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Abstract—Cloud Computing voted as one of the most 

revolutionized technologies serving huge user demand engrosses 

a prominent place in research. Despite several parameters that 

influence the cloud performance, factors like Workload 

prediction and scheduling are triggering challenges for 

researchers in leveraging the system proficiency. Contributions 

by practitioners given workload prophesy left scope for further 

enhancement in terms of makespan, migration efficiency, and 

cost. Anticipating the future workload in due to avoid unfair 

allocation of cloud resources is a crucial aspect of efficient 

resource allocation. Our work aims to address this gap and 

improve efficiency by proposing a Deep Max-out prediction 

model, which predicts the future workload and facilitates 

workload balancing paving the path for enhanced scheduling 

with a hybrid Tasmanian Devil-assisted Bald Eagle Search (TES) 

optimization algorithm. The results evaluated proved that the 

TES scored efficiency in makespan with 16.342%, and migration 

efficiency of 14.75% over existing approaches like WACO, 

MPSO, and DBOA (Weighted Ant Colony Optimization 

Modified Particle Swarm Optimization, Discrete Butterfly 

Optimization Algorithm). Similarly, the error analysis during the 

evaluation of prediction performance has been figured out using 

different approaches like MSE, RMSE, MAE, and MSLE, among 

which our proposed method overwhelms with less error than the 

traditional methods. 
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Nomenclature 

Abbreviation Description 

SIN Service Invocation Number 

DBN Deep Belief Network 

LSTM Long Short-Term Memory 

SVM Support vector machine 

MA Moving Average 

ARIMA Autoregressive Integrated Moving Average 

WACO Weighted Ant Colony Optimization 

DBOA Discrete Butterfly Optimization Algorithm 

Grid-LSTM Grid-Long Short-Term Memory 

Bi-LSTM Bi-directional Long Short-Term Memory 

SDWF Self-Directed Workload Forecasting 

JEES Joint Energy Efficiency Optimization Scheme 

SE Sum Squared Error 

CE Cross Entropy Error 

TDO Tasmanian Devil Optimization 

CSO Cat Swarm Optimization 

MFO Moth Flame Optimization 

BES Bald Eagle Search 

HWOA Hybrid Whale Optimizer 

MPSO Modified Particle Swarm Optimization 

I. INTRODUCTION 

With the pervasive expansion of Internet access and the rise 
of Big Data, cloud computing has gained increasing 
prominence in today's business landscape [1]. In comparison to 
alternative distributed computing methodologies such as 
cluster and grid computing, cloud computing offers an adaptive 
and scalable approach to providing customized services to 
consumers. It provides a means for consumers to access 
computing resources and platforms without the necessity of 
owning the underlying technology, enabling them to utilize 
these resources in a pay-per-use manner. Numerous resources, 
including processing power, storage capacity, and network 
bandwidth, are easily accessible in the field of cloud 
computing. The complexity lies in distributing them fairly 
across different users and jobs to meet a range of demands and 
priorities. Therefore, allocating resources in this dynamic and 
diverse environment presents a challenging task for 
researchers. 

The main challenge in cloud computing is its diversified 
fluctuation of workloads and user needs [2]. Task requirements 
differ in kinds and amounts of resources, with dynamically 
evolving user needs. Secondly, cloud resources are limited, 
therefore it is crucial to allocate them wisely aiming for 
maximum performance and service effectiveness. It becomes 
imperative to load balance to avoid performance drops by 
resource saturation, due to resource conflicts within the system. 
At times several users or jobs may inevitably compete for the 
same resources simultaneously, leading to resource conflicts 
and delays. Eventually minimizing disputes and guaranteeing 
even distribution and efficient resource utilization, for strong 
resource allocation and scheduling is an urged need. 

To address issues pertaining to the performance of task 
scheduling [3-5], researchers have presented a variety of 
innovative approaches. The following categories generally 
describe the available task-scheduling techniques in a cloud 
environment. Static Scheduling Methods: These include 
algorithms such as Shortest Job First (SJF), Earliest Deadline 
First (EDF), and Minimum Remaining Time (MRT) to 
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determine the sequence of work allocation and execution 
before a job is submitted. They are easy to deploy, but they are 
not flexible enough to adjust to changing task needs and 
dynamic situations. Heuristic Scheduling Methods: These 
techniques, which include Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO), mainly rely on prior 
knowledge and pre-established guidelines for scheduling 
decisions. They cannot optimize globally or make adjustments 
in real time, even though they take job priorities and resource 
efficiency into account. 

Methods for Load Balancing Scheduling: These techniques 
seek to balance workloads among computing resources 
resulting in improved performance and resource usage. 
Random scheduling, round-robin (RR) scheduling, and queue-
length-based scheduling are a few examples. They perform 
well in workload distribution overriding job specifications. 

Scheduling process with evolutionary demands questioning 
the efficiency of cloud performance [6]. First of all, the sheer 
number of tasks demanded and their effective management 
raises the bar for computational demands adding complexity. 
Second, the cloud environment is dynamic, task arrivals, 
departures, and resource requirements are always changing. 
This dynamic nature renders the requirement for task 
scheduling algorithms that can be flexible and adaptive in real 
time to quickly adjust to changing demands [7]. Finally, to 
accomplish load balancing and maximize resource utilization, 
efficient task scheduling that relies on the appropriate 
distribution and application of resources is needed. If this 
equilibrium is not reached, system performance may suffer and 
resources may be wasted. 

