
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

754 | P a g e

www.ijacsa.thesai.org

Deep Learning Approach for Workload Prediction

and Balancing in Cloud Computing

Syed Karimunnisa1, Yellamma Pachipala2

Research Scholar, Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddesvaram, Guntur, AP, India-5225031

Associate Professor, Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddesvaram, Guntur, AP, India-5225032

Abstract—Cloud Computing voted as one of the most

revolutionized technologies serving huge user demand engrosses

a prominent place in research. Despite several parameters that

influence the cloud performance, factors like Workload

prediction and scheduling are triggering challenges for

researchers in leveraging the system proficiency. Contributions

by practitioners given workload prophesy left scope for further

enhancement in terms of makespan, migration efficiency, and

cost. Anticipating the future workload in due to avoid unfair

allocation of cloud resources is a crucial aspect of efficient

resource allocation. Our work aims to address this gap and

improve efficiency by proposing a Deep Max-out prediction

model, which predicts the future workload and facilitates

workload balancing paving the path for enhanced scheduling

with a hybrid Tasmanian Devil-assisted Bald Eagle Search (TES)

optimization algorithm. The results evaluated proved that the

TES scored efficiency in makespan with 16.342%, and migration

efficiency of 14.75% over existing approaches like WACO,

MPSO, and DBOA (Weighted Ant Colony Optimization

Modified Particle Swarm Optimization, Discrete Butterfly

Optimization Algorithm). Similarly, the error analysis during the

evaluation of prediction performance has been figured out using

different approaches like MSE, RMSE, MAE, and MSLE, among

which our proposed method overwhelms with less error than the

traditional methods.

Keywords—Task scheduling; virtual machines; optimization;

workload prediction; migration; QoS

Nomenclature

Abbreviation Description

SIN Service Invocation Number

DBN Deep Belief Network

LSTM Long Short-Term Memory

SVM Support vector machine

MA Moving Average

ARIMA Autoregressive Integrated Moving Average

WACO Weighted Ant Colony Optimization

DBOA Discrete Butterfly Optimization Algorithm

Grid-LSTM Grid-Long Short-Term Memory

Bi-LSTM Bi-directional Long Short-Term Memory

SDWF Self-Directed Workload Forecasting

JEES Joint Energy Efficiency Optimization Scheme

SE Sum Squared Error

CE Cross Entropy Error

TDO Tasmanian Devil Optimization

CSO Cat Swarm Optimization

MFO Moth Flame Optimization

BES Bald Eagle Search

HWOA Hybrid Whale Optimizer

MPSO Modified Particle Swarm Optimization

I. INTRODUCTION

With the pervasive expansion of Internet access and the rise
of Big Data, cloud computing has gained increasing
prominence in today's business landscape [1]. In comparison to
alternative distributed computing methodologies such as
cluster and grid computing, cloud computing offers an adaptive
and scalable approach to providing customized services to
consumers. It provides a means for consumers to access
computing resources and platforms without the necessity of
owning the underlying technology, enabling them to utilize
these resources in a pay-per-use manner. Numerous resources,
including processing power, storage capacity, and network
bandwidth, are easily accessible in the field of cloud
computing. The complexity lies in distributing them fairly
across different users and jobs to meet a range of demands and
priorities. Therefore, allocating resources in this dynamic and
diverse environment presents a challenging task for
researchers.

The main challenge in cloud computing is its diversified
fluctuation of workloads and user needs [2]. Task requirements
differ in kinds and amounts of resources, with dynamically
evolving user needs. Secondly, cloud resources are limited,
therefore it is crucial to allocate them wisely aiming for
maximum performance and service effectiveness. It becomes
imperative to load balance to avoid performance drops by
resource saturation, due to resource conflicts within the system.
At times several users or jobs may inevitably compete for the
same resources simultaneously, leading to resource conflicts
and delays. Eventually minimizing disputes and guaranteeing
even distribution and efficient resource utilization, for strong
resource allocation and scheduling is an urged need.

To address issues pertaining to the performance of task
scheduling [3-5], researchers have presented a variety of
innovative approaches. The following categories generally
describe the available task-scheduling techniques in a cloud
environment. Static Scheduling Methods: These include
algorithms such as Shortest Job First (SJF), Earliest Deadline
First (EDF), and Minimum Remaining Time (MRT) to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

755 | P a g e

www.ijacsa.thesai.org

determine the sequence of work allocation and execution
before a job is submitted. They are easy to deploy, but they are
not flexible enough to adjust to changing task needs and
dynamic situations. Heuristic Scheduling Methods: These
techniques, which include Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO), mainly rely on prior
knowledge and pre-established guidelines for scheduling
decisions. They cannot optimize globally or make adjustments
in real time, even though they take job priorities and resource
efficiency into account.

Methods for Load Balancing Scheduling: These techniques
seek to balance workloads among computing resources
resulting in improved performance and resource usage.
Random scheduling, round-robin (RR) scheduling, and queue-
length-based scheduling are a few examples. They perform
well in workload distribution overriding job specifications.

Scheduling process with evolutionary demands questioning
the efficiency of cloud performance [6]. First of all, the sheer
number of tasks demanded and their effective management
raises the bar for computational demands adding complexity.
Second, the cloud environment is dynamic, task arrivals,
departures, and resource requirements are always changing.
This dynamic nature renders the requirement for task
scheduling algorithms that can be flexible and adaptive in real
time to quickly adjust to changing demands [7]. Finally, to
accomplish load balancing and maximize resource utilization,
efficient task scheduling that relies on the appropriate
distribution and application of resources is needed. If this
equilibrium is not reached, system performance may suffer and
resources may be wasted.

At the core of cloud computing lies the allocation of
computing tasks to a shared resource pool of resources
comprising diverse virtualized servers or virtual machines
(VMs) [8]. Operating akin to a market-driven utility, cloud
computing endeavors to enable providers and users to optimize
their profits with enhanced returns on investment. As a result,
the adoption of sophisticated scheduling strategies becomes
essential to facilitate the management of software, user
applications, tasks, and workflows within this environment.
Scheduling, in its essence, plays a crucial role in shaping
system performance, influencing both resource utilization
efficiency and operational costs, thus underscoring its mark in
the domain of cloud computing [9].

Due to the dynamic provisioning and management
capabilities of virtual machines (VMs) [10], challenges in
cloud scheduling generally manifest in two layers. Firstly, the
task scheduling phase involves aligning user-submitted tasks
concerning available VM resources. Secondly, a vital VM-to-
host mapping process, which facilitates VM creation or
migration [11, 12, 13]. Our main emphasis is on optimizing the
former, as it directly influences the processing capabilities of a
cloud computing system. Improving task scheduling has the
potential to notably enhance system efficiency in terms of both
time and cost [14, 15].

