
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

722 | P a g e

www.ijacsa.thesai.org

A Smart AI Framework for Backlog Refinement and

UML Diagram Generation

Samia NASIRI*, Mohammed LAHMER

Moulay Ismail University, Faculty of Science, Meknes, Morocco

Abstract—In Agile development, it is crucial to refine the

backlog to prioritize tasks, resolve problems quickly, and align

development efforts with project goals. Automated tools can help

in this process by generating Unified Modeling Language (UML)

diagrams, allowing teams to work more efficiently with a clear

understanding and communicate product requirements. This

paper presents an automated approach to Agile methodology

which refines backlogs by detecting duplicate user stories and

clustering them. Following the refinement process, our approach

generates UML diagrams automatically for each cluster,

including both class and use case diagrams. Our method is based

on machine learning and natural language processing techniques.

To implement our approach, we developed a tool that selects the

user stories file, groups them by actor, and employs the

unsupervised k-means algorithm to form clusters. After that, we

used Sentence Bidirectional Encoder Representations from

Transformers (SBERT) to measure the similarity between user

stories in a cluster. The tool highlights the most similar user

stories and facilitates the decision to delete or keep them.

Additionally, our approach detects similar or duplicate use cases

in the UML use case diagram, making it more convenient for

computer system designers. We evaluated our approach on a set

of case studies using different performance measures. The results

demonstrated its effectiveness in detecting duplicate user stories

in the backlog and duplicate use cases. Our automated approach

not only saves time and reduces errors, but it also improves

collaboration between team members. With an automatic

generation of UML diagrams from user stories, all team

members can understand product requirements clearly and

consistently, regardless of their technical expertise.

Keywords—Artificial intelligence; NLP; Agile methodology;

UML

I. INTRODUCTION

In the System Development Life Cycle, it is essential to
undergo a requirement analysis stage to ensure the success of
the process [1]. This occurs because developers must
understand the requirements before proceeding to the
implementation stage. In this context, user stories are
increasingly used to communicate requirements in Scrum.
They are semi-structured natural language expressions of
requirements at a high level. The textual template for user
stories has been proposed in many forms by practitioners. In
practice, they tend to use the form of: “As a…, I want to…, so
that…” The growing number of stakeholders involved in the
development process increases the size of the systems
developed, leading to a larger number of user stories. This size
growth makes it mandatory to decompose the system into
subsystems covering different sets of semantically similar user
stories.

As part of requirements engineering tasks, stakeholders
need to be kept involved in the process by expressing each sub-
system semi-formally, such as using visual models. As a visual
language supporting requirements engineering, we used the
Unified Modeling Language (UML) in this context. A model-
based approach is often used to specify software system
features and to reduce ambiguity between requirement
specification and design. However, deriving UML models
manually from similar user stories can be time-consuming and
tedious, especially for large systems. Additionally, model-
based approaches have been difficult to integrate in Scrum
processes. This is basically due to the lack of powerful
automation tools [2], [3], as well as focusing on
implementation rather than analysis and documentation of
teams.

Several studies were conducted to automate the generation
of models from natural language software requirements [4]-
[12]. In addition, some authors studied natural language
requirements clustering to decompose the target system at an
initial level [13], [14]. The current requirements clustering
approach lacks precision and does not achieve a high level of
automation. In contrast, we propose a machine learning-based
approach that addresses these challenges. However, the
requirement clustering has rarely been considered as a primer
for automatically deriving models.

In this paper, we propose a machine learning-based
approach for automatically dividing a system into subsystems
and generating UML diagrams based on natural language user
stories in Scrum.

To group the user stories by actor, we applied a set of
natural language processing heuristics to extract the actor name
from each user story. Once the system was initially
decomposed by the actor, we performed a second
decomposition for each resulting cluster. The second clustering
of the system was based on the k-means algorithm, which
groups semantically similar requirements. To identify possible
redundancies between user stories located in each cluster, we
used the BERT model. This process allows Product Owners
and Scrum Masters to be more informed about their decisions
regarding the elimination of redundant user stories from the
Product Backlog. In the final step, we generated use case and
class UML diagrams from the identified clusters.