At the core of cloud computing lies the allocation of 
computing tasks to a shared resource pool of resources 
comprising diverse virtualized servers or virtual machines 
(VMs) [8]. Operating akin to a market-driven utility, cloud 
computing endeavors to enable providers and users to optimize 
their profits with enhanced returns on investment. As a result, 
the adoption of sophisticated scheduling strategies becomes 
essential to facilitate the management of software, user 
applications, tasks, and workflows within this environment. 
Scheduling, in its essence, plays a crucial role in shaping 
system performance, influencing both resource utilization 
efficiency and operational costs, thus underscoring its mark in 
the domain of cloud computing [9]. 

Due to the dynamic provisioning and management 
capabilities of virtual machines (VMs) [10], challenges in 
cloud scheduling generally manifest in two layers. Firstly, the 
task scheduling phase involves aligning user-submitted tasks 
concerning available VM resources. Secondly, a vital VM-to-
host mapping process, which facilitates VM creation or 
migration [11, 12, 13]. Our main emphasis is on optimizing the 
former, as it directly influences the processing capabilities of a 
cloud computing system. Improving task scheduling has the 
potential to notably enhance system efficiency in terms of both 
time and cost [14, 15]. 

The above-mentioned challenges and issues that impact 
cloud performance are considered and addressed by 
introducing a framework that encompasses operations like 
workload prediction and scheduling, resulting in the design of 

a deep learning algorithm trained on features such as VM 
capacity and task capacity to optimize the scheduling process. 
The contributions of this work are delineated as follows: 

 Introducing an enhanced Deep Learning approach, 

named Improved Deep Maxout, to predict workloads by 

training on both VM and task capacities. 

 The prediction process facilitates optimal task 

scheduling through the TES algorithm, guaranteeing the 

achievement of objectives such as time efficiency, cost-

effectiveness, and overall system efficiency. 

The paper begins by introducing the concepts and 
challenges associated with cloud computing in Section I. 
Section II presents a thorough literature review along with the 
analysis and discussions of researchers' findings. In Section III, 
the paper describes the architecture and system flow of the 
proposed methodology in detail. Results and discussion is 
given in Section IV. The conclusion and future directions for 
enhancements are discussed in Section VI, shedding light on 
potential future developments. 

II. RELATED WORK 

Several Researchers have made significant contributions to 
resolving task scheduling and resource allocation challenges. 
However, our work builds upon these efforts by addressing 
overlooked aspects and introducing enhancements that improve 
overall performance. 

Wiem Matoussi and Tarek Hamrouni [16] developed 
workload forecasting techniques in 2021 to support capacity 
planning, guarantee effective resource allocation, and uphold 
SLA agreements with end users. Their methodology offered a 
novel way to forecast the surge of requests to a SaaS service 
and distribute virtual resources to satisfy user needs. The dual 
goals of this technique were response time optimization and 
accurate forecast forecasts. 

Vinícius Meyer et al. [17] presented a machine learning-
based classification technique in 2021 to provide the best 
possible resource allocation in cloud environments that are 
aware of dynamic interference. The main objective was to 
demonstrate how categorization techniques affect resource 
allocation so that it better accommodates variations in 
workload. The study began by looking at how different apps 
with different dynamic requests are handled by hardware 
components. The effectiveness of several interference 
classification techniques was investigated and assessed, taking 
into account the dynamic nature of cloud workloads. 

Marek Grzegorowski et al. [18] presented a revolutionary 
method in 2020 for building a reliable clustering methodology 
with cloud resources customized to the particular data 
processing requirement. The provided architecture made use of 
the infrastructure-as-a-code framework to allow for dynamic 
cluster configuration and administration. It begins by figuring 
out which cluster size is best for finishing a task within the 
given time frame. The execution time was then optimized by 
using ARIMA models and examining the price history of spot 
instances to benefit from the lower prices offered by the cloud 
spot market. 
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Min Cao et al. [19] introduced three fresh methods for an 
energy-aware EIS in 2023. The author initially determined the 
best time for each task to run on a certain resource to save 
energy. Second, to reduce frequency factor and voltage and 
conserve energy, the EIS allows workflow slack time 
according to the optimal time for each task's execution. 
Moreover, the EIS minimizes dynamic energy consumption 
and satisfies workflow deadline limitations by utilizing the 
lapsed time caused by task priority deficiencies. 

A logarithmic method was used in 2021 by Jing Bi et al. 
[20] to lower standard deviation before workloads and resource 
sequences were applied. They used the Min-Max approach to 
scale the data and an improved filter to remove noise 
interference and outliers. They have created an integrated deep 
learning method for time series forecasting, which makes use 
of ML-network models like Grid-LSTM and Bi-LSTM 
networks to produce accurate forecasts of resource demands 
and workload arrival at regular intervals. 