The above-mentioned challenges and issues that impact
cloud performance are considered and addressed by
introducing a framework that encompasses operations like
workload prediction and scheduling, resulting in the design of

a deep learning algorithm trained on features such as VM
capacity and task capacity to optimize the scheduling process.
The contributions of this work are delineated as follows:

 Introducing an enhanced Deep Learning approach,

named Improved Deep Maxout, to predict workloads by

training on both VM and task capacities.

 The prediction process facilitates optimal task

scheduling through the TES algorithm, guaranteeing the

achievement of objectives such as time efficiency, cost-

effectiveness, and overall system efficiency.

The paper begins by introducing the concepts and
challenges associated with cloud computing in Section I.
Section II presents a thorough literature review along with the
analysis and discussions of researchers' findings. In Section III,
the paper describes the architecture and system flow of the
proposed methodology in detail. Results and discussion is
given in Section IV. The conclusion and future directions for
enhancements are discussed in Section VI, shedding light on
potential future developments.

II. RELATED WORK

Several Researchers have made significant contributions to
resolving task scheduling and resource allocation challenges.
However, our work builds upon these efforts by addressing
overlooked aspects and introducing enhancements that improve
overall performance.

Wiem Matoussi and Tarek Hamrouni [16] developed
workload forecasting techniques in 2021 to support capacity
planning, guarantee effective resource allocation, and uphold
SLA agreements with end users. Their methodology offered a
novel way to forecast the surge of requests to a SaaS service
and distribute virtual resources to satisfy user needs. The dual
goals of this technique were response time optimization and
accurate forecast forecasts.

Vinícius Meyer et al. [17] presented a machine learning-
based classification technique in 2021 to provide the best
possible resource allocation in cloud environments that are
aware of dynamic interference. The main objective was to
demonstrate how categorization techniques affect resource
allocation so that it better accommodates variations in
workload. The study began by looking at how different apps
with different dynamic requests are handled by hardware
components. The effectiveness of several interference
classification techniques was investigated and assessed, taking
into account the dynamic nature of cloud workloads.

Marek Grzegorowski et al. [18] presented a revolutionary
method in 2020 for building a reliable clustering methodology
with cloud resources customized to the particular data
processing requirement. The provided architecture made use of
the infrastructure-as-a-code framework to allow for dynamic
cluster configuration and administration. It begins by figuring
out which cluster size is best for finishing a task within the
given time frame. The execution time was then optimized by
using ARIMA models and examining the price history of spot
instances to benefit from the lower prices offered by the cloud
spot market.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

756 | P a g e

www.ijacsa.thesai.org

Min Cao et al. [19] introduced three fresh methods for an
energy-aware EIS in 2023. The author initially determined the
best time for each task to run on a certain resource to save
energy. Second, to reduce frequency factor and voltage and
conserve energy, the EIS allows workflow slack time
according to the optimal time for each task's execution.
Moreover, the EIS minimizes dynamic energy consumption
and satisfies workflow deadline limitations by utilizing the
lapsed time caused by task priority deficiencies.

A logarithmic method was used in 2021 by Jing Bi et al.
[20] to lower standard deviation before workloads and resource
sequences were applied. They used the Min-Max approach to
scale the data and an improved filter to remove noise
interference and outliers. They have created an integrated deep
learning method for time series forecasting, which makes use
of ML-network models like Grid-LSTM and Bi-LSTM
networks to produce accurate forecasts of resource demands
and workload arrival at regular intervals.

The SDWF (Standard Deviation Weighted Forecasting)
approach was developed in 2021 by Jitendra Kumar et al. [21].
It uses the deviation in the present predictions to calculate the
trend of forecasting errors and improve the accuracy of future
predictions. For training neurons, the model uses a
sophisticated heuristic approach motivated by the black hole
phenomenon. In addition, a statistical analysis was carried out
to verify the accuracy of the suggested forecasting model,
using Friedman and Wilcoxon signed ranking tests.

JEES (Joint Energy Optimisation and Scheduling), which
simultaneously tackles and optimizes energy consumption in
both cooling systems and servers, was introduced in 2021 by
Kaixuan Ji et al. [22]. In addition to a resource management
strategy that integrates workload forecasting models for
resource allocation and a task-migration approach that makes
use of marginal cost evaluation, JEES also includes a dynamic
online task-scheduling technique based on the evaluation of
marginal cost. The combined effect of these strategies is to
lower data centers' overall energy usage.

Taking into account the unpredictable and time-varying
nature of the workload, Zheng Xiao et al. [23] combined VM
allocation with task scheduling in 2019. A Markov chain can
be used to simulate the Markov property that the acquired
workload dataset exhibits, as the study showed. In addition,
recurrence, entropy, and persistence were found to be the three
main operators that best described the workload. These
operators assess the stability, predictability, and approximate
burst timings of user requests, in that order. It was discovered
that there is a nonlinear link between workload characteristic
operators and virtual machine allocation.

A hybrid weighted Ant Colony Optimisation model with
solution and pheromone updating functions was presented by
Chirag Chandrasekar et al. [24] in 2023 for the best job
scheduling. They showed that their meta-heuristic method
outperformed current algorithms in terms of metrics like
execution time and resource management.

Neetu Sharma, Sonal, and Puneet Gala [25] introduced a
QoS-based Ant Colony Optimisation scheduling system in
2020 that used a neural network technique for effective multi-

objective scheduling [37]. Their suggested approach
outperformed current algorithms in terms of user task
scheduling costs and execution times.

A modified Particle Swarm Optimisation (MPSO) was
suggested in 2023 by Shikha Chaudhary et al. [26] to overcome
the issues of long scheduling times and high computational
costs during the scheduling process. By minimizing early
convergence and improving local search efficiency, the MPSO
optimizes the objective function about cost and makespan. An
increase in the graph indicates that the performance of the
suggested model is superior to that of conventional methods.

To solve resource waste and improve the algorithm's speed
of convergence, Medhi Hussein Zadeh et al. [27] created a
discrete Butterfly Optimisation Algorithm (DBOA) in 2021
that was modeled after the Levy flight technique. Their method
of task prioritization and DBOA successfully addresses local
optima concerns and allows for more efficient scheduling of
intense workflows.

A task scheduling technique using Cat Swarm Optimisation
was introduced in 2023 by Sudheer Mangalampalli et al. [28].
This algorithm prioritizes tasks and arranges them for
scheduling. Inspired by the behavior of cats, this algorithm
outperforms baseline methods that are currently in place in
terms of QoS metrics like makespan and resource utilization.

