase. Ophthalmic diseases are closely associated with 
retinal lesions, with glaucoma, diabetic retinopathy, and 

diabetic macular degeneration being major causes of global 
blindness [1]. Retinal fundus images represent the singular 
non-invasive modality for observing the deep microvascular 
system, encompassing a diverse array of retinal structures such 
as the retinal vascular tree, optic disc, fovea centralis, and 
macula [2]. The early clinical characteristics of diabetic 
retinopathy encompass microaneurysms, dot and blot 
hemorrhages, cotton wool spots, and intraretinal microvascular 
abnormalities [3]. The characteristic sign of glaucoma is optic 
disc cupping, and the ratio of the cup to disc area in fundus 
images, referred to as the cup-to-disc ratio (CDR), serves as a 
vital structural metric for evaluating the presence and 
advancement of glaucoma [4]. The hallmark of age-related 
macular degeneration (AMD) is the infiltration of choroidal 
vasculature into the macular region, accompanied by 
heightened vascular permeability [4]. Variations in retinal 
structure are pivotal for diagnosing diabetic retinopathy, 
glaucoma, and AMD. Given that retinal vessel segmentation is 
essential for visualizing and quantifying retinal pathology, it is 
an indispensable component in the analysis of retinal diseases 
[5]. The conventional method for retinal vessel segmentation is 
characterized by its costly, intricate, and time-intensive nature. 
Furthermore, challenges such as uneven illumination, complex 
vascular structures, and low vessel-background contrast in 
images contribute to inconsistencies in vessel segmentation 
across different experts [6]. This has spurred the advancement 
of automated retinal vessel segmentation technology. 

Traditional segmentation methods mainly include line 
detection [7], edge detection [8], matched filtering [9] [10], and 
shape-based methods [11] [12]. These methods perform vessel 
segmentation based on vessel edge pixels or shape features. 
The main reason is that, compared to the background, the edge 
and shape information of vessels with strong contrast are more 
prominent, making their features easier to learn. In recent years, 
deep learning methods have propelled the progress of retinal 
vessel segmentation techniques, surpassing traditional machine 
learning methods [13]. Deep learning methods do not require 
manual feature design and can effectively extract key features 
from data while achieving good accuracy and generalization 
capabilities, thus promoting the development of retinal vessel 
segmentation methods [14] [15]. Currently, there are generally 
two types of retinal vessel segmentation methods based on 
deep learning [16]. End-to-end methods are one of the types, 
sacrificing spatial resolution to ease memory constraints during 
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training.  However, these methods lead to in the loss of spatial 
information in retinal vessel images. On the other hand, patch-
based segmentation methods are another type. Although these 
methods enhance data samples, it may lead to a lack of 
contextual information between independent patches. Through 
observation, we notice that there are more samples of vessel 
patches with strong contrast compared to those with weak 
contrast, and within individual patches, there are more pixels of 
vessels with strong contrast compared to those with weak 
contrast. These issues may result in problems such as vessel 
discontinuity and poor segmentation of small vessels when 
restoring segmented blocks to the original image size. 

Therefore, in this paper, we first compare the pixel values 
of vessels and background within vessel patches. If a patch 
contains a higher proportion of pixels with strong vessel 
contrast, it is classified as a Contrast Strong Vessel Patch 
(CSVP); otherwise, it is classified as a Contrast Weak Vessel 
Patch (CWVP). Next, we introduce a novel network structure 
named DUF-Net, which is capable of learning both global and 
local information, effectively supplementing missing 
contextual information between patches. Additionally, we 
design a patch classification algorithm to perform patch 
classification and quantity statistics. Data augmentation is 
utilized to augment deficient image patches, aiming to balance 
the number of samples for various types of retinal vessel 
pathology, including CSVP and CWVP. Additionally, a 
training method integrating skeleton fitting assistance is 
introduced to enhance the model's segmentation capability for 
CWVP within individual samples. In summary, the principal 
contributions of this paper can be outlined as follows: 

 In order to compensate for the absence of contextual 
information between patches, We introduce a novel 
network structure named DUF-Net. It is capable of 
simultaneously learning both global and local features, 
guiding the model to capture contextual information 
surrounding the patches and thereby improving the 
completeness of vessel segmentation. 

 To improve the segmentation capability of CWVP, a 
patch classification algorithm was designed to balance 
the quantity of CSVP and CWVP samples. 
Additionally, during training, prior knowledge of vessel 
skeletons and corresponding loss functions were 
introduced to guide the model in learning CWVP 
features and address the issue of pixel imbalance within 
individual patches. 

 We assessed the proposed method across four publicly 
available datasets and conducted comparisons with six 
latest methods. Experimental findings affirm the 
efficacy and robustness of the proposed approach. 

The remaining sections of this paper are organized as 
follows. Section II provides a review of traditional and deep 
learning methods in retinal vessel segmentation. Section III 
provides a detailed explanation of the proposed method. 
Section IV showcases the implementation details of the 
experiments. Section V presents the experimental results. 
Section VI and VII respectively discuss and summarize the 
proposed method. 

II. RELATED WORK 

Research on retinal vessel segmentation can be categorized 
into traditional methods and deep learning methods. 

A. Traditional Methods 

Traditional methods involve direct detection of features or 
edge pixels in retinal vessel images. Sheng et al. [17] combined 
geometric structures, texture, color, and spatial information in 
the image while simultaneously refining the segmentation 
results using a minimum spanning superpixel tree to refine 
segmentation results. Lam et al. [18] proposed a novel multi-
concave modeling approach for handling bright lesions in the 
perceptual space and removing dark lesions that differ from the 
retinal vascular structure. To improve vessel segmentation 
efficiency, Rezaee and Haddadnia [19]employed a 
skeletonization and fuzzy entropy thresholding segmentation 
algorithm. They differentiated retinal main vessels from other 
tissue components through adaptive filtering and fuzzy entropy 
thresholding. In summary, although the aforementioned 
methods do not require training and have lower complexity, 
they heavily rely on filter design and often exhibit lower 
accuracy. 