The SDWF (Standard Deviation Weighted Forecasting) 
approach was developed in 2021 by Jitendra Kumar et al. [21]. 
It uses the deviation in the present predictions to calculate the 
trend of forecasting errors and improve the accuracy of future 
predictions. For training neurons, the model uses a 
sophisticated heuristic approach motivated by the black hole 
phenomenon. In addition, a statistical analysis was carried out 
to verify the accuracy of the suggested forecasting model, 
using Friedman and Wilcoxon signed ranking tests. 

JEES (Joint Energy Optimisation and Scheduling), which 
simultaneously tackles and optimizes energy consumption in 
both cooling systems and servers, was introduced in 2021 by 
Kaixuan Ji et al. [22]. In addition to a resource management 
strategy that integrates workload forecasting models for 
resource allocation and a task-migration approach that makes 
use of marginal cost evaluation, JEES also includes a dynamic 
online task-scheduling technique based on the evaluation of 
marginal cost. The combined effect of these strategies is to 
lower data centers' overall energy usage. 

Taking into account the unpredictable and time-varying 
nature of the workload, Zheng Xiao et al. [23] combined VM 
allocation with task scheduling in 2019. A Markov chain can 
be used to simulate the Markov property that the acquired 
workload dataset exhibits, as the study showed. In addition, 
recurrence, entropy, and persistence were found to be the three 
main operators that best described the workload. These 
operators assess the stability, predictability, and approximate 
burst timings of user requests, in that order. It was discovered 
that there is a nonlinear link between workload characteristic 
operators and virtual machine allocation. 

A hybrid weighted Ant Colony Optimisation model with 
solution and pheromone updating functions was presented by 
Chirag Chandrasekar et al. [24] in 2023 for the best job 
scheduling. They showed that their meta-heuristic method 
outperformed current algorithms in terms of metrics like 
execution time and resource management. 

Neetu Sharma, Sonal, and Puneet Gala [25] introduced a 
QoS-based Ant Colony Optimisation scheduling system in 
2020 that used a neural network technique for effective multi-

objective scheduling [37]. Their suggested approach 
outperformed current algorithms in terms of user task 
scheduling costs and execution times. 

A modified Particle Swarm Optimisation (MPSO) was 
suggested in 2023 by Shikha Chaudhary et al. [26] to overcome 
the issues of long scheduling times and high computational 
costs during the scheduling process. By minimizing early 
convergence and improving local search efficiency, the MPSO 
optimizes the objective function about cost and makespan. An 
increase in the graph indicates that the performance of the 
suggested model is superior to that of conventional methods. 

To solve resource waste and improve the algorithm's speed 
of convergence, Medhi Hussein Zadeh et al. [27] created a 
discrete Butterfly Optimisation Algorithm (DBOA) in 2021 
that was modeled after the Levy flight technique. Their method 
of task prioritization and DBOA successfully addresses local 
optima concerns and allows for more efficient scheduling of 
intense workflows. 

A task scheduling technique using Cat Swarm Optimisation 
was introduced in 2023 by Sudheer Mangalampalli et al. [28]. 
This algorithm prioritizes tasks and arranges them for 
scheduling. Inspired by the behavior of cats, this algorithm 
outperforms baseline methods that are currently in place in 
terms of QoS metrics like makespan and resource utilization. 

Abdul Rajak [36] addressed an intelligent approach that 
benefits the real-world agricultural environment. Md shohel 
Sayeed et.al [38] proposed a real-time system for parking 
vehicles using a weighted K-nearest neighbour approach by 
selecting an optimal scheduler. Gousteris et.at [39] have come 
up with a secure approach for cloud storage using blockchain 
technology for efficient performance with heterogeneous input 
data. 

III. METHODOLOGY 

The work progresses by considering user requests as tasks 
appertaining to N users symbolized as Ui, where i={1,2,...,N}. 
These tasks designated as Tskj with j={1,2,…..M} are assigned 
to feasible virtual machines VMi where i={vm1,vm2,…..vmn} 
and physical machines PMi where i={pm1,pm2,…..pmk}. The 
proposed paradigm proceeds based on a priority scheme for 
scheduling using Deep learning techniques resulting in 
improved forecast of workloads. 

Improving cloud performance and cutting operating costs 
need accurate workload forecasts. To precisely predict 
workloads, a deep learning model is used in this article, which 
increases efficiency and lowers costs. The proposed improved 
Deep Maxout model successfully learns to anticipate jobs as 
target labels by using factors like CPU utilization, day of the 
week, and time of day. 

The enhanced Deep Maxout model's mathematical 
formulation is explained in [29]. To improve model robustness, 
it adds the modified softmax activation function (G-SM) to Eq. 
(2). In this case, the activation value is denoted by 𝑠𝑖  and 
𝑔𝑑(𝑠)  Gaussian distributed term with mean μ and standard 
deviation σ. The classic softmax activation function, which can 
handle multiple classes by normalizing the outputs for each 
class, ranging from 0 to 1, is presented by Eq. (1). 
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The input layer, embedding layer, max pooling layer, 
dropout layer, convolution layer, and dense layers that make 
use of activation and maxout functions constitute the Deep 
Maxout model's network structure. The maxout unit of this 
network is shown in Eq. (3), here 𝐾𝑦𝑧 = 𝑁 ⋅ 𝜆𝑦𝑧 + 𝛾𝑦𝑧 , γ 

serves as the bias, with N standing for input features such as 
task and virtual machine capacity, η serving as the feature map, 
and λ serving as the weight. 