Abdul Rajak [36] addressed an intelligent approach that
benefits the real-world agricultural environment. Md shohel
Sayeed et.al [38] proposed a real-time system for parking
vehicles using a weighted K-nearest neighbour approach by
selecting an optimal scheduler. Gousteris et.at [39] have come
up with a secure approach for cloud storage using blockchain
technology for efficient performance with heterogeneous input
data.

III. METHODOLOGY

The work progresses by considering user requests as tasks
appertaining to N users symbolized as Ui, where i={1,2,...,N}.
These tasks designated as Tskj with j={1,2,…..M} are assigned
to feasible virtual machines VMi where i={vm1,vm2,…..vmn}
and physical machines PMi where i={pm1,pm2,…..pmk}. The
proposed paradigm proceeds based on a priority scheme for
scheduling using Deep learning techniques resulting in
improved forecast of workloads.

Improving cloud performance and cutting operating costs
need accurate workload forecasts. To precisely predict
workloads, a deep learning model is used in this article, which
increases efficiency and lowers costs. The proposed improved
Deep Maxout model successfully learns to anticipate jobs as
target labels by using factors like CPU utilization, day of the
week, and time of day.

The enhanced Deep Maxout model's mathematical
formulation is explained in [29]. To improve model robustness,
it adds the modified softmax activation function (G-SM) to Eq.
(2). In this case, the activation value is denoted by 𝑠𝑖 and
𝑔𝑑(𝑠) Gaussian distributed term with mean μ and standard
deviation σ. The classic softmax activation function, which can
handle multiple classes by normalizing the outputs for each
class, ranging from 0 to 1, is presented by Eq. (1).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

757 | P a g e

www.ijacsa.thesai.org

The input layer, embedding layer, max pooling layer,
dropout layer, convolution layer, and dense layers that make
use of activation and maxout functions constitute the Deep
Maxout model's network structure. The maxout unit of this
network is shown in Eq. (3), here 𝐾𝑦𝑧 = 𝑁 ⋅ 𝜆𝑦𝑧 + 𝛾𝑦𝑧 , γ

serves as the bias, with N standing for input features such as
task and virtual machine capacity, η serving as the feature map,
and λ serving as the weight.

The softmax function SM is coined as follows:

𝑆𝑀(𝑠)𝑖 =
ẹ𝑠𝑖

∑ ẹ
𝑠𝑗ҟ

𝑗=1

 (1)

This formula defines a probability distribution across k
possible outcomes. Here 𝑠𝑖 represents the input value
corresponding to outcome I and the denominator summates the
exponentials of all input values across all outcomes.

𝐺 − 𝑆𝑀 =
𝑒𝑥𝑝(𝑠𝑖+𝑔𝑑(𝑠))

∑ 𝑒𝑥𝑝(𝑠𝑖+𝑔𝑑(𝑥))𝑗=1
 (2)

𝑔𝑑(𝑠) = 0.5 ∗ 𝑒𝑟_𝑓 (−
√2(𝜇𝑖 − 𝑠𝑖)

2𝜎𝑖
) + 0.5

where, error function 𝑒𝑟_𝑓 can be coined as.

(1/√𝜋)∫ 𝑒−𝑡
2

𝑧

−𝑧

𝑑𝑡, 𝑡2 = 𝑠𝑖

𝑄(𝑀) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚(
𝑧∈[1,𝜂]

𝑅𝑦𝑧) (3)

The input layer receives the input feature N, and the
embedding layer processes its output to calculate the outcome.
The dropout layer and convolution layer are the next two layers
that process the output further. The final output is obtained
starting with the third convolution layer. The final output is
then produced by the max-pooling layer following the
convolution layer. The dense layer is followed in order by the
dropout layer.

The output of the max-out module is calculated based on
the input pipelined from the dropout layer and is combined
with the dense layer to create the final product. Using the
output of the dense layer as the last step, the activation function
computes the classification result as Deep Maxout. To evaluate
the accuracy parameter of the model, hybrid loss functions
which are given in Eq. (4) and detailed in [33] are used.
Typically, error measures such as the SE(E_SE) and CE loss
functions (E_CE) are employed to assess the efficacy of a
classification model.

The enhanced hybrid loss function calculation for the
proposed model is provided in Eq. (5), where the dynamically
weighted balanced CE is represented by 𝐸_𝐶𝐸∗ (as in Eq. (6)).

In this case, yi^ stands for the anticipated label, and yi indicates
the actual label. w_lbj, which is calculated as the ratio of class
frequency nj and the majority

class (as determined across the training dataset), is equal to the
class frequency log (as in Eq. (7)). The proportions allocated to
the loss functions are represented by the scalar values Lf1 and
Lf2, where Lf1+Lf2=1.

𝐸_ℎ𝑒 = 𝐿𝑓1
𝐸_𝑆𝐸

𝑀𝑎𝑥𝑆𝐸
+ 𝐿𝑓2

𝐸_𝐶𝐸

𝑀𝑎𝑥𝐶𝐸
 (4)

Here

𝐸_𝐶𝐸 = −
1

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧𝑒
∑ 𝑦𝑖

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧

𝑖=1

⋅ 𝑙𝑜𝑔 𝑦𝑖
∧
+ (1 − 𝑦𝑖) ∗ 1

∗ 𝑙𝑜𝑔 (1 − 𝑦𝑖
∧
)

𝐸_ℎ𝑒 = 𝐿𝑓1
𝐸_𝑆𝐸

𝑀𝑎𝑥𝑆𝐸
+ 𝐿𝑓2

𝐸_𝐶𝐸∗

𝑀𝑎𝑥𝐶𝐸∗
 (5)

𝐸_𝐶𝐸∗ = −
1

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧𝑒
∑ ∑ 𝑤_𝑙𝑏

𝑗

(1−𝑝𝑖𝑗)𝑐
𝑗=1 𝑦𝑖

𝑂𝑢𝑡𝑝𝑢𝑡_𝑆𝑖𝑧
𝑖=1 ⋅

𝑙𝑜𝑔 𝑦𝑖
∧
+ (1 − 𝑦𝑖) ∗ 1 ∗ 𝑙𝑜𝑔 (1 − 𝑦𝑖

∧
) (6)

𝑤_𝑙𝑏𝑗 = 𝑙𝑜𝑔 (
𝑚𝑎𝑥(𝑛𝑗|𝑗∈𝑐)

𝑛𝑗
) + 1 (7)

1) Optimal load balancing and task scheduling: An

effective load-balancing approach proactively aids in

monitoring the workload of the virtual machines (VMs') and

allocating jobs to them appropriately. An example job would

be Tskj, which has a range of 1000 tasks. The physical

machines would be pmk, with 50 machines, and the virtual

machines would be vmN, with 20–25 computers. There are

multiple vmN within this range for every pmk. The pmk

machines are randomly assigned tasks.