In machine learning, manual feature extraction is utilized 
for retinal fundus image analysis, followed by classification 
using common classifiers such as k-nearest neighbors (KNN) 
[20], support vector machine (SVM) [21], and Bayesian 
methods [22] [23]. Orlando et al. [24] utilized conditional 
random fields and support vector machines for retinal fundus 
image vessel segmentation. Zhu et al. [25] presented a 
supervised approach employing Extreme Learning Machine 
(ELM).  This method involved constructing matrices by 
extracting features from each pixel of each retinal image and 
the manually labeled pixels, which were then input into ELM. 
These approaches heavily depend on prior knowledge or 
necessitate a series of complex operations for extracting 
discriminative features, thereby lacking generalization ability 
[26]. 

The segmentation performance of traditional methods 
needs improvement, especially when facing environments with 
retinal lesion features and low brightness. Traditional methods 
lack generalization capabilities in such scenarios. As a result, 
deep neural networks have found extensive applications in the 
field of retinal imaging. 

B. Deep Learning Methods 

Deep learning approaches equipped with automatic feature 
recognition capabilities exhibit superior performance in the 
field of retinal vessel segmentation compared to traditional 
methods. Overall, these methods can be categorized into two 
main types [16]. An end-to-end training approach is one of the 
types, because of its simple and stable performance has 
attracted the attention of many researchers. Hu et al. [27] 
incorporate a saliency mechanism to leverage features from 
one block as attention cues for the features of the subsequent 
block, effectively mitigating the problem of data imbalance. 
Moreover, o enhance the integrity and continuity of vessels 
after segmentation, Mou et al. [28] utilize a dense dilated 
model to integrate the newly proposed dense dilated feature 
extraction blocks, with the goal of extracting and accumulating 
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features across various scales. For improving the segmentation 
of fine vessels, Mishra et al. [29] employ the mean retinal 
vessel width and align it with the effective receptive field to 
identify the location of auxiliary supervision, thereby directing 
the model's attention towards fine vessels. The consecutive 
downsampling leads to the loss of a considerable amount of 
spatial feature information. To mitigate this challenge, Wang et 
al. [30] introduced two paths separately in the encoder and 
decoder, enhancing the model's capability for detailed 
representation and discrimination. 

Patch-based segmentation methods are another type. In 
recent years, patch-based segmentation methods, which reduce 
computational pressure while minimizing the impact on vessel 
morphology, have been extensively investigated by many 

scholars. Dasgupta et al. [31] extracted 28 × 28 patches from 

preprocessed images and fed them into a CNN network for 
vessel segmentation. To ameliorate the problem of pixel 
imbalance between contrast strong vessels and contrast weak 
vessels in retinal images, Yan et al. [32] cropped retinal images 

into small 128 × 128 patches and proposed a loss function to 

balance contrast strong vessel and contrast weak vessel, 
enabling the model to learn more effective vessel segmentation 
features. Wu et al. [33] link two identical multi-scale backbone 
networks to facilitate the direct propagation of useful multi-
scale features from shallow layers to deep layers. Wang et al. 
[34] designed three decoder networks: the first network 
dynamically localized image segmentation difficulty areas, 
while the other two networks are utilized for segmenting 
difficult and easy regions, respectively. Meanwhile, attention 
mechanisms were introduced in the network to enhance the 
focus on features of difficult areas in images. Yang et al. [35] 
designed an effective loss function to accommodate the two 
distinct vessel segmentation tasks, thereby improving the 
imbalance issue between thick and thin vessel segmentation 
ratios. Tan et al. [36] addressed the issue of having more pixels 
of strong contrast vessels than weak contrast vessels within 
individual patches by introducing skeleton priors and contrast 
losses. However, this method utilized maximum pooling on all 
extracted features before introducing skeleton-assisted vessel 
segmentation, leading to some contrast weak vessel missing 
and insufficient guidance for the model to learn contrast weak 
vessel. Therefore, we design a retinal vessel segmentation 
method that incorporates skeleton fitting assistance and fusion 
of global and local features to address vessel discontinuity and 
improve contrast weak vessel segmentation effectiveness. 

III. METHODOLOGY 

Firstly, we preprocess the original images by cropping 
them into several small patches. We balance the number of 
different class image patches through sample correction, and 
then perform image enhancement on CWVP. Secondly, the 
preprocessed patch samples are fed into the proposed Double 
U-Net with a Feature Fusion Module Networks (DUF-Net) to 
obtain corresponding segmentation maps. The DUF-Net 
architecture consists of green and blue Base-Nets, along with a 
Feature Fusion Module (FFM) designed to learn and fuse 

global and local information from the patches. Additionally, 
the feature maps outputted by the two Base-Net models are fed 
into the Skeleton Fitting Assistance (SFA) section. Finally, the 
segmented patches are restored to the original image size. The 
specific workflow is illustrated in Fig. 1. 

 
Fig. 1. Workflow of the proposed a retinal vessel segmentation method 

integrating global and local features with skeleton fitting assistance. 

A. Preprocessing 

Due to the limited quantity of existing retinal vessel 
datasets and the difficulty for models to learn contrast weak 
vessel features, we propose a preprocessing method consisting 
of two main stages: sample correction and image enhancement, 
as illustrated in Fig. 2. 

 

Fig. 2. The preprocessing steps. 

1) Sample correction: This paper employs a patch-based 

approach for image segmentation. Firstly, patches are 

extracted from the original image using a sliding window 

approach to augment the model's training samples. Within 

these samples, patches are categorized into CSVP and CWVP. 

Typically, CSVP samples outnumber CWVP samples, 

resulting in suboptimal segmentation performance for CWVP 

samples. To address the issue of imbalanced CSVP and 

CWVP sample quantities, this paper designs a patch 

classification algorithm, as shown in Algorithm 1. This 

algorithm aims to achieve a balanced state with a nearly 1:1 

ratio of samples for different classes in the training set. Data 

augmentation techniques are applied to CWVP; including 

random flipping, rotation, and Gaussian noise addition, to 

bring its quantity closer to that of CSVP. 
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Algorithm 1: patch classification Algorithm 

Require: The Ground Truth Gt of the patch. 

Ensure: The class of the patch. 

1: Set  Gt_temp = Gt / 255. 

2: Set  first_eroded = the erosion of  Gt_temp. 

3: Set  dilated = the dilation of  first_eroded. 

4: Set  T1 = Gt_temp - dilated_image. 

5: Set  second_eroded = the erosion of  first_eroded. 