The softmax function SM is coined as follows: 

𝑆𝑀(𝑠)𝑖 =
ẹ𝑠𝑖  

∑ ẹ
𝑠𝑗ҟ

𝑗=1

                             (1) 

This formula defines a probability distribution across k 
possible outcomes. Here 𝑠𝑖  represents the input value 
corresponding to outcome I and the denominator summates the 
exponentials of all input values across all outcomes. 

𝐺 − 𝑆𝑀 =
𝑒𝑥𝑝(𝑠𝑖+𝑔𝑑(𝑠))

∑ 𝑒𝑥𝑝(𝑠𝑖+𝑔𝑑(𝑥))𝑗=1
                       (2) 

𝑔𝑑(𝑠) = 0.5 ∗ 𝑒𝑟_𝑓 (−
√2(𝜇𝑖 − 𝑠𝑖)

2𝜎𝑖
) + 0.5 

where, error function 𝑒𝑟_𝑓 can be coined as. 

(1/√𝜋)∫ 𝑒−𝑡
2

𝑧

−𝑧

𝑑𝑡, 𝑡2 = 𝑠𝑖  

𝑄(𝑀) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚(
𝑧∈[1,𝜂]

𝑅𝑦𝑧)                        (3) 

The input layer receives the input feature N, and the 
embedding layer processes its output to calculate the outcome. 
The dropout layer and convolution layer are the next two layers 
that process the output further. The final output is obtained 
starting with the third convolution layer. The final output is 
then produced by the max-pooling layer following the 
convolution layer. The dense layer is followed in order by the 
dropout layer. 

The output of the max-out module is calculated based on 
the input pipelined from the dropout layer and is combined 
with the dense layer to create the final product. Using the 
output of the dense layer as the last step, the activation function 
computes the classification result as Deep Maxout. To evaluate 
the accuracy parameter of the model, hybrid loss functions 
which are given in Eq. (4) and detailed in [33] are used. 
Typically, error measures such as the SE(E_SE) and CE loss 
functions (E_CE) are employed to assess the efficacy of a 
classification model. 

The enhanced hybrid loss function calculation for the 
proposed model is provided in Eq. (5), where the dynamically 
weighted balanced CE is represented by 𝐸_𝐶𝐸∗  (as in Eq. (6)). 

In this case, yi^ stands for the anticipated label, and yi indicates 
the actual label. w_lbj, which is calculated as the ratio of class 
frequency nj and the majority 

class (as determined across the training dataset), is equal to the 
class frequency log (as in Eq. (7)). The proportions allocated to 
the loss functions are represented by the scalar values Lf1 and 
Lf2, where Lf1+Lf2=1. 

𝐸_ℎ𝑒 = 𝐿𝑓1
𝐸_𝑆𝐸

𝑀𝑎𝑥𝑆𝐸
+ 𝐿𝑓2

𝐸_𝐶𝐸

𝑀𝑎𝑥𝐶𝐸
                    (4) 

Here 

𝐸_𝐶𝐸 = −
1

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧𝑒
∑ 𝑦𝑖

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧

𝑖=1

⋅ 𝑙𝑜𝑔 𝑦𝑖
∧
+ (1 − 𝑦𝑖) ∗ 1

∗ 𝑙𝑜𝑔 (1 − 𝑦𝑖
∧
) 

𝐸_ℎ𝑒 = 𝐿𝑓1
𝐸_𝑆𝐸

𝑀𝑎𝑥𝑆𝐸
+ 𝐿𝑓2

𝐸_𝐶𝐸∗

𝑀𝑎𝑥𝐶𝐸∗
                (5) 

𝐸_𝐶𝐸∗ = −
1

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧𝑒
∑ ∑ 𝑤_𝑙𝑏

𝑗

(1−𝑝𝑖𝑗)𝑐
𝑗=1 𝑦𝑖

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧
𝑖=1 ⋅

𝑙𝑜𝑔 𝑦𝑖
∧
+ (1 − 𝑦𝑖) ∗ 1 ∗ 𝑙𝑜𝑔 (1 − 𝑦𝑖

∧
)      (6) 

𝑤_𝑙𝑏𝑗 = 𝑙𝑜𝑔 (
𝑚𝑎𝑥(𝑛𝑗|𝑗∈𝑐)

𝑛𝑗
) + 1                  (7) 

1) Optimal load balancing and task scheduling: An 

effective load-balancing approach proactively aids in 

monitoring the workload of the virtual machines (VMs') and 

allocating jobs to them appropriately. An example job would 

be Tskj, which has a range of 1000 tasks. The physical 

machines would be pmk, with 50 machines, and the virtual 

machines would be vmN, with 20–25 computers. There are 

multiple vmN within this range for every pmk. The pmk 

machines are randomly assigned tasks. 