The enhanced Deep Maxout model is used in this workload
prediction model. The target label of the Deep Maxout model
is set to 0, 1, and 2, and the features supplied to the Improved
Deep Maxout model are Task capacity and VM capacity. The
following are the definitions of under load, equal load, and
overload conditions:

 The target label is set to 0, indicating that the machine's
workload prediction is under load, if the task capacity
is smaller than the virtual machine's capacity.

 The target label is set to 1, indicating that the machine's
workload prediction is at equal load, if the task
capacity and the VM capacity are equal.

 The target label is set to 2, meaning that the machine's
workload prediction is overloaded, if the task capacity
exceeds the virtual machine capacity.

Constraints including Makespan (Fn1), Migration cost
(Fn2), and Migration efficiency (Fn3) are taken into account
throughout the scheduling process considered. Fig. 1 shows the
model of scheduling. The input solution assigns a lower bound
of Lb=0, (Zeros(len(Machine_underload))), and an upper
bound of Ub=1, (Ones(len(Machine_underload))) to the
variables. The number of underloaded machines is equal to the
problem size of TES.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

758 | P a g e

www.ijacsa.thesai.org

Fig. 1. Scheduling of task in cloud computing.

The objective function is expressed in Eq. (8), where
random weights in the interval [0, 1] are represented by the
variables w1, w2, and w3.

𝑂𝑏𝑗 = (𝑤1 ∗ 𝐹𝑛1) + (𝑤2 ∗ 𝐹𝑛2) + (𝑤3 ∗ 𝐹𝑛3) (8)

1) Makespan(𝐹𝑛1): Eq. (9), which defines the makespan,

shows the total computing time (CTi) (as given in Eq. (10))

needed to complete a task, where N is the number of virtual

machines.

𝐹𝑛1 = 𝑀𝑎𝑥
1≤𝑖≤𝑁

{𝐶𝑇𝑖} (9)

𝐶𝑇𝑖 = ∑
𝑇𝑗∗𝑙𝑒𝑛𝑔𝑡ℎ

𝑣𝑚𝑁∗𝑃𝑒𝑠_𝑁𝑢𝑚∗𝑋𝑣𝑚𝑁

𝑛
𝑗=1 (10)

2) Migration cost(𝐹𝑛2) : A M*M matrix is used to

calculate the migration cost, where the rows and columns of

the matrix indicate the migration costs of virtual machines

(vmN) and physical machines (pmK), respectively. The (1, 1)

and (2, 2) columns in this matrix indicate reduced migration

costs, while the remaining entries suggest higher migration

costs.

3) Migration efficiency(𝐹𝑛3) : Based on the migration

value, the migration efficiency is computed, as shown in Eq.

(11).

𝐹𝑛3 =
1

𝐹𝑛1
 (11)

This section presents the mathematical formulation of the
proposed meta-heuristic TES, which combines TD [30] with
ES [31]. The Tasmanian devil feeds on live prey by attacking
them or by scavenging carrion from dead animals. This
behavior is simulated by TES. First, a random population of
agents is generated according to the limitations of the
challenge. Based on the location of their search region, the
population members of TES, which are problem-solving search
agents, suggest potential values for problem variables.
Functionally, each member of the population can be thought of
as a vector, with the number of elements representing the
number of variables in the problem. A matrix in Eq. (12),
where P is the Tasmanian population, N is the number of
Tasmanian devils seeking, Pi is a potential solution, and m is

the number of specified problem variables, can be used to
simulate the set of TES members.

𝑃 =

[

𝑃1
:
𝑃𝑖
:
𝑃𝑁]

=

[

𝑝1,1. . . . 𝑝1,𝑗. . . . 𝑝1,𝑚
:
𝑝𝑖,1. . . . 𝑝𝑖,𝑗. . . . 𝑝𝑖,𝑚
:
𝑝𝑁,1. . . 𝑝𝑁,𝑗. . . . 𝑝𝑁,𝑚]

𝑁×𝑚

 (12)

By changing the values of potential solutions into the
defined objective function's objects, the objective function can
be assessed. In Eq. (13) the values obtained for the defined
objective function are represented by a vector V.

𝑉 =

[

𝑉1
:
𝑉𝑖
:
𝑉𝑁]

=

[

𝑉(𝑃1)
:
𝑉(𝑃𝑖)
:
𝑉(𝑃𝑁)]

𝑁×1

 (13)

The Tasmanian devil algorithm does not always hunt;
sometimes it prefers to eat the carrion that is around. The area
above the Tasmanian devil is home to additional predators that
hunt enormous prey but are unable to finish it. Each Tasmanian
devil considers the position of another population member to
be carrion bait under the TES design. 𝐶𝑟𝑖 denotes the selected
carrion in Eq. (14) which shows the random selection of one of
these cases. The Tasmanian devil is moved to a new location
inside the search area based on 𝐶𝑟𝑖 .

𝐶𝑟𝑖 = 𝑃𝑘 , 𝑖 = 1,2, … , 𝑁,

𝑥 ∈ {1,2, . . . , 𝑁|𝑥 ≠ 𝑖} (14)

A random number is represented by 𝐼𝑛 ∈ (1,2) and a
random number is represented by 𝑟 ∈ (0,1) , while the
Tasmanian devil's current update based on the first strategy is

represented by 𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1

 in Eq. (12). Eq. (15) is used to calculate

the Tasmanian devil's new position. If the objective function
value at the new position is higher than its previous position,
the position is considered acceptable; otherwise, the Tasmanian
devil process retains its position.

The new update for the Tasmanian devil is obtained by
merging the TD and proposed ES updates in Eq. (16), by the
proposed methodology. In this case, the random factor is
represented by RandF (as in Eq. (18)) [34], the random value is
 𝑟2 ∈ (0,1) the maximum iteration is 𝐼𝑡𝑀𝑎𝑥 , the current
iteration is 𝐶_𝐼𝑡 and the levy flight update is represented by
Levy_fun (as in Eq. (19)). Eq. (20) provides the typical (eagle
search) ES update equation, where α is the parameter
governing the position change.