This paper is organized as follows. The Section II reviews
related work, while the Section III presents the background of
the proposed approach. Section IV is devoted to a detailed
description of the proposed approach. In Section V, we
describe and analyze the similarity detection between user

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

723 | P a g e

www.ijacsa.thesai.org

stories and generated UML diagrams; it also evaluates and
discusses the performance of the approach. Finally, Section VI
concludes the paper.

II. RELATED WORK

In this section, we provide a literature review related to our
approach. For instance, in study [15], the authors have
reviewed word embeddings and implemented a convolutional
neural network trained on pre-trained word vectors. They have
also illustrated the performance of pre-trained word
integrations vs. random embeddings. However, in study [16],
the authors have presented an approach that uses semantic
similarity measures to suggest possible cases of duplication
between user stories. To explain, the approach selected the
most appropriate measure to determine the level of similarity
between user stories. Their research analyzed semantic
similarity measures based on the WordNet lexical database
WuP, a similarity measure based on VSM Lin [17], and a
measure based on the frequency of common terms Lesk-A
[18]. The authors of study [19] analyzed user stories to identify
potential information gaps and prevent ambiguities, using
comparisons with previous user stories to detect missing
queries. They have provided suggestions to users to get a better
description. For natural language processing (NLP), an NLP
tool called LingPipe Toolkit is used. Semantic role labeling
was carried out to attribute roles and actions. In study [20], the
authors' method established the user stories meta-model by
determining the unified descriptive model of the user stories
which are: the role, the task, the capability, the soft goal, and
the hard goal. In study [21], the approach allowed the
extraction of relevant information for user stories from
recorded conversations between customers and developers. In
study [13], the authors' work consisted of clustering the
specification requirements by first using the Vector Space
Model (VSM) to compute the similarity of functional
requirements and then the Agglomerative Hierarchical
Clustering (AHC) algorithm to construct clusters. In study
[22], the authors have proposed a tool-assisted approach to
identify terminological ambiguities between viewpoints as well
as missing requirements. For this purpose, they combined
natural language processing with information visualization
techniques that help in defect-type interpretation. Their
approach consisted of identifying ambiguity and
incompleteness in a set of requirements. The authors used
word2vec to detect similarities between terms in requirements.
The visualization showed the requirements graphically by
marking the terms used and arranging them in a 2D space
according to the viewpoint to which the terms belong. They
used Cortical.io's algorithm which relies on semantic folding
and fingerprinting. Then, the algorithm built the context of
each pair of terms that appeared in the same user stories. In
study [23], the authors provided Sentence-BERT (SBERT).
This pre-trained BERT network modification takes advantage
of Siamese and triplet network structures by deriving
semantically meaningful sentence embeddings that can be
benchmarked using cosine similarity. In study [24], the authors
used Word2vec to compute the similarity at the word level,
then they grouped the requirements into clusters using the
Agglomerative Hierarchical Clustering (AHC) algorithm.
Word2vec for each word after tokenization at remove stop