The enhanced Deep Maxout model is used in this workload 
prediction model. The target label of the Deep Maxout model 
is set to 0, 1, and 2, and the features supplied to the Improved 
Deep Maxout model are Task capacity and VM capacity. The 
following are the definitions of under load, equal load, and 
overload conditions: 

 The target label is set to 0, indicating that the machine's 
workload prediction is under load, if the task capacity 
is smaller than the virtual machine's capacity. 

 The target label is set to 1, indicating that the machine's 
workload prediction is at equal load, if the task 
capacity and the VM capacity are equal. 

 The target label is set to 2, meaning that the machine's 
workload prediction is overloaded, if the task capacity 
exceeds the virtual machine capacity. 

Constraints including Makespan (Fn1), Migration cost 
(Fn2), and Migration efficiency (Fn3) are taken into account 
throughout the scheduling process considered. Fig. 1 shows the 
model of scheduling. The input solution assigns a lower bound 
of Lb=0, (Zeros(len(Machine_underload))), and an upper 
bound of Ub=1, (Ones(len(Machine_underload))) to the 
variables. The number of underloaded machines is equal to the 
problem size of TES. 
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Fig. 1. Scheduling of task in cloud computing. 

The objective function is expressed in Eq. (8), where 
random weights in the interval [0, 1] are represented by the 
variables w1, w2, and w3. 

𝑂𝑏𝑗 = (𝑤1 ∗ 𝐹𝑛1) + (𝑤2 ∗ 𝐹𝑛2) + (𝑤3 ∗ 𝐹𝑛3)       (8) 

1) Makespan(𝐹𝑛1): Eq. (9), which defines the makespan, 

shows the total computing time (CTi) (as given in Eq. (10)) 

needed to complete a task, where N is the number of virtual 

machines. 

𝐹𝑛1 = 𝑀𝑎𝑥
1≤𝑖≤𝑁

{𝐶𝑇𝑖}                     (9) 

𝐶𝑇𝑖 = ∑
𝑇𝑗∗𝑙𝑒𝑛𝑔𝑡ℎ

𝑣𝑚𝑁∗𝑃𝑒𝑠_𝑁𝑢𝑚∗𝑋𝑣𝑚𝑁

𝑛
𝑗=1                       (10) 

2) Migration cost( 𝐹𝑛2) : A M*M matrix is used to 

calculate the migration cost, where the rows and columns of 

the matrix indicate the migration costs of virtual machines 

(vmN) and physical machines (pmK), respectively. The (1, 1) 

and (2, 2) columns in this matrix indicate reduced migration 

costs, while the remaining entries suggest higher migration 

costs. 

3) Migration efficiency( 𝐹𝑛3) : Based on the migration 

value, the migration efficiency is computed, as shown in Eq. 

(11). 

𝐹𝑛3 =
1

𝐹𝑛1
                                   (11) 

This section presents the mathematical formulation of the 
proposed meta-heuristic TES, which combines TD [30] with 
ES [31]. The Tasmanian devil feeds on live prey by attacking 
them or by scavenging carrion from dead animals. This 
behavior is simulated by TES. First, a random population of 
agents is generated according to the limitations of the 
challenge. Based on the location of their search region, the 
population members of TES, which are problem-solving search 
agents, suggest potential values for problem variables. 
Functionally, each member of the population can be thought of 
as a vector, with the number of elements representing the 
number of variables in the problem. A matrix in Eq. (12), 
where P is the Tasmanian population, N is the number of 
Tasmanian devils seeking, Pi is a potential solution, and m is 

the number of specified problem variables, can be used to 
simulate the set of TES members. 

𝑃 =

[
 
 
 
 
𝑃1
:
𝑃𝑖
:
𝑃𝑁]
 
 
 
 

=

[
 
 
 
 
𝑝1,1. . . . 𝑝1,𝑗. . . . 𝑝1,𝑚
:
𝑝𝑖,1. . . . 𝑝𝑖,𝑗. . . . 𝑝𝑖,𝑚
:
𝑝𝑁,1. . . 𝑝𝑁,𝑗. . . . 𝑝𝑁,𝑚]

 
 
 
 

𝑁×𝑚

            (12) 

By changing the values of potential solutions into the 
defined objective function's objects, the objective function can 
be assessed. In Eq. (13) the values obtained for the defined 
objective function are represented by a vector V. 

𝑉 =

[
 
 
 
 
𝑉1
:
𝑉𝑖
:
𝑉𝑁]
 
 
 
 

=

[
 
 
 
 
𝑉(𝑃1)
:
𝑉(𝑃𝑖)
:
𝑉(𝑃𝑁)]

 
 
 
 

𝑁×1

                       (13) 

The Tasmanian devil algorithm does not always hunt; 
sometimes it prefers to eat the carrion that is around. The area 
above the Tasmanian devil is home to additional predators that 
hunt enormous prey but are unable to finish it. Each Tasmanian 
devil considers the position of another population member to 
be carrion bait under the TES design. 𝐶𝑟𝑖 denotes the selected 
carrion in Eq. (14) which shows the random selection of one of 
these cases. The Tasmanian devil is moved to a new location 
inside the search area based on 𝐶𝑟𝑖 . 