6: Set  T2 = first_eroded - second_eroded. 

7: Calculate the sum of pixels with a value of 1 in images T1 

and T2 to obtain S1 and S2, respectively. 

8: If  S1 > S2 

9:       c = CWVP 

10: else 

11:       c = CSVP 

12: Output the class c of the patch 

2) The details of Algorithm 1 are described as follows: 

a) Step 1: Perform the first erosion operation on the 

ground truth, followed by a dilation operation, to obtain an 

image representing contrast strong vessel pixels. 

b) Step 2: The ground truth is subtracted from the result 

of dilation in Step 1 to obtain the image T1, which represents 

contrast weak vessel pixels that are deleted after the first 

erosion. 

c) Step 3: Perform second erosion on the result obtained 

after the first erosion in Step 1. 

d) Step 4: Subtract the result obtained after the second 

erosion in Step 3 from the result obtained after the first 

erosion in Step 1 to obtain the image T2, representing contrast 

weak vessel pixels that are deleted after the second erosion. 

e) Step 5: Calculate the pixel sum for both T1 and T2 

images to obtain S1 and S2, respectively. If S1 is greater than 

S2, the patch is classified as CWVP; otherwise, it is classified 

as CSVP. 

3) Image enhancement: This paper employs a sliding 

window cropping approach to increase training samples; 

however, the background of fundus images exhibits relatively 

uniform brightness and weak lighting compared to blood 

vessels. In scenarios with low brightness and weak lighting, 

the model lacks generalization ability and struggles to achieve 

satisfactory segmentation results in complex environments. 

Moreover, In CWVP, the vessels exhibit lower contrast with 

the background, leading to increased learning difficulty and 

the introduction of noise during the segmentation process, 

affecting accuracy. The basic idea is to enhance the contrast of 

randomly selected CWVP samples, considering that different 

contrasts typically highlight different details.The main concept 

of this method is outlined in Eq. (1). Specifically, a probability 

factor p is randomly generated from the range [0, 1]. When p 

falls within the range [0, 0.5] and the patch corresponds to 

CWVP, contrast enhancement is applied. Otherwise, the 

image remains unaltered, without contrast enhancement. 

 
( ),                [0, 0.5]

,                      

T X X CWVP and p
Xnew

X otherwise

   





 (1) 

where, X represents the original fundus image, Xnew denotes 
the obtained new image sample, T signifies contrast 
enhancement applied to the image, and ∂ represents a randomly 
generated contrast factor within the range [0.5, 1.5]. 

B. DUF-Net 

The architecture of the DUF-Net is depicted in Fig. 3, 
consisting of green and blue Base-Nets and a Feature Fusion 
Module (FFM). Patch A corresponds to the output obtained in 
Fig. 2, with lengths and widths denoted as H and W, 
respectively. Due to the patch segmentation approach, there is 
a loss of contextual information around the patch, leading to 
the issue of vessel discontinuity after segmentation. Therefore, 
while feeding Patch A into the model, it is simultaneously 
center-cropped to obtain Patch B, with lengths and widths 
represented as h and w, respectively. The final segmentation 
map outputted by the model has the same dimensions as Patch 
B. Patch A is inputted into the green Base-Net for learning 
global features, while Patch B is inputted into the blue Base-
Net to capture local features. Subsequently, the Feature Fusion 
Module (FFM) is employed to integrate global and local 
features, completing the supplementation of missing contextual 
information to prevent vessel discontinuity issues after 
segmentation. 

 

Fig. 3. DUF-Net architecture. 

In Fig. 3, the Base-Net utilizes the U-Net model, which 
typically employs a downsampling structure to achieve a larger 
receptive field for capturing more semantic information. It 
utilizes upsampling to restore the original image, and spatial 
information recovery is achieved through skip connections, 
resulting in improved accuracy [37]. In order to reduce model 
parameters and minimize the loss of spatial structural 
information during the model downsampling process, an 
enhanced U-Net is designed, as illustrated in Fig. 4. The 
number of downsampling steps is reduced from four to three, 
and the channel count is halved from [64, 128, 256, 512] to 
[32, 64, 128, 256].The DUF-Net model employs the Base-Net 
as a feature generator for producing global and local 
information features. Subsequently, Patch A and Patch B are 
separately input into the green and blue Base-Nets, resulting in 
corresponding features Fa and Fb. Fa represents features 
obtained from Patch A, incorporating contextual information 
around the patch, while Fb represents local information 
features derived from Patch B. 
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Fig. 4. Base-Net architecture. 

Furthermore, we introduce a Feature Fusion Module (FFM) 
designed to merge feature information of varying scales 
generated by different Base-Net. As depicted in Fig. 3, this 
module is primarily composed of three components: the 
dimension adaptation stage, the feature concatenation stage, 
and the feature adaptation stage. Fa and Fb represent the 
features generated from the Base-Net model. Due to the 
disparate patch sizes of Patch A and Patch B, the 
corresponding feature sizes differ. To facilitate effective 

fusion, Fa's feature is centrally cropped, resizing it from H × 

W to h×w, yielding the feature Fac. This cropping ensures 

consistency in size with Fb while retaining contextual features 
around the patch. The next step involves concatenating the two 
input features. As outputs from different-sized input images 
yield distinct features, a simple concatenation might not 
effectively integrate global and local features, potentially 
leading to the loss of edge information during learning. Thus, 
for effective feature fusion, the feature adaptation stage 

employs a 1×1 channel-wise convolution to adjust the weights 

of the concatenated features. This convolution can be 
considered a weight vector that highlights important channel 

information. Subsequently, two 1×1 convolutions are used to 

learn the adjusted features' weights, reducing the channel count 
by half. Yout denotes the output of the fusion module and can be 
computed as given in Eq. (2): 

 ( ([ , ] ) * ) *
1 2 3

c
Y Fa Fb k k kout      (2) 

where, k1, k2, and k3 represent 1×1×4, 1×1×2, and 1×
1×2 convolutional filter kernels, respectively.  γ  represents 

the ReLU activation function.⊗signifies channel-wise 
convolution and * signifies the regular convolution operation. 
To enhance the fusion of concatenated feature information and 
reduce model parameters, channel-wise convolution is utilized 
to redistribute the weights of the concatenated features. Finally, 
k2 and k3 are employed to downscale the concatenated features. 
This design ensures the effective integration of features at 
different scales, incorporating both global and local 
information. 