Update to the new value as 𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1

 with 𝑝𝑖,𝑗 + 𝑟 ×

(𝐶𝑟𝑖,𝑗 − 𝐼𝑛 × 𝑝𝑖,𝑗) when the criteria 𝑉𝐶𝑟𝑖 ≺ 𝑉𝑖 is met

alternatively

𝑝𝑖,𝑗 + 𝑟 × (𝑝𝑖,𝑗 − 𝐶𝑟𝑖,𝑗) (15)

The algorithm considers 𝑃𝑖,𝑗
𝑛𝑒𝑤,𝑆1

the updated if the fitness

offered is better than current else retains the current value as
follows

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

759 | P a g e

www.ijacsa.thesai.org

𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤,𝑆1; 𝑉𝑖

𝑛𝑒𝑤,𝑆1 ≺ 𝑉𝑖
𝑃𝑖; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16)

𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆1 =

{

𝑝𝑖,𝑗 + 𝑅𝑎𝑛𝐹 × (𝐶𝑟𝑖,𝑗 − 𝐼𝑛 × 𝑝);

𝑖𝑓𝑉𝐶𝑟𝑖 ≺ 𝑉𝑖
𝑝𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟(𝑝𝑚𝑒𝑎𝑛 − 𝑝𝑖) ∗ 𝐿𝑒𝑣𝑦_𝑓𝑢𝑛;

𝑒𝑙𝑠𝑒

 (17)

𝑅𝑎𝑛𝐹 = 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2), (18)

where

𝑟1 =
1.5 × (𝐼𝑡𝑀𝑎𝑥 − 𝑡 + 1)

𝐼𝑡𝑀𝑎𝑥

𝐿𝑒𝑣𝑦𝑓𝑢𝑛 =
𝐶𝐼𝑡(1+𝛽)∗(𝑠𝑖𝑛(

𝜋𝛽

2
))

1
𝛽⁄

𝐶
𝐼𝑡(

1+𝛽
2)

∗𝛽∗(2
(
𝛽−1
2)

)

 (19)

𝑝𝑛𝑒𝑤 = 𝑝𝑏𝑒𝑠𝑡 + 𝛼 ∗ 𝑟(𝑝𝑚𝑒𝑎𝑛 − 𝑝𝑖) (20)

𝑃𝑟𝑦𝑖 = 𝑃𝑘 , 𝑖 = 1,2, … , 𝑁,

𝑥 ∈ {1,2, . . . , 𝑁|𝑥 ≠ 𝑖} (21)

The position of other population members is taken into
account as the location of prey during the updating procedure
of the ith Tasmanian devil. Prey selection is modeled by Eq.
(21) where 𝑃𝑟𝑦𝑖 indicates the selected prey and 𝑥 ∈ (1, 𝑁) is
a natural random number.

Eq. (22) uses the exact location of the prey to calculate the
Tasmanian devil's new position. The Tasmanian devil's
location is adjusted to this new position if the new location
increases the target function value. Eq. (23) provides an
example of this second strategy phase.

𝑝𝑖,𝑗
𝑛𝑒𝑤,𝑆2 =

{

 𝑝𝑖,𝑗 + 𝑟 × (𝑃𝑟𝑦𝑖,𝑗 − 𝐼𝑛 × 𝑝𝑖,𝑗);

𝑖𝑓𝑉𝑃𝑟𝑦𝑖 ≺ 𝑉𝑖

𝑝𝑖,𝑗 + 𝑟 × (𝑝𝑖,𝑗 − 𝑃𝑟𝑦𝑖,𝑗);

𝑒𝑙𝑠𝑒

 (22)

𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤,𝑆2; 𝑉𝑖

𝑛𝑒𝑤,𝑆2 ≺ 𝑉𝑖
𝑃𝑖; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23)

The radius R of the neighborhood that is, the region where
the Tasmanian devil tracks its prey can be found using Eq.
(24). Thus, a new position for the Tasmanian devils can be
established by quantitatively simulating their pursuit behavior
using Eq. (25). The Tasmanian devil will accept the newly
calculated position if it provides a better value for the goal
function than the previous position. Eq. (26) describes the
process of updating the position of the Tasmanian devil. The
Tasmanian devil's position update procedure is carried out, by
the model presented in Eq. (27), by incorporating the factor
𝑃_𝐹𝑎𝑐𝑡 as suggested in Eq. (28) [32].

𝑅𝑑 = 0.01 (1 −
𝑡

𝐼𝑡𝑀𝑎𝑥
) (24)

𝑝𝑖,𝑗
𝑛𝑒𝑤 = 𝑝𝑖,𝑗 + (2𝑟 − 1) × 𝑅𝑑 × 𝑝𝑖,𝑗 (25)

𝑃𝑖 = {
𝑃𝑖
𝑛𝑒𝑤; 𝑖𝑓 𝑉𝑖

𝑛𝑒𝑤 ≺ 𝑉𝑖
𝑃𝑖 ; 𝑒𝑙𝑠𝑒

 (26)

𝑃𝑖 = {

𝑃𝑖
𝑛𝑒𝑤 × 𝑃_𝐹𝑎𝑐𝑡;

𝑖𝑓 𝑉𝑖
𝑛𝑒𝑤 ≺ 𝑉𝑖

𝑃𝑖; 𝑒𝑙𝑠𝑒

 (27)

𝑃_𝐹𝑎𝑐𝑡 = 𝑒𝑥𝑝 (
−𝑖

𝛿×𝐼𝑡𝑀𝑎𝑥
) (28)

Algorithm 1: TES (Tasmanian Devil-assisted Bald Eagle

Search) for optimal load balancing and task scheduling.

Input: Set of VMs = {VM1,VM2….,VMn} and Tasks={T1,T2….,Tn}

Initialize: No of iterations (T) and no of members of the population
(N).

While t=1: T

 For i=1: N

 IF
.,2/1 randprobprob

 Select carrion for the i th Tasmanian devil by Eq. (14)

 Calculate the new status of the Tasmanian devil by Eq. (16)

 Update the i th Tasmanian devil apply Levy flight

 strategy by Eq. (17)

 Else

 Select prey of
thi the Tasmanian devil using Eq. (21)

 Assess the updated value of the Tasmanian Devil using

 Eq. (22).

 The Tasmanian Devil's update is executed using Eq. (23).

 Update 𝑅𝑑 by Eq. (24)

Assess the new updated value of
thi Tasmanian Devil in the

neighborhood using Eq. (25).

Update proposed
thi Tasmanian devil via Eq. (27)

 End For

End While

Output: The best solution obtained for a given optimization problem.

IV. RESULTS AND DISCUSSION

A. Experimental Setup and Simulation

We employed simulations to evaluate the effectiveness of
our proposed scheduling methods. Cloudsim is widely utilized
as simulation software for evaluating optimization techniques.
It replicates components of cloud systems such as data centers,
tasks, and virtual machines, while also supporting task
scheduling strategies and diverse energy usage models for
simulating various workloads. In this study, we simulated a
cloud model based on a single data center, akin to
Infrastructure as a Service (IaaS). The simulations were
performed on a computer equipped with an Intel(R) Core(TM)
i5-8265U CPU @ 1.80 GHz processor, 16 GB RAM, and a 64-
bit Windows 11 Operating System.