𝐶𝑟𝑖 = 𝑃𝑘 , 𝑖 = 1,2, … , 𝑁, 

𝑥 ∈ {1,2, . . . , 𝑁|𝑥 ≠ 𝑖}            (14) 

A random number is represented by 𝐼𝑛 ∈ (1,2)  and a 
random number is represented by 𝑟 ∈ (0,1) , while the 
Tasmanian devil's current update based on the first strategy is 

represented by 𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1

 in Eq. (12). Eq. (15) is used to calculate 

the Tasmanian devil's new position. If the objective function 
value at the new position is higher than its previous position, 
the position is considered acceptable; otherwise, the Tasmanian 
devil process retains its position. 

The new update for the Tasmanian devil is obtained by 
merging the TD and proposed ES updates in Eq. (16), by the 
proposed methodology. In this case, the random factor is 
represented by RandF (as in Eq. (18)) [34], the random value is 
 𝑟2 ∈ (0,1) the maximum iteration is 𝐼𝑡𝑀𝑎𝑥 , the current 
iteration is 𝐶_𝐼𝑡 and the levy flight update is represented by 
Levy_fun (as in Eq. (19)). Eq. (20) provides the typical (eagle 
search) ES update equation, where α is the parameter 
governing the position change. 

Update to the new value as 𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1

  with 𝑝𝑖,𝑗 + 𝑟 ×

(𝐶𝑟𝑖,𝑗 − 𝐼𝑛 × 𝑝𝑖,𝑗)  when the criteria 𝑉𝐶𝑟𝑖 ≺ 𝑉𝑖  is met 

alternatively  

𝑝𝑖,𝑗 + 𝑟 × (𝑝𝑖,𝑗 − 𝐶𝑟𝑖,𝑗)                    (15) 

The algorithm considers 𝑃𝑖,𝑗
𝑛𝑒𝑤,𝑆1

the updated if the fitness 

offered is better than current else retains the current value as 
follows 
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𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤,𝑆1; 𝑉𝑖

𝑛𝑒𝑤,𝑆1 ≺ 𝑉𝑖
𝑃𝑖; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (16) 

𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1 =   

{
 

 
𝑝𝑖,𝑗 + 𝑅𝑎𝑛𝐹 × (𝐶𝑟𝑖,𝑗 − 𝐼𝑛 × 𝑝);

𝑖𝑓𝑉𝐶𝑟𝑖 ≺ 𝑉𝑖
𝑝𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟(𝑝𝑚𝑒𝑎𝑛 − 𝑝𝑖) ∗ 𝐿𝑒𝑣𝑦_𝑓𝑢𝑛;

𝑒𝑙𝑠𝑒

   (17) 

𝑅𝑎𝑛𝐹 = 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2),                           (18) 

where 

𝑟1 =
1.5 × (𝐼𝑡𝑀𝑎𝑥 − 𝑡 + 1)

𝐼𝑡𝑀𝑎𝑥
 

𝐿𝑒𝑣𝑦𝑓𝑢𝑛 =
𝐶𝐼𝑡(1+𝛽)∗(𝑠𝑖𝑛(

𝜋𝛽

2
))

1
𝛽⁄

𝐶
𝐼𝑡(

1+𝛽
2 )

∗𝛽∗(2
(
𝛽−1
2 )

)

                     (19) 

𝑝𝑛𝑒𝑤 = 𝑝𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟(𝑝𝑚𝑒𝑎𝑛 − 𝑝𝑖)             (20) 

𝑃𝑟𝑦𝑖 = 𝑃𝑘 , 𝑖 = 1,2, … , 𝑁, 

𝑥 ∈ {1,2, . . . , 𝑁|𝑥 ≠ 𝑖}                        (21) 

The position of other population members is taken into 
account as the location of prey during the updating procedure 
of the ith Tasmanian devil. Prey selection is modeled by Eq. 
(21) where  𝑃𝑟𝑦𝑖  indicates the selected prey and 𝑥 ∈ (1, 𝑁)  is 
a natural random number. 

Eq. (22) uses the exact location of the prey to calculate the 
Tasmanian devil's new position. The Tasmanian devil's 
location is adjusted to this new position if the new location 
increases the target function value. Eq. (23) provides an 
example of this second strategy phase. 

𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆2 =

{
 
 

 
 𝑝𝑖,𝑗 + 𝑟 × (𝑃𝑟𝑦𝑖,𝑗 − 𝐼𝑛 × 𝑝𝑖,𝑗);

𝑖𝑓𝑉𝑃𝑟𝑦𝑖 ≺ 𝑉𝑖

𝑝𝑖,𝑗 + 𝑟 × (𝑝𝑖,𝑗 − 𝑃𝑟𝑦𝑖,𝑗);

𝑒𝑙𝑠𝑒

        (22) 

𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤,𝑆2; 𝑉𝑖

𝑛𝑒𝑤,𝑆2 ≺ 𝑉𝑖
𝑃𝑖; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (23) 

The radius R of the neighborhood that is, the region where 
the Tasmanian devil tracks its prey can be found using Eq. 
(24). Thus, a new position for the Tasmanian devils can be 
established by quantitatively simulating their pursuit behavior 
using Eq. (25). The Tasmanian devil will accept the newly 
calculated position if it provides a better value for the goal 
function than the previous position. Eq. (26) describes the 
process of updating the position of the Tasmanian devil. The 
Tasmanian devil's position update procedure is carried out, by 
the model presented in Eq. (27), by incorporating the factor 
𝑃_𝐹𝑎𝑐𝑡 as suggested in Eq. (28) [32]. 