C. Loss Mapping with Skeleton Fitting Assistance 

On the DRIVE dataset [39], approximately 77% of the 
vessel pixels belong to contrast strong vessels, while only 23% 
are contrast weak vessels [38]. Therefore, this paper introduces 
SFA to enhance the segmentation capability of contrast weak 
vessels. Three feature maps are generated in this study: one 
from the green Base-Net, another from the blue Base-Net, and 

the third from the Feature Fusion Module (FFM). Specifically, 
the feature maps outputted by the two Base-Nets undergo 
skeleton fitting assisted loss mapping, while the output 
segmentation image from the FFM is combined with the 
ground truth for loss calculation. The specific workflow is 
depicted in Fig. 5. 

 
Fig. 5. The process workflow of loss mapping with skeleton fitting 

assistance. 

The original segmentation map is cropped into N patches of 

size H×W using a sliding window approach. As the output 

segmentation map from the Feature Fusion Module (FFM) has 

dimensions h×w, central cropping is performed to obtain h×
w patches. Subsequently, the cross-entropy loss function is 
applied for loss calculation, and it is given in Eq. (3): 

 
1

1
log( ) (1 ) log(1 )

N

out i i i ii
L y p y p

N 
         (2) 

where, N represents the total number of pixels in the patch, 
pi denotes the model's predicted probability for pixel , yi 
represents the true label of pixel i. 

In Algorithm 1, we propose an algorithm for the 
classification of vessel patches. In the SFA, we adopt a similar 
approach for vessel patch classification. To enhance the 
model's learning capability for CWV, skeleton prior knowledge 
is employed to dilate vessel pixels within CWVP. Through the 

classification algorithm, H×W patches of the ground truth, as 

well as the center-cropped h×w patches, are classified. When 

a patch is identified as CSVP, no additional processing is 
performed, and the Dice loss is directly computed with the 
corresponding Base-Net output feature map. In the case of a 
patch classified as CWVP, the patch undergoes skeleton 
extraction and dilation operations to generate a new ground 
truth. The Dice loss is then calculated by comparing the 
outputs of the two Base-Nets with the new ground truth. The 
Dice loss function is given by Eq. (4): 

 

2 ( ( ))
1 ,           

( ( ))

2 ( )
1 ,                   

P D S Y
Y CWVP

P D S Y
Laux

P Y
Y CSVP

P Y


 





 











     (3) 

where, P represents the model's prediction result, Y is the 
corresponding ground truth, S(·) denotes the skeleton 
extraction operation, D(·) represents the dilation operation. 

 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

77 | P a g e  

www.ijacsa.thesai.org 

The final loss function is given in Eq. (5): 

 

,       
1 2

1 2

,                             
1 2

all

L Lout outL L L Y CWVPout aux auxL LL aux aux

L L L Y CSVPout aux aux

  


  







 (4) 

where, Laux1 and Laux2 are the corresponding loss functions 
for the two SFA components. 

IV. EXPERIMENTS 

A. Fundus Datasets 

The existing widely used datasets include DRIVE [39], 
STARE [40], CHASE_DB1 [41], and HRF [42]. 

1) DRIVE dataset: The dataset comprises 40 retinal 

images, each measuring 565 × 584 pixels, with 20 images 

allocated for training. Additionally, the dataset has been pre-

divided into training and testing sets. In the experiments, we 

utilize the first set of labels to evaluate the proposed method. 

2) STARE dataset: The dataset consists of 20 images, each 

with dimensions of 700 ×  605 pixels, with half of them 

representing pathological cases and the other half representing 

normal cases. We choose 10 images for training and another 

10 images for testing. 

3) CHASE_DB1 dataset: The dataset comprises 28 retinal 

images from various children, each with dimensions of 999 × 

960 pixels for both left and right eyes. Annotations in 

CHASE_DB1 are provided by two different observers. In our 

experiments, we utilize first set of labels as the ground truth 

for evaluation. Specifically, we designate 8 images as test 

samples and allocate the remaining images for training 

samples. 

4) HRF dataset: The dataset consists of 45 high-resolution 

color retinal images. These images are categorized into three 

classes: healthy, diabetic retinopathy, and glaucoma, each 

comprising 15 images. For training, we select 15 images from 

each category: healthy children, diabetic retinopathy patients, 

and glaucoma patients. The remaining 30 images are allocated 

for testing. 

B. Evaluation Metrics 

In retinal images, binary pixel values typically classify 
pixels into vessel (positive) and non-vessel (negative) 
categories. Based on this comparison, there are four 
fundamental pixel metrics: pixels labeled as vessels and 
correctly predicted as vessels are defined as True Positives 
(TP); pixels labeled as backgrounds but incorrectly predicted 
as vessels are False Positives (FP); similarly, False Negatives 
(FN) represent pixels labeled as vessels but incorrectly 
predicted as backgrounds, while True Negatives (TN) denote 
pixels labeled as backgrounds and correctly predicted as 
backgrounds. Furthermore, we employed eight metrics for 
evaluation, including Accuracy (Acc), Sensitivity (Sen), 
Specificity (Spe), Precision (Pre), F1 score (F1), G-mean (G), 

Matthews Correlation Coefficient (MCC), and Area Under the 
ROC Curve (AUC). all metrics are defined as follows: 

 ,
TP TN

Acc
TP FN TN FP




  
          (5) 

 ,
TP

Sen
TP FN




                             (6) 

 ,
TN

Spe
TN FP




                            (7) 

 ,
TP

Pre =
TP + FP

                          (8) 

 
2

1 ,
Pre Sen

F
Pre Sen

 



                    (9) 

 ,G Sen Spe                        (10) 

 
( ) ( )

,
( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 (11) 

C. Implementation Details 

The proposed model was implemented using PyTorch 
1.12.1 on an RTX 3060 GPU with 12GB of memory. 
Stochastic gradient descent (SGD) was utilized for parameter 
optimization. Additionally, a "poly" learning rate policy was 

applied, where the learning rate was multiplied by （1 −
iter

Max_iter
）

power
 and the power was set to 0.9, with a base 

learning rate of 0.01 in training. Furthermore, the batch size 
was set to 1 and each experiment was conducted for 100 
epochs. During testing, the test images were partitioned into 
overlapping small patches. Subsequently, the segmented 
samples generated by the model were reconstructed into 
complete segmentation results. 