The configuration of the simulated cloud data center is
shown in Tables I, II and III.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

760 | P a g e

www.ijacsa.thesai.org

TABLE I. CONFIGURATION OF HOST IN DATACENTER

Host Parameters Value

Processing Element (PE) 2-10

Processing capacity 20000-35000 MIPS

RAM capacity 8GB,16GB,32GB

TABLE II. CONFIGURATION OF VMS

VM Parameters Value

Processing Element (PE) in each VM 1

CPU computing capacity 600-4000 MIPS

RAM capacity 512-4196 MB

TABLE III. TASK PARAMETERS

Task Parameters Value

Task Length 15000-900000 MI

Size of Task 60-3000 KB

B. Performance Metrics

The Google Cluster Workload Traces dataset from 2019
sourced from [35] is subjected to Cloudsim for workload
prediction and job scheduling. The TES approach is evaluated
against conventional strategies such as DBOA, MPSO, and
WACO. The key parameters considered for evaluating the
performance of the proposed method pertain to
Communication cost, Execution time, Makespan, Migration
Cost and Migration Efficiency are compared against existing
approaches. The analysis is carried out with task counts
ranging from 500 to 2000.

1) Communication cost and execution time: Fig. 2 and

Fig. 3 depicts the comparison of TES performance to that of

WACO, MPSO, and DBOA in terms of communication cost

and execution time for workload prediction and task

scheduling. The results achieved present an increased drift in

performance by the proposed TES in terms of reduced

execution times and communication costs over other

approaches. To be more precise, when handling tasks with

tasks of various counts, the TES attained notably lowered

communication costs than other algorithms handling. The

result of the proposed approach renders the utmost values

when task count is 500, when compared against task counts of

1000, 1500, and 2000. Furthermore, the TES demonstrated a

significant improvement with an execution time of 1648

seconds with 2000 tasks.

2) Makespan analysis: The workload prediction and task

scheduling performance metrics comparison of the TES vs.

WACO, MPSO, and DBOA is shown in Fig. 4. Indicating that

when job/task count is set at 500, the findings show a shorter

makespan for the TES approach as compared to conventional

methods. This demonstrates how accurate the TES is at

forecasting workload and allocating jobs facilitating the

shortest makespan.

Fig. 2. Communication cost vs. number of task.

Fig. 3. Execution time vs. number of task.

Fig. 4. Makespan vs. number of tasks.

3) Migration cost and migration efficiency analysis: The

analysis of the TES's efficiency and migration cost of other

task scheduling and workload prediction techniques is shown

in Fig. 5 and Fig. 6. The number of tasks is changed to

conduct the analysis. With a migration cost of 1.54 (with 2000

tasks), the TES methodology outperforms previous

approaches with WACO=5.786, MPSO=4.345, and

DBOA=3.987, respectively, in terms of efficiency and cost.

Furthermore, TES's migration efficiency (0.0987) outperforms

MPSO's (0.322), WACO's (0.378), and DBOA's (0.0239),

with 2000 tasks. These findings show that TES is more

effective and less expensive during task migrations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

761 | P a g e

www.ijacsa.thesai.org

Fig. 5. Migration cost vs. number of tasks.

Fig. 6. Migration efficiency vs. number of task.

4) Convergence evaluation: As seen in Fig. 7, the

convergence analysis of TES is contrasted with other methods

currently in use, such as WACO, MPSO, and DBOA. The cost

values that were initially produced by TES and other methods

were high at the 0th iteration, with a considerable downtrend

following successive iterations. The cost parameter values

attained are comparatively low using TES, especially on the

25th iteration when it obtained a minimal cost value of 3.427.

According to the convergence graph, TES converges more

rapidly than other schemes, bringing down costs and

producing enhanced accuracy in forecasting workload about

user tasks.

Fig. 7. Cost function vs. iterations.

5) Regression analysis: The regression evaluation of the

suggested approach and the current approaches (CNN, NN,

and RNN) for workload prediction is shown in Fig. 8, 9, 10

and Fig. 11. The results demonstrate that TES in contrast to

CNN, NN, and RNN, which typically provide more divergent

values, produces more consistent values in both real and

classified labels.

6) Error analysis of improved deep maxout: Table IV

presents an error analysis of the suggested algorithm

concerning conventional Deep Maxout, CNN, RNN, NN, Bi-

GRU, RMSE, MAE, and MSLE. The lowered error rates

attained with the enhanced Deep Maxout technique reflect the

e. In particular, the RMSE of the enhanced Deep Maxout is

0.100, which is substantially less than that of the Conventional

Deep Maxout (1.150), RNN (0.340), CNN (0.260), and NN

(0.160) in Bi-GRU (1.180), respectively. Furthermore, the

suggested approach demonstrated enhanced performance in

terms of MSE=0.120, MAE=0.021, and MSLE=0.215, all of

which were minimized.

7) Prediction analysis: Table compares the prediction

evaluation of TES with CNN, NN, and RNN addressing the

prediction efficiency of TES that outperformed CNN, NN, and

RNN algorithms in terms of prediction accuracy.

Fig. 8. Regression evaluation of CNN.

Fig. 9. Regression evaluation of NN.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

762 | P a g e

www.ijacsa.thesai.org

Fig. 10. Regression evaluation of RNN.

Fig. 11. Regression evaluation of TES.

TABLE IV. ERROR EVALUATION

Methods MSE RMSE MAE MSLE

CNN 0.521 0.260 0.150 0.520

RNN 0.460 0.340 0.140 0.678

NN 0.320 0.160 0.057 0.447

Bi-GRU 2.180 1.180 0.652 1.404

Conventional Deep Maxout 4.120 1.150 0.224 1.320

Improved Deep Maxout 0.120 0.100 0.021 0.215

TABLE V. PREDICTION EVALUATION OVER THE TRADITIONAL

APPROACHES

Methods Success Rate Over Prediction Under Prediction

CNN 49 51 49

NN 49 51 49

RNN 53 47 52

TES 96 14 25

V. CONCLUSION

The proposed study offers an effective workload prediction
model that forecasts future workload based on trends seen in
historical data by utilizing the Deep Max-out prediction model.
This model uses the TES Algorithm to optimize scheduling
while efficiently balancing the workload on machines. By
ensuring that jobs are moved among virtual machines (VMs) in
the best possible way, this method produces effective

scheduling that takes into account metrics like make-span,
migration cost, and migration efficiency. Comparing the
suggested model to conventional approaches, promisingly
results in high communication costs, with statistical analysis
showcasing that the new model greatly reduces communication
costs (2647.835). Moreover, the comparison of forecast
outcomes emphasizes how crucial it is to take into account
limitations such as job make-span, fitness, migration-cost, and
execution time. When comparing the suggested model to
conventional techniques, these constraints are noticeably less.
In particular, the execution time is reduced to around 817,
demonstrating how well the suggested model performs in
comparison to traditional techniques that require larger
execution cycles.