𝑅𝑑 = 0.01 (1 −
𝑡

𝐼𝑡𝑀𝑎𝑥
)                         (24) 

𝑝𝑖,𝑗
𝑛𝑒𝑤 = 𝑝𝑖,𝑗 + (2𝑟 − 1) × 𝑅𝑑 × 𝑝𝑖,𝑗               (25) 

𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤; 𝑖𝑓 𝑉𝑖

𝑛𝑒𝑤 ≺ 𝑉𝑖
𝑃𝑖 ; 𝑒𝑙𝑠𝑒

                    (26) 

𝑃𝑖 = {

𝑃𝑖
𝑛𝑒𝑤 × 𝑃_𝐹𝑎𝑐𝑡;

𝑖𝑓 𝑉𝑖
𝑛𝑒𝑤 ≺ 𝑉𝑖

𝑃𝑖; 𝑒𝑙𝑠𝑒

                     (27) 

𝑃_𝐹𝑎𝑐𝑡 = 𝑒𝑥𝑝 (
−𝑖

𝛿×𝐼𝑡𝑀𝑎𝑥
)                (28) 

Algorithm 1: TES (Tasmanian Devil-assisted Bald Eagle 

Search) for optimal load balancing and task scheduling. 

Input:  Set of VMs = {VM1,VM2….,VMn} and Tasks={T1,T2….,Tn} 

Initialize: No of iterations (T) and no of members of the population 
(N).  

While t=1: T  

     For i=1: N 

             IF  
.,2/1 randprobprob 
 

                  Select carrion for the i th Tasmanian devil by Eq. (14)  

                 Calculate the new status of the Tasmanian devil by Eq. (16) 

                 Update the i th Tasmanian devil apply Levy flight  

               strategy by Eq. (17) 

            Else  

                Select prey of 
thi the Tasmanian devil using Eq. (21) 

               Assess the updated value of the Tasmanian Devil using  

               Eq. (22). 

               The Tasmanian Devil's update is executed using Eq. (23). 

               Update 𝑅𝑑 by Eq. (24) 

Assess the new updated value of 
thi Tasmanian Devil in the 

neighborhood using Eq. (25). 

Update proposed 
thi Tasmanian devil via Eq. (27) 

       End For 

End While  

Output: The best solution obtained for a given optimization problem. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup and Simulation 

We employed simulations to evaluate the effectiveness of 
our proposed scheduling methods. Cloudsim is widely utilized 
as simulation software for evaluating optimization techniques. 
It replicates components of cloud systems such as data centers, 
tasks, and virtual machines, while also supporting task 
scheduling strategies and diverse energy usage models for 
simulating various workloads. In this study, we simulated a 
cloud model based on a single data center, akin to 
Infrastructure as a Service (IaaS). The simulations were 
performed on a computer equipped with an Intel(R) Core(TM) 
i5-8265U CPU @ 1.80 GHz processor, 16 GB RAM, and a 64-
bit Windows 11 Operating System. 

The configuration of the simulated cloud data center is 
shown in Tables I, II and III. 
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TABLE I. CONFIGURATION OF HOST IN DATACENTER 

Host Parameters Value 

Processing Element (PE) 2-10 

Processing capacity 20000-35000 MIPS 

RAM capacity 8GB,16GB,32GB 

TABLE II. CONFIGURATION OF VMS 

VM Parameters Value 

Processing Element (PE) in each VM 1 

CPU computing capacity 600-4000 MIPS 

RAM capacity 512-4196 MB 

TABLE III. TASK PARAMETERS 

Task Parameters Value 

Task Length 15000-900000 MI 

Size of Task 60-3000 KB 

B. Performance Metrics 

The Google Cluster Workload Traces dataset from 2019 
sourced from [35] is subjected to Cloudsim for workload 
prediction and job scheduling. The TES approach is evaluated 
against conventional strategies such as DBOA, MPSO, and 
WACO. The key parameters considered for evaluating the 
performance of the proposed method pertain to 
Communication cost, Execution time, Makespan, Migration 
Cost and Migration Efficiency are compared against existing 
approaches. The analysis is carried out with task counts 
ranging from 500 to 2000. 

1) Communication cost and execution time: Fig. 2 and 

Fig. 3 depicts the comparison of TES performance to that of 

WACO, MPSO, and DBOA in terms of communication cost 

and execution time for workload prediction and task 

scheduling. The results achieved present an increased drift in 

performance by the proposed TES in terms of reduced 

execution times and communication costs over other 

approaches. To be more precise, when handling tasks with 

tasks of various counts, the TES attained notably lowered 

communication costs than other algorithms handling. The 

result of the proposed approach renders the utmost values 

when task count is 500, when compared against task counts of 

1000, 1500, and 2000. Furthermore, the TES demonstrated a 

significant improvement with an execution time of 1648 

seconds with 2000 tasks. 

2) Makespan analysis: The workload prediction and task 

scheduling performance metrics comparison of the TES vs. 