V. RESULTS 

A. Comparison with Other Methods 

1) Comparison of composite metrics: We initially 

compared it with six methods on four datasets, including 

FANet[43], Convmixer[44], BFMD[45], GT-U-Net[46], SA-

Unet[47], and CFPNetM[48], with quantitative metrics shown 

in Table I to Table IV.. Overall, the proposed method showed 

improvements in metrics,especially Acc and Pre.  As 

illustrated in Table I, across the DRIVE dataset, Sen, G, and 

AUC metrics outperformed the six methods, reflecting 

superior segmentation results. F1 and MCC metrics were also 

close to the optimal values. Among them, G, AUC, F1, and 

MCC metrics are more comprehensive, indicating that the 

proposed method has better vascular segmentation 

capabilities.As depicted in Table III, on the STARE dataset, 

Acc, Spe, Pre, and F1 metrics achieved optimal results, and 

the other four metrics ranked second among the seven 

methods, showing results close to the optimal values. 
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Particularly, the F1 metric, reflecting the connectivity and 

accuracy of vascular segmentation, indicated the good 

segmentation demonstrated by the proposed method on this 

dataset indicate its excellent segmentation performance. As 

shown in Table IV, the HRF dataset includes high-resolution 

images of patients afflicted with diabetic retinopathy and 

glaucoma, posing challenges for vessel segmentation. 

Experimental results demonstrate that the proposed method 

for retinal vessel segmentation outperforms others, achieving 

the highest accuracy metric (Acc), while also securing the 

second or third position in the comparison of comprehensive 

metrics. These results suggest that the devised approach 

demonstrates promising segmentation capabilities for high-

resolution and pathological images. The examples provided in 

0 demonstrate the favorable segmentation performance of the 

proposed method. In the first and last rows of 0, DUF-Net 

exhibits more complete segmentation of thin blood vessels 

with fewer vessel interruptions. The features of DUF-Net 

contribute to preserving the continuity and accuracy of thin 

blood vessels in datasets like HRF, which include images with 

diabetic retinopathy and glaucoma. This capability is crucial 

for supporting the prevention and treatment of retinal 

pathologies. 

TABLE I.  COMPREHENSIVELY COMPARING PERFORMANCE  ON DRIVE  DATASET (UNIT: % ) 

Dataset Method Accurary Sensitivity Specificity Precision F1-score G-mean MCC AUC 

DRIVE 

FANet[43] 96.16 80.14 97.88 80.32 80.23 88.57 78.10 89.01 

Convmixer[44] 96.65 77.45 98.52 84.21 81.29 87.16 78.68 87.98 

BFMD[45] 96.65 72.27 99.11 89.18 79.71 84.60 78.50 85.69 

GT-U-Net[46]  96.80 76.35 98.85 87.23 81.26 86.83 79.83 87.60 

SA-Unet[47] 96.68 81.95 98.00 78.60 80.24 89.62 78.45 89.97 

CFPNetM[48] 95.77 73.39 98.09 81.28 73.58 83.08 73.07 85.73 

Ours 96.70 82.18 98.00 78.68 80.39 89.74 78.61 90.09 

TABLE II.  COMPREHENSIVELY COMPARING PERFORMANCE ON CHASE_DB1 DATASET (UNIT: % ) 

Dataset Method Accurary Sensitivity Specificity Precision F1-score G-mean MCC AUC 

CHASE_DB1 

 

FANet[43] 92.66 60.30 95.36 52.73 55.72 75.53 52.22 77.83 

Convmixer[44] 97.20 75.30 98.99 88.90 81.47 86.39 80.35 87.23 

BFMD[45] 97.10 71.37 99.26 88.99 79.19 84.16 78.21 85.31 

GT-U-Net[46]  97.23 72.22 99.33 90.08 80.14 84.69 79.24 85.77 

SA-Unet[47] 96.99 72.16 99.07 86.67 78.69 84.53 77.49 85.61 

CFPNetM[48] 96.87 80.27 98.34 80.99 80.62 88.84 78.92 89.30 

Ours 97.24 70.75 99.44 91.29 79.67 83.86 78.97 85.09 

TABLE III.  COMPREHENSIVELY COMPARING PERFORMANCE ON STARE DATASET (UNIT: % ) 

Dataset Method Accurary Sensitivity Specificity Precision F1-score G-mean MCC AUC 

STARE 

FANet[43] 87.33 74.36 88.29 38.52 48.45 80.27 47.30 81.32 

Convmixer[44] 96.61 79.71 97.58 78.66 77.67 76.72 87.88 88.83 

BFMD [45] 96.86 82.45 98.03 77.75 79.71 89.76 78.24 90.24 

GT-U-Net[46]  97.18 79.65 98.61 82.89 80.61 88.39 79.47 89.12 

SA-Unet[47] 96.74 78.97 98.16 79.35 77.60 87.50 76.72 88.56 

CFPNetM[48] 93.54 90.76 93.75 56.42 68.81 92.16 68.27 92.25 

Ours 97.31 84.95 98.80 85.01 83.36 91.36 81.98 91.66 

TABLE IV.  COMPREHENSIVELY COMPARING PERFORMANCE ON HRF DATASET (UNIT: % ) 

Dataset Method Accurary Sensitivity Specificity Precision F1-score G-mean MCC AUC 

HRF 

FANet[43] 96.96 82.15 98.21 79.28 80.47 89.77 78.98 90.18 

Convmixer[44] 96.90 70.07 99.16 87.60 77.48 83.22 76.60 84.61 

BFMD[45]  94.33 78.40 95.68 60.94 68.40 86.59 66.08 87.03 

GT-U-Net[46] 96.64 68.37 99.04 86.00 75.55 82.10 74.68 83.70 

SA-Unet[47] 96.18 74.55 97.97 75.79 74.75 85.31 72.93 86.26 

CFPNetM[48] 96.81 82.38 98.03 77.97 79.90 89.83 78.33 90.20 

Ours 97.08 76.76 98.79 84.33 80.02 86.98 78.75 87.76 
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Fig. 6. The segmentation outcomes from the DRIVE, CHASE_DB1, STARE, and HRF datasets are juxtaposed in the figures below (from top to bottom). 