words, and stem. They used Gensim API for keyword
extraction of each cluster. This summarizer is based on the
ranks of text sentences using a variation of the TextRank
algorithm. After that, they defined simple NLP rules for
component extraction to generate a use case diagram. In [14]
authors used a K-means clustering algorithm applied to user
stories. The authors in study [25] have provided a tool to
extract the time spent in historical and similar user stories. This
extracted time helps developers estimate the time that similar
user stories will spend on new projects. To do this, the authors
used the NLP algorithm and a pre-trained model developed by
Google called USE. The model did not distinguish between the
opposite operations “add and remove”. In research [26], the
method began by extracting iStar nodes from semi-structured
user stories. Next, the nodes were merged based on their
similarity. Finally, edges between nodes were identified using
defined rules. The authors' approach was based on the
refinement relationship between iStar nodes. The authors
applied a BERT (Bidirectional Encoder Representations from
Transformers) model for similarity measurement. In study [27],
the approach helped in detecting defects in user stories by
using 11 quality criteria. It was based on two main
components: firstly, quality analysis was based on NLP. This
method uses four fundamental functions of natural language
processing: sentence segmentation, tokenization, POS labeling,
and syntactic analysis. It examined the completeness of
components and the testability of stories by checking several
quality criteria, such as the correct form of components and the
consistency of keywords used in stories. Secondly, the method
was based on the analysis of iStar models. It started by
generating iStar models from user stories, identifying nodes
(role, goal/task), and detecting relationships between these
nodes. It then checked several quality criteria, including
uniqueness, absence of conflicts, verifiability, independence,
and conceptual consistency.

Many approaches for requirements gathering and analysis
have been developed so far, falling into two main categories:
(1) approaches based on gathering, and (2) approaches focused
on identifying duplicates or ambiguities in user stories. Our
approach combines these two methods while refining the user
stories to eliminate duplicates. In addition, the proposed
approach aims at automatically generating UML diagrams
from a given set of refined user stories.

III. BACKGROUND

In this section, we outline the key concepts underlying this
work.

A. Text to Semantic Vectors Transformation in NLP

It is important to transform text into semantic vectors in
many automatic NLP tasks. This enables algorithms to process
language more effectively by representing the meaning of
words and sentences. There are several approaches for
converting text into semantic vectors, and each one of them has
its strengths and limitations. Hence, in this section, we will
discuss the most common approaches, including One Hot
Encoding, TF-IDF, Word2Vec, ELMo, InferSent, and
Sentence Transformers [28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

724 | P a g e

www.ijacsa.thesai.org

 One Hot Encoding is a straightforward method that
transforms text into binary vectors by assigning a
unique dimension to each word in the corpus. In this
method, the dimension corresponding to each word is
marked as 1 for each document, while all other
dimensions are marked as 0. The resulting vectors are
binary vectors of a size equal to the total number of
words in the corpus. Although this method is simple to
implement, it disregards semantic relationships between
words and can result in large and sparse vectors.

 TF-IDF is a technique that represents documents as
vectors using term frequency and inverse document
frequency. The weight of a word in a document is
computed by multiplying its frequency in the document
(TF) by the inverse of its frequency in the entire corpus
(IDF). This approach generates weighted vectors that
consider the relative importance of words in documents.
Even if it is more expressive than One Hot Encoding,
TF-IDF still does not capture semantic relationships
between words [29].

 Word2Vec is a neural network-based method that learns
dense vector representations of words in a vector space.
It includes two main variants: Skip-Gram and
Continuous Bag of Words (CBOW). Skip-Gram
predicts neighboring words given a target word while
CBOW predicts the target word using its neighboring
words. The resulting vectors capture semantic and
syntactic relationships between words. However,
Word2Vec does not consider the syntactic structure of
sentences [30] [31].

 ELMo, or Embeddings from Language Models is a
model that represents words and phrases in automatic
natural language processing. It creates contextual
embeddings using bidirectional recurrent neural
networks (Bi-LSTMs), capturing the meaning of words
in context. Pre-trained on unannotated texts, ELMo
generates rich, contextual embeddings. These
representations enhance text classification, information
retrieval, and other NLP tasks by capturing the semantic
and syntactic nuances of words in various contexts.

 InferSent, developed by Facebook AI Research (FAIR),
is a sentence representation model that generates
contextual semantic embeddings using deep neural
networks. Based on a semi-supervised supervision
approach, InferSent aims to capture the semantic
meaning of sentences. Pre-trained on a large corpus of
data, this model produces informative sentence
embeddings, beneficial for tasks such as text
classification and semantic similarity assessment
between sentences.