WACO, MPSO, and DBOA is shown in Fig. 4. Indicating that 

when job/task count is set at 500, the findings show a shorter 

makespan for the TES approach as compared to conventional 

methods. This demonstrates how accurate the TES is at 

forecasting workload and allocating jobs facilitating the 

shortest makespan. 

 
Fig. 2. Communication cost vs. number of task. 

 

Fig. 3. Execution time vs. number of task. 

 
Fig. 4. Makespan vs. number of tasks. 

3) Migration cost and migration efficiency analysis: The 

analysis of the TES's efficiency and migration cost of other 

task scheduling and workload prediction techniques is shown 

in Fig. 5 and Fig. 6. The number of tasks is changed to 

conduct the analysis. With a migration cost of 1.54 (with 2000 

tasks), the TES methodology outperforms previous 

approaches with WACO=5.786, MPSO=4.345, and 

DBOA=3.987, respectively, in terms of efficiency and cost. 

Furthermore, TES's migration efficiency (0.0987) outperforms 

MPSO's (0.322), WACO's (0.378), and DBOA's (0.0239), 

with 2000 tasks. These findings show that TES is more 

effective and less expensive during task migrations. 
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Fig. 5. Migration cost vs. number of tasks. 

 

Fig. 6. Migration efficiency vs. number of task. 

4) Convergence evaluation: As seen in Fig. 7, the 

convergence analysis of TES is contrasted with other methods 

currently in use, such as WACO, MPSO, and DBOA. The cost 

values that were initially produced by TES and other methods 

were high at the 0th iteration, with a considerable downtrend 

following successive iterations. The cost parameter values 

attained are comparatively low using TES, especially on the 

25th iteration when it obtained a minimal cost value of 3.427. 

According to the convergence graph, TES converges more 

rapidly than other schemes, bringing down costs and 

producing enhanced accuracy in forecasting workload about 

user tasks. 

 

Fig. 7. Cost function vs. iterations. 

5) Regression analysis: The regression evaluation of the 

suggested approach and the current approaches (CNN, NN, 

and RNN) for workload prediction is shown in Fig. 8, 9, 10 

and Fig. 11. The results demonstrate that TES in contrast to 

CNN, NN, and RNN, which typically provide more divergent 

values, produces more consistent values in both real and 

classified labels. 

6) Error analysis of improved deep maxout: Table IV 

presents an error analysis of the suggested algorithm 

concerning conventional Deep Maxout, CNN, RNN, NN, Bi-

GRU, RMSE, MAE, and MSLE. The lowered error rates 

attained with the enhanced Deep Maxout technique reflect the 

e. In particular, the RMSE of the enhanced Deep Maxout is 

0.100, which is substantially less than that of the Conventional 

Deep Maxout (1.150), RNN (0.340), CNN (0.260), and NN 

(0.160) in Bi-GRU (1.180), respectively. Furthermore, the 

suggested approach demonstrated enhanced performance in 

terms of MSE=0.120, MAE=0.021, and MSLE=0.215, all of 

which were minimized. 

7) Prediction analysis: Table  compares the prediction 

evaluation of TES with CNN, NN, and RNN addressing the 

prediction efficiency of TES that outperformed CNN, NN, and 

RNN algorithms in terms of prediction accuracy. 

 

Fig. 8. Regression evaluation of CNN. 

 
Fig. 9. Regression evaluation of NN. 
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Fig. 10. Regression evaluation of RNN. 

 
Fig. 11. Regression evaluation of TES. 

TABLE IV. ERROR EVALUATION 

Methods MSE RMSE MAE MSLE 

CNN 0.521 0.260 0.150 0.520 

RNN 0.460 0.340 0.140 0.678 

NN 0.320 0.160 0.057 0.447 

Bi-GRU 2.180 1.180 0.652 1.404 

Conventional Deep Maxout 4.120 1.150 0.224 1.320 

Improved Deep Maxout 0.120 0.100 0.021 0.215 

TABLE V. PREDICTION EVALUATION OVER THE TRADITIONAL 

APPROACHES 

Methods Success Rate Over Prediction Under Prediction 

CNN 49 51 49 

NN 49 51 49 

RNN 53 47 52 

TES 96 14 25 

V. CONCLUSION 

The proposed study offers an effective workload prediction 
model that forecasts future workload based on trends seen in 
historical data by utilizing the Deep Max-out prediction model. 
This model uses the TES Algorithm to optimize scheduling 
while efficiently balancing the workload on machines. By 
ensuring that jobs are moved among virtual machines (VMs) in 
the best possible way, this method produces effective 

scheduling that takes into account metrics like make-span, 
migration cost, and migration efficiency. Comparing the 
suggested model to conventional approaches, promisingly 
results in high communication costs, with statistical analysis 
showcasing that the new model greatly reduces communication 
costs (2647.835). Moreover, the comparison of forecast 
outcomes emphasizes how crucial it is to take into account 
limitations such as job make-span, fitness, migration-cost, and 
execution time. When comparing the suggested model to 
conventional techniques, these constraints are noticeably less. 
In particular, the execution time is reduced to around 817, 
demonstrating how well the suggested model performs in 
comparison to traditional techniques that require larger 
execution cycles. 
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