2) Segmentation of optic disc and pathological vessel 

regions: Detailed comparisons of the optic disc and 

pathological vessel regions are illustrated in Fig. 7 

demonstrating the magnified views of these areas. The first 

and second rows of Fig. 7 compare the optic disc regions with 

state-of-the-art methods from recent years. Due to challenges 

such as low contrast and uneven brightness, blood vessels 

around the optic disc region are often overlooked by other 

methods. In contrast, the proposed approach effectively 

identifies the vessels around the optic disc. Furthermore, the 

presence of bleeding around the lesions, which closely 

resembles vascular features, significantly increases the 

difficulty of vessel segmentation in lesion images. As evident 

in the third rows of Fig. 7, the proposed method accurately 

segments vessels in the pathological regions. This is primarily 

attributed to the integration of skeletal prior knowledge to 

augment the model's comprehension of fine vessels and 

enhance its discrimination between vessel and background 

pixels .In the fourth row of Fig. 7, a substantial amount of 

noise is evident in the segmentation image due to BFMD 

misclassifying numerous lesions and surrounding hemorrhagic 

areas as vessels. This could potentially compromise 

subsequent auxiliary diagnostics.

 
Fig. 7. Comparison of vessel segmentation results in the optic disc region (first two rows) and the lesion region (last two rows). 
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3) Segmentation of contrast weak vessels: The proposed 

method accurately segments contrast weak vessels, as 

illustrated in 0. When compared with other methods, it is 

evident that DUF-Net extracts more complete contrast weak 

vessels. This improvement can be attributed to the model's 

ability to learn both local and global features, effectively 

addressing the missing contextual information. This results in 

superior performance in detecting thin vessels, reflected in a 

higher accuracy (Acc) score. 

B. Experiment for Algorithm Involves Categorizing CSVP 

and CWVP 

In Algorithm 1, introduces a patch classification algorithm 
designed to categorize CSVP and CWVP.  0 illustrates the 
classification results of the patch classification algorithm on the 
DRIVE dataset. The first and second rows show the patches 
classified as CWVP by the algorithm and their corresponding 
ground truth. In this classification result, all vessels are 
characterized by low contrast. The third and fourth rows 
display the patches classified as CSVP by the algorithm and 
their corresponding ground truth. Here, it is evident that vessels 
with strong contrast are prominent. 

 
Fig. 8. Comparison of contrast weak vessel segmentation results. 

 
Fig. 9. The outcomes of patch classification into CSVP (first two rows) and CWVP (last two rows) on the DRIVE dataset are juxtaposed with their respective 

ground truth.
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C. Experiment for Loss Mapping with Skeleton Fitting 

Assistance 

In Fig. 5, we proposed a loss mapping with skeleton fitting 
assistance composed of three loss functions: Laux1, Laux2, and 
Lout. The evolution of these three loss functions during training 
for 100 epochs on the DRIVE dataset is illustrated in 0 . The 
values of Laux1 and Laux2 are greater than the value of Lout. When 
the patch represents CSVP, the coefficient weights of the three 
loss functions are configured as 1, and the values of the three 
loss functions show a synchronous decreasing trend in 0(a). 
However, when the patch represents CWVP, the skeleton 
fitting assistance part involves computing losses using the 
feature map and the newly generated ground truth after 
skeleton extraction. This may bias the model towards learning 
the new ground truth, leading to suboptimal segmentation 
results. Therefore, an adaptive weight assignment method is 
designed in this paper. It uses Laux1/Lout as the weight for Laux1 

and Laux2/Lout as the weight for Laux2 to balance the loss 
functions. In 0(b), it can be observed that with the adaptive 
weight assignment, Lout shows a decreasing trend, while Laux1 
and Laux2 remains within a certain range of variation. 

D. Ablation Analysis 

The ablation analysis presents the performance of each 
proposed method, as demonstrated in TABLE V. . For 
comparison, we refer to DUF-Net without contextual 
information as DU-Net. DU-Net does not undergo central 
cropping when fed into the model, employs blocks of the same 
size, and omits the use of the Feature Fusion Module (FFM). 
Additionally, DU-Net does not undergo the proposed 
preprocessing methods and the loss calculation of Skeleton 
Fitting Assist (SFA). By incorporating preprocessing methods, 
enhancing contextual information supplementation, and 
integrating FFM and SFA loss calculation, all metrics show 
corresponding improvements, as depicted in TABLE V. . 

 
Fig. 10. The variation of the loss functions on the DRIVE dataset (a) The variation of the loss function for CSVP (b) The variation of the loss function for CWV. 

TABLE V.  THE RESULTS OF THE ABLATION ANALYSIS ON THE DRIVE DATASET (UNIT: % ) 

Method Accurary Sensitivity Specificity Precision F1-score G-mean MCC AUC 

DU-Net 96.62 77.19 98.52 83.55 79.76 87.05 78.28 87.85 

+Preprocess 96.65 81.97 97.94 79.47 80.22 87.39 77.98 88.27 

+FFM 96.68 81.68 97.98 78.28 79.98 88.50 78.51 89.18 

+SFA 96.70 82.18 98.00 78.68 80.39 89.74 78.61 90.09 

VI. DISCUSSION 

Compared to end-to-end segmentation, patch-based 
segmentation methods can significantly alleviate computational 
hardware pressure while increasing the training samples in 
datasets, thereby enhancing vessel segmentation capability, 
which has gradually attracted attention from many scholars 
[49]. However, when restoring the segmented patch results to 
the original size, issues such as vessel discontinuity and poor 
segmentation of small vessels may arise. Therefore, this paper 
designs a preprocessing method tailored for fundus images, a 
novel network architecture, and a training approach with 
skeleton fitting assistance to address the aforementioned issues. 