 The Universal Sentence Encoder (USE) is a widely
adopted natural language processing model that has
been extensively used in various research domains.
Developed by Google, USE employs a deep neural
network to encode text into fixed-dimensional vectors,
capturing semantic information and contextual meaning
[32]. It has proven to be effective in tasks such as

sentence similarity, document classification, and
semantic search. With its ability to understand and
represent the meaning of sentences, USE has become a
valuable asset in numerous applications. Its success lies
in its capability to capture intricate semantic
relationships. This makes it a reliable tool for tasks
involving text comprehension and similarity analysis.

 Sentence Transformers: The advancement of deep
learning has resulted in a significant improvement in the
performance of neural network architectures like
recurrent neural networks (RNN and LSTM) and
convolutional neural networks (CNN) in the areas of
Natural Language Processing (NLP), such as text
classification, language modeling, and machine
translation.

Bidirectional Encoder Representations from Transformers
is a Transformer-based machine learning technique for natural
language processing: pre-training developed by Google. The
Sentence BERT (SBERT) network uses siamese and triplet
networks to obtain semantically meaningful sentence
embeddings derived from BERT [23]. SBERT can be
employed as both a semantic similarity search and as a
clustering algorithm. Similarity measures like cosine similarity
or Manhattan/Euclidean distance can be used to determine
semantic similarity.

 Several SBERT pre-trained models encode sentences and
calculate the distance between them to conduct semantic
searches. Each model has its own task such as question
answering, translation, sentence similarity, and others. These
models are tuned for many use cases and trained on a huge and
varied dataset consisting of over a billion training pairs. They
are called “sentence transformers” and represent a modern
approach to transforming text into dense semantic vectors
using pre-trained neural network models. One of the main
advantages of sentence transformers lies in their ability to
capture the full semantic meaning of entire sentences, beyond
representations of individual words. Notably, these models are
often trained for natural language understanding tasks, such as
next-sentence prediction or text classification, to further
enhance their performance and accuracy. On the one hand,
these models consider the contextual relationships between
words in a sentence and generate representations that capture
the meaning of the sentence as a whole. On the other hand,
word-based models only consider the individual words and
their relationships to other words in the corpus. This allows
sentence transformers to more effectively capture the meaning
and semantic nuances of a sentence, which is particularly
beneficial for tasks involving the evaluation of similarity
between user stories.

B. Grouping of user Stories by Actor

Grouping textual requirements based on their semantic
similarity provides valuable information on the structure and
behavior of the target system. To explain, it simplifies
interpretation and identifies redundancies and inconsistencies
which improves system quality. In addition, it enables efficient
requirements management, traceability, and impact analysis,
improving the overall system design and development process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

725 | P a g e

www.ijacsa.thesai.org

In this context, we aim to group user stories according to their
semantic similarity.

Unsupervised learning is a machine learning technique that
works on unlabeled data. In this technique, the machine is not
given predefined labels to use for learning, but autonomously
identifies patterns in the data to solve the business problem.

In clustering, unlabeled data is assembled into groups by
using an algorithm based on unsupervised learning. In each
cleaned dataset, with the help of the algorithm, the data points
can be organized into groups by using the clustering algorithm.
As a result of the clustering algorithm, it is presumed that the
data points that belong to the same group, will have similar
properties whereas the data points, that belong to different
groups, will have quite different properties. Machine learning
algorithms include a wide variety of clustering algorithms.
Among the various clustering algorithms used in machine
learning, K-Means is the most commonly used. According to
[33], the use of K-means offers significant advantages for
clustering textual requirements. This algorithm is appreciated
for its speed, simplicity, and interpretability.

In addition, it offers flexibility by allowing the desired
number of clusters to be specified. This study confirmed the
benefits of K-means in the efficient clustering of requirements.