REFERENCES

[1] Fatemeh Ebadifard and SeyedMortezaBabamir, "Autonomic task
scheduling algorithm for dynamic workloads through a load balancing
technique for the cloud-computing environment", Cluster Computing,
2020, https://doi.org/10.1007/s10586-020-03177-0.

[2] K. Lalitha Devi and S. Valli, "Multi‑objective heuristics algorithm for
dynamic resource scheduling in the cloud computing environment", The
Journal of Supercomputing, 2020, https://doi.org/10.1007/s11227-020-
03606-2.

[3] Mahendra Bhatu Gawali and Subhash K. Shinde, “Task Scheduling and
resource allocation in cloud computing using a heuristic approach”,
Gawali and Shinde Journal of Cloud Computing: Advances, Systems,
and Applications (2018),7:4.

[4] S. R. Shishira and A. Kandasamy, "A Novel Feature Extraction Model
for Large‑Scale Workload Prediction in Cloud Environment", SN
Computer Science (2021), https://doi.org/10.1007/s42979-021-00730-5.

[5] Anurina Tarafdar, Mukta Debnath, Sunirmal Khatua, Rajib K. Das,
"Energy and Makespan Aware Scheduling of Deadline Sensitive Tasks
in the Cloud Environment", Journal of Grid Computing (2021),
https://doi.org/10.1007/s10723-021-09548-0.

[6] Yonghua Zhu, Weilin Zhang, Yihai Chen, and Honghao Gao, "A novel
approach to workload prediction using attention-based LSTM encoder-
decoder network in cloud environment", EURASIP Journal on Wireless
Communications and Networking (2019),
https://doi.org/10.1186/s13638-019-1605-z.

[7] Habte Lejebo Leka, Zhang Fengli, Ayantu Tesfaye Kenea, Negalign
Wake Hundera, Tewodros Gizaw Tohye, and Abebe Tamrat Tegene,
"PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual
Machine Resource Usage Prediction", Symmetry, vol.15, 2023.

[8] M. Yadav and A. Mishra, "An enhanced ordinal optimization with lower
scheduling overhead based novel approach for task scheduling in the
cloud computing environment," Journal of Cloud Computing, vol. 12,
no. 1, Jan. 2023, doi: 10.1186/s13677-023-00392-z.

[9] X. Zhang, “A fine-grained task scheduling mechanism for digital
economy services based on intelligent edge and cloud computing,”
Journal of Cloud Computing, vol. 12, no. 1, Mar. 2023, doi:
10.1186/s13677-023-00402-0.

[10] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S. Maurya, “Improved
wild horse optimization with levy flight algorithm for effective task
scheduling in cloud computing,” Journal of Cloud Computing, vol. 12,
no. 1, Feb. 2023, doi: 10.1186/s13677-023-00401-1.

[11] P. Shukla and S. Pandey, “MOTORS: Multi-Objective Task Offloading
and Resource Scheduling Algorithm for Heterogeneous Fog-Cloud
Computing Scenario,” Jul. 2023, doi: 10.21203/rs.3.rs-3124031/v1.

[12] S. R. K. B. and S. R. E., “Improved Context Aware PSO Task
Scheduling in Cloud Computing,” Webology, vol. 19, no. 1, pp. 3709–
3721, Jan. 2022, doi: 10.14704/web/v19i1/web19244.

[13] H. Zhang, “A Cloud Computing Task Scheduling Method Based on
Genetic Algorithm,” Proceedings of the 2nd International Conference on
Information Economy, Data Modeling and Cloud Computing, ICIDC
2023, June 2–4, 2023, Nanchang, China, 2023, doi: 10.4108/eai.2-6-
2023.2334608.

https://doi.org/10.1007/s10586-020-03177-0
https://doi.org/10.1007/s11227-020-03606-2
https://doi.org/10.1007/s11227-020-03606-2
https://doi.org/10.1007/s42979-021-00730-5
https://doi.org/10.1007/s10723-021-09548-0
https://doi.org/10.1186/s13638-019-1605-z

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

763 | P a g e

www.ijacsa.thesai.org

[14] Dharma s and K. P, “An Efficient Task Allocation Using Resource
Shortest Scheduling and Fairness Firefly Algorithm In Cloud
Computing,” Feb. 2023, doi: 10.21203/rs.3.rs-2020473/v1.

[15] H. Zhou, “A Novel Approach to Cloud Resource Management: Hybrid
Machine Learning and Task Scheduling,” Journal of Grid Computing,
vol. 21, no. 4, Nov. 2023, doi: 10.1007/s10723-023-09702-w.

[16] Wiem Matoussi and Tarek Hamrouni, "A new temporal locality-based
workload prediction approach for SaaS services in a cloud
environment", Journal of King Saud University – Computer and
Information Sciences, 2021, doi:10.1016/j.jksuci.2021.04.008.

[17] Vinícius Meyer, Dionatrã F. Kirchoff, Matheus L. Da Silva, Cesar A.F.
De Rose, "ML-driven classification scheme for dynamic interference-
aware resource scheduling in cloud infrastructures", Journal of Systems
Architecture, vol 116, 2021.

[18] Marek Grzegorowski, EftimZdravevski, Andrzej Janusz, Petre Lameski,
Cas Apanowicz, Dominik Slezak, "Cost Optimization for Big Data
Workloads Based on Dynamic Scheduling and Cluster-Size Tuning",
Big Data Research, vol 25, 2021.

[19] Min Cao, Yaoyu Li, Xupeng Wen, Yue Zhao, Jianghan Zhu, "Energy-
aware intelligent scheduling for deadline-constrained workflows in
sustainable cloud computing", Egyptian Informatics Journal, Volume 24,
Issue 2, July 2023.

[20] Jing Bi, Shuang Li, Haitao Yuan, MengChu Zhou, "Integrated deep
learning method for workload and resource prediction in cloud systems",
Neurocomputing, Volume 424, 1 February 2021.

[21] Jitendra Kumar, Ashutosh Kumar Singh, Rajkumar Buyya, "Self-
directed learning based workload forecasting model for cloud resource
management", Information Sciences, vol 543, 2021.