Due to the difficulty in segmenting small vessels, datasets 
with a higher density of small vessels often exhibit lower 

performance metrics compared to datasets with fewer small 
vessels, such as DRIVE [39] and HRF [42] datasets containing 
more small vessels than STARE [40] and CHASE_DB1 [41] 
datasets. Consequently, the performance of six vessel 
segmentation methods is significantly reduced. Additionally, 
existing fundus segmentation methods are primarily evaluated 
based on pixel measurements, where the contribution of small 
vessel pixels is relatively minor, limiting the potential 
improvement in performance metrics. The proposed method 
shows limited improvement on the HRF dataset. This is partly 
due to the high resolution of this dataset leads our classification 
algorithm to misclassify some CWVP samples as CSVP, 
resulting in incomplete feature capture of CWVP. Thus, there 
remains considerable room for improvement in our method. 
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VII. CONCLUSION 

This paper proposes a novel segmentation method by 
addressing the limitations of patch-based retinal vessel 
segmentation. Firstly, the patch-based segmentation approach 
often overlooks the issue of imbalanced contrast between 
strong and weak vessel samples in the dataset. Therefore, this 
paper designs a vessel patch classification algorithm to balance 
the training data samples by augmenting contrast weak vessel 
samples based on the computed quantities. To address the 
missing contextual information around the patches, new 
network architecture, DUF-Net, is proposed. By feeding 
features of different scales into the network model, both global 
and local information are learned separately and then fused to 
complement the missing features. Lastly, skeleton prior 
knowledge is introduced to alleviate vessel discontinuity issues 
after segmentation, and the adaptive weight allocation 
mechanism is employed to adjust the imbalanced pixel 
distribution within blocks, thereby enhancing the model's 
segmentation capability for contrast weak vessels. 

In the experimental results, the proposed method 
demonstrates promising performance. As retinal lesions 
significantly affect vessel segmentation results, future work 
will focus on enhancing lesioned retinal images using image 
enhancement techniques and loss functions to improve the 
performance of segmentation. Moreover, extending this 
method to other segmentation tasks in medicine, such as 
neuron segmentation and cell segmentation, will also be 
considered. 

ACKNOWLEDGMENT 

This research is funded by the Scientific Research Starting 
Foundation of Fujian University of Technology (No. GY-
Z21024 and No. GY-Z21065). 

REFERENCES 

[1] Li T, Bo W, Hu C, et al. Applications of deep learning in fundus images: 
A review[J]. Medical Image Analysis, 2021, 69: 101971. 

[2] Chen C, Chuah J H, Ali R, et al. Retinal vessel segmentation using deep 
learning: a review[J]. IEEE Access, 2021, 9: 111985-112004. 

[3] Lechner J, O'Leary O E, Stitt A W. The pathology associated with 
diabetic retinopathy[J]. Vision research, 2017, 139: 7-14. 

[4] Abràmoff M D, Garvin M K, Sonka M. Retinal imaging and image 
analysis[J]. IEEE reviews in biomedical engineering, 2010, 3: 169-208. 

[5] L Srinidhi C, Aparna P, Rajan J. Recent advancements in retinal vessel 
segmentation[J]. Journal of medical systems, 2017, 41: 1-22. 

[6] Dai P, Luo H, Sheng H, et al. A new approach to segment both main and 
peripheral retinal vessels based on gray-voting and gaussian mixture 
model[J]. PloS one, 2015, 10(6): e0127748. 

[7] Nguyen U T V, Bhuiyan A, Park L A F, et al. An effective retinal blood 
vessel segmentation method using multi-scale line detection[J]. Pattern 
recognition, 2013, 46(3): 703-715. 

[8] Lee Y, Hara T, Fujita H, et al. Automated detection of pulmonary 
nodules in helical CT images based on an improved template-matching 
technique[J]. IEEE Transactions on medical imaging, 2001, 20(7): 595-
604. 

[9] Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in 
retinal images by piecewise threshold probing of a matched filter 
response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-
210. 

[10] Nyemeesha V, Ismail B M. Implementation of noise and hair removals 
from dermoscopy images using hybrid Gaussian filter[J]. Network 

Modeling Analysis in Health Informatics and Bioinformatics, 2021, 10: 
1-10. 

[11] Taşcı E, Uğur A. Shape and texture based novel features for automated 
juxtapleural nodule detection in lung CTs[J]. Journal of medical 
systems, 2015, 39: 1-13. 

[12] Zakeri F S, Behnam H, Ahmadinejad N. Classification of benign and 
malignant breast masses based on shape and texture features in 
sonography images[J]. Journal of medical systems, 2012, 36: 1621-
1627. 

[13] Orlando J I, Prokofyeva E, Blaschko M B. A discriminatively trained 
fully connected conditional random field model for blood vessel 
segmentation in fundus images[J]. IEEE transactions on Biomedical 
Engineering, 2016, 64(1): 16-27. 

[14] Li Q, Feng B, Xie L P, et al. A cross-modality learning approach for 
vessel segmentation in retinal images[J]. IEEE transactions on medical 
imaging, 2015, 35(1): 109-118. 

[15] Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep 
neural networks[J]. IEEE transactions on medical imaging, 2016, 
35(11): 2369-2380. 

[16] Zhang Y, He M, Chen Z, et al. Bridge-Net: Context-involved U-net with 
patch-based loss weight mapping for retinal blood vessel 
segmentation[J]. Expert Systems with Applications, 2022, 195: 116526. 

[17] Sheng B, Li P, Mo S, et al. Retinal vessel segmentation using minimum 
spanning superpixel tree detector[J]. IEEE transactions on cybernetics, 
2018, 49(7): 2707-2719. 

[18] Lam B S Y, Gao Y, Liew A W C. General retinal vessel segmentation 
using regularization-based multiconcavity modeling[J]. IEEE 
Transactions on medical imaging, 2010, 29(7): 1369-1381. 

[19] Rezaee K, Haddadnia J, Tashk A. Optimized clinical segmentation of 
retinal blood vessels by using combination of adaptive filtering, fuzzy 
entropy and skeletonization[J]. Applied Soft Computing, 2017, 52: 937-
951. 

[20] Staal J, Abràmoff M D, Niemeijer M, et al. Ridge-based vessel 
segmentation in color images of the retina[J]. IEEE transactions on 
medical imaging, 2004, 23(4): 501-509. 

[21] You X, Peng Q, Yuan Y, et al. Segmentation of retinal blood vessels 
using the radial projection and semi-supervised approach[J]. Pattern 
recognition, 2011, 44(10-11): 2314-2324. 