 The process of the K-Means algorithm is outlined in the
steps below:

 Step 1: We first select a random number of K to use and
randomly initialize their respective center points.

 Step 2: We then classify each data point by calculating
the distance (Euclidean or Manhattan) between that
point and the center of each cluster, and then regrouping
the data point so that it is in the cluster whose center is
closest to it.

 Step 3: We recalculate the cluster center by averaging
all vectors in the cluster.

 Step 4: We repeat all these steps for n number of
iterations or until we find that the cluster centers do not
change much.

IV. APPROACH

This section presents our proposed approach to backlog
refinement and UML diagram generation. This approach both
identifies similar user stories and generates the corresponding
UML diagrams for each group spotted. First, we give an
overview of our proposal. Then, we provide a detailed
explanation of each step.

Our method started by grouping user stories by actor, and
then we opted for an unsupervised clustering approach to be
applied in each group. Thus, we used the k-means algorithm to
generate clusters.

In the next step, we applied the BERT transformers
algorithm for each cluster to compute similarity measures
between user stories.

We developed a web-based tool for visualizing clustering,
similarity features, and UML diagrams. We used Python and
the Flask framework to implement the tool. Fig. 1 shows the
steps of our proposed method.

A. Grouping of user Stories by Actor

A user story is a very high-level definition of a
requirement, containing just enough information; it is the most
effective way to describe a requirement [34]. Agile project
teams use one of these methods: Scrum, XP, Kanban, etc.

A user story often uses the following type of format:

As [actor], I want/I am able/I can [some objective], so that
[some reason] [34].

Before grouping the user stories, it is crucial to group the
requirements by an actor. To achieve this goal, we extracted
the actors using heuristic rules. The defined rules are based on
tokenization and POS. We used the Python language and
Spacy as NLP tool.

Since the extraction of a composite role composed of three
words was not possible with the typed dependency in our
previous work [10] [36], we switched to another method which
consists of extracting the words following “As a/an”: The role
indicator is either an adjective or a noun, except pronouns. This
solution allowed us to extract actor names independently of
their name type. Our tool then used our defined rules to extract
actors from user stories, which were stored in a text file. After
that, it grouped the requirements by actor and saved each group
separately. Fig. 2 shows examples of user stories.

Given these user stories:

 As an administrator, I want to search for a specific
student, so that I can find the student records.

 As a student, I want to look up my student records, so
that I can get a look at the details.

The two user stories are similar in the sense that they both
aim to provide access to student records. They differ mainly in
the actor involved: the administrator in the first case and the
student in the second.

Fig. 1. Steps of our proposed approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

726 | P a g e

www.ijacsa.thesai.org

Fig. 2. Examples of user stories.

Unlike the methodology described in study [25], which
focused on the identification of similarities between user
stories without taking into account the “action executor” - i.e.,
the actor involved in the process - our approach took into
account the specific roles or actors associated with the actions
described in the stories.

Our method consisted of classifying user stories according
to the actors involved, which makes it easier to keep similar
stories describing identical actions carried out by different
roles. These role-oriented requirements are the basis of the
generated UML diagrams. For example, in a UML use case
diagram, the two user stories could be represented as two
separate but related use cases because they have similar
functionalities (search and access to student records). They
could be represented with different actors (the administrator
and the student) but linked to a common use case, such as
“View student records”. This would show the relationship
between the two actions despite the differences between the
actors.

B. Clustering

To implement our method, we used Sentence Transformers
to embed sentences. Then, we employed the K-means
algorithm to cluster the user stories based on their significance.
We labeled the generated clusters using the Gensim library,
which also provided us with keywords that describe the domain
knowledge embedded in each cluster.

The Gensim library has an implementation of TF-IDF as
part of its models, specifically the TF-IDF model module. This
module converts documents into a matrix of token counts and
calculates TF-IDF weights for each word.

These weights can then be used as features for tasks such as
text classification, clustering, or