[22] Kaixuan Ji, Fa Zhang, Ce Chi, Penglei Song, Biyu Zhou, Avinab
Marahatta, Zhiyong Liu, "A joint energy efficiency optimization scheme
based on marginal cost and workload prediction in data centers",
Sustainable Computing: Informatics and Systems, vol 32, 2021.

[23] Zheng Xiao, Bangyong Wang, Xing Li, Jiayi Du, "Workload-driven
coordination between virtual machine allocation and task scheduling",
Advances in Parallel and Distributed Computing for Neural Computing,
Neural Computing, and Applications, 2019,
https://doi.org/10.1007/s00521-019-04022-1.

[24] C. Chandrashekar, P. Krishnadoss, V. Kedalu Poornachary, B.
Ananthakrishnan, and K. Rangasamy, “HWACOA Scheduler: Hybrid
Weighted Ant Colony Optimization Algorithm for Task Scheduling in
Cloud Computing,” Applied Sciences, vol. 13, no. 6, p. 3433, Mar.
2023, doi: 10.3390/app13063433.

[25] N. Sharma, S. Beniwal, and P. Garg, “Ant Colony Based Optimization
Model for Qos-Based Task Scheduling in Cloud Computing
Environment,” SSRN Electronic Journal, 2022, doi:
10.2139/ssrn.4237751.

[26] S. Chaudhary, V. K. Sharma, R. N. Thakur, A. Rathi, P. Kumar, and S.
Sharma, “Modified Particle Swarm Optimization Based on Aging
Leaders and Challengers Model for Task Scheduling in Cloud
Computing,” Mathematical Problems in Engineering, vol. 2023, pp. 1–
11, Jun. 2023, doi: 10.1155/2023/3916735.

[27] M. Hosseinzadeh et al., “Improved Butterfly Optimization Algorithm for
Data Placement and Scheduling in Edge Computing Environments,”
Journal of Grid Computing, vol. 19, no. 2, Mar. 2021, doi:
10.1007/s10723-021-09556-0.

[28] S. Mangalampalli et al., “Prioritized Task-Scheduling Algorithm in
Cloud Computing Using Cat Swarm Optimization,” Sensors, vol. 23, no.
13, p. 6155, Jul. 2023, doi: 10.3390/s23136155.

[29] Jyothi Peta and Srinivas Koppu, "An IoT-Based Framework and
Ensemble Optimized Deep Maxout Network Model for Breast Cancer
Classification", Electronics 2022, 11, 4137.
https://doi.org/10.3390/electronics11244137.

[30] MOHAMMAD DEHGHANI, ’T…PÁN HUBALOVSKY, AND
PAVEL TROJOVSKY, "Tasmanian Devil Optimization: A New Bio-
Inspired Optimization Algorithm for Solving Optimization Algorithm",
Digital Object Identifier, VOLUME 10, 2022, doi:
10.1109/ACCESS.2022.3151641.

[31] H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, "Novelmeta-heuristic bald
eagle search optimization algorithm", Artificial Intelligence Review,
https://doi.org/10.1007/s10462-019-09732-5.

[32] Xiaoxu Yang, Jie Liu, Yi Liu, Peng Xu, Ling Yu, Lei Zhu, Huayue
Chen, and Wu Deng, "A Novel Adaptive Sparrow Search Algorithm
Based on Chaotic Mapping and T-Distribution Mutation", Appl. Sci.
2021, 11, 11192. https://doi.org/10.3390/app112311192.

[33] Matthew C. Dickson, Anna S. Bosman, and Katherine M. Malan,
"Hybridised Loss Functions for Improved Neural Network
Generalisation", arXiv:2204.12244v1 [cs.LG] 26 Apr 2022.

[34] Abdelhady Ramadan, Salah Kamel, Mohamed H. Hassan, Tahir
Khurshid, and Claudia Rahmann, "An Improved Bald Eagle Search
Algorithm for Parameter Estimation of Different Photovoltaic Models",
Processes 2021, 9, 1127. https://doi.org/10.3390/pr9071127.

[35] https://research.google/tools/datasets/google-cluster-workload-traces-
2019/.

[36] A. R. A. Rajak, “Emerging Technological Methods for Effective
Farming by Cloud Computing and IoT,” Emerging Science Journal, vol.
6, no. 5, pp. 1017–1031, Aug. 2022, doi: 10.28991/esj-2022-06-05-07.

[37] Supriya Menon, M. & Rajarajeswari, P., “A Novel Approach for Multi
Variant Classification of Medical Data in Short Text “, in Journal of
Scientific and Industrial Research, 2021, Volume 80, 0975-1084, pp.
457 – 462.

[38] M. S. Sayeed, H. Abdulrahim, S. F. Abdul Razak, U. A. Bukar, and S.
Yogarayan, “IoT Raspberry Pi Based Smart Parking System with
Weighted K-Nearest Neighbours Approach,” Civil Engineering Journal,
vol. 9, no. 8, pp. 1991–2011, Aug. 2023, doi: 10.28991/cej-2023-09-08-
012.

[39] S. Gousteris, Y. C. Stamatiou, C. Halkiopoulos, H. Antonopoulou, and
N. Kostopoulos, “Secure Distributed Cloud Storage based on the
Blockchain Technology and Smart Contracts,” Emerging Science
Journal, vol. 7, no. 2, pp. 469–479, Feb. 2023, doi: 10.28991/esj-2023-
07-02-012.

AUTHORS’ PROFILE

Syed Karimunnisa received an M.Tech (CSE) from
JNTUA and currently pursuing a Ph.D. from Koneru
Lakshmaiah Education Foundation, Guntur, Andhra Pradesh.
She has published both international conferences and
Journals. She is a Life Member of ISTE and CSTA. Her
areas of Interest include Cloud C omputing, Artificial

Intelligence, Machine Learning, Deep Learning, Data Mining, and the Internet
of Things.

Pachipala Yellamma is working as an Associate
Professor in the Department of Computer Science and
Engineering, Koneru Lakshmaiah Education Foundation,
Guntur, Andhra Pradesh. Completed her PhD in Data
security in cloud computing. Her research interests include
cloud computing, the Internet of Things, Network security,
Data compression, Cryptography, and Data security. She is a

Life Member in ISTE and IEEE and has some free memberships. She has
published several national and international articles in Scopus, web of
Science, and SCI. She has three patent publications.

https://doi.org/10.1007/s00521-019-04022-1
https://doi.org/10.3390/electronics11244137
https://doi.org/10.1007/s10462-019-09732-5
https://doi.org/10.3390/app112311192
https://doi.org/10.3390/pr9071127