[22] Soares J V B, Leandro J J G, Cesar R M, et al. Retinal vessel 
segmentation using the 2-D Gabor wavelet and supervised 
classification[J]. IEEE Transactions on medical Imaging, 2006, 25(9): 
1214-1222. 

[23] Kumar Agarwal A, Angeline Ranjithamani D, Pavithra M, et al. 
Machine learning technique for the assembly-based image classification 
system[J]. J Nucl Ene Sci Power Generat Techno, 2021, 10(9). 

[24] Orlando J I, Prokofyeva E, Blaschko M B. A discriminatively trained 
fully connected conditional random field model for blood vessel 
segmentation in fundus images[J]. IEEE transactions on Biomedical 
Engineering, 2016, 64(1): 16-27. 

[25] Zhu C, Zou B, Zhao R, et al. Retinal vessel segmentation in colour 
fundus images using extreme learning machine[J]. Computerized 
Medical Imaging and Graphics, 2017, 55: 68-77. 

[26] Hu K, Zhang Z, Niu X, et al. Retinal vessel segmentation of color 
fundus images using multiscale convolutional neural network with an 
improved cross-entropy loss function[J]. Neurocomputing, 2018, 309: 
179-191. 

[27] Hu J, Wang H, Gao S, et al. S-unet: A bridge-style u-net framework 
with a saliency mechanism for retinal vessel segmentation[J]. IEEE 
Access, 2019, 7: 174167-174177. 

[28] Mou L, Chen L, Cheng J, et al. Dense dilated network with probability 
regularized walk for vessel detection[J]. IEEE transactions on medical 
imaging, 2019, 39(5): 1392-1403. 

[29] Mishra S, Chen D Z, Hu X S. A data-aware deep supervised method for 
retinal vessel segmentation[C]//2020 IEEE 17th international 
symposium on biomedical imaging (ISBI). IEEE, 2020: 1254-1257. 

[30] Wang D, Hu G, Lyu C. Frnet: an end-to-end feature refinement neural 
network for medical image segmentation[J]. The Visual Computer, 
2021, 37: 1101-1112. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

83 | P a g e  

www.ijacsa.thesai.org 

[31] Dasgupta A, Singh S. A fully convolutional neural network based 
structured prediction approach towards the retinal vessel 
segmentation[C]//2017 IEEE 14th international symposium on 
biomedical imaging (ISBI 2017). IEEE, 2017: 248-251. 

[32] Yan Z, Yang X, Cheng K T. Joint segment-level and pixel-wise losses 
for deep learning based retinal vessel segmentation[J]. IEEE 
Transactions on Biomedical Engineering, 2018, 65(9): 1912-1923. 

[33] Wu Y, Xia Y, Song Y, et al. NFN+: A novel network followed network 
for retinal vessel segmentation[J]. Neural Networks, 2020, 126: 153-
162. 

[34] Wang D, Haytham A, Pottenburgh J, et al. Hard attention net for 
automatic retinal vessel segmentation[J]. IEEE Journal of Biomedical 
and Health Informatics, 2020, 24(12): 3384-3396. 

[35] Yang L, Wang H, Zeng Q, et al. A hybrid deep segmentation network 
for fundus vessels via deep-learning framework[J]. Neurocomputing, 
2021, 448: 168-178. 

[36] Tan, Yubo, et al. "Retinal vessel segmentation with skeletal prior and 
contrastive loss." IEEE Transactions on Medical Imaging 41.9 (2022): 
2238-2251. 

[37] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for 
biomedical image segmentation[C]//Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2015: 18th International 
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 
18. Springer International Publishing, 2015: 234-241. 

[38] Yan Z, Yang X, Cheng K T. A skeletal similarity metric for quality 
evaluation of retinal vessel segmentation[J]. IEEE transactions on 
medical imaging, 2017, 37(4): 1045-1057. 

[39] Staal J, Abràmoff M D, Niemeijer M, et al. Ridge-based vessel 
segmentation in color images of the retina[J]. IEEE transactions on 
medical imaging, 2004, 23(4): 501-509. 

[40] Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in 
retinal images by piecewise threshold probing of a matched filter 
response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-
210. 

[41] Fraz M M, Remagnino P, Hoppe A, et al. An ensemble classification-
based approach applied to retinal blood vessel segmentation[J]. IEEE 
Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548. 

[42] Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentation by 
improved matched filtering: evaluation on a new high‐resolution fundus 
image database[J]. IET Image Processing, 2013, 7(4): 373-383. 

[43] Tomar N K, Jha D, Riegler M A, et al. Fanet: A feedback attention 
network for improved biomedical image segmentation[J]. IEEE 
Transactions on Neural Networks and Learning Systems, 2022. 

[44] Solano A, Dietrich K N, Martínez-Sober M, et al. Deep Learning 
Architectures for Diagnosis of Diabetic Retinopathy[J]. Applied 
Sciences, 2023, 13(7): 4445. 

[45] Deari S, Oksuz I, Ulukaya S. Block Attention and Switchable 
Normalization based Deep Learning Framework for Segmentation of 
Retinal Vessels[J]. IEEE Access, 2023. 

[46] Li Y, Wang S, Wang J, et al. Gt u-net: A u-net like group transformer 
network for tooth root segmentation[C]//Machine Learning in Medical 
Imaging: 12th International Workshop, MLMI 2021, Held in 
Conjunction with MICCAI 2021, Strasbourg, France, September 27, 
2021, Proceedings 12. Springer International Publishing, 2021: 386-395. 

[47] Sun J, Darbehani F, Zaidi M, et al. Saunet: Shape attentive u-net for 
interpretable medical image segmentation[C]//Medical Image 
Computing and Computer Assisted Intervention–MICCAI 2020: 23rd 
International Conference, Lima, Peru, October 4–8, 2020, Proceedings, 
Part IV 23. Springer International Publishing, 2020: 797-806. 

[48] Lou A, Guan S, Loew M. Cfpnet-m: A light-weight encoder-decoder 
based network for multimodal biomedical image real-time 
segmentation[J]. Computers in Biology and Medicine, 2023, 154: 
106579. 

[49] Xia H, Jiang F, Deng S, et al. Mapping functions driven robust retinal 
vessel segmentation via training patches[J]. IEEE access, 2018, 6: 
61973-61982. 

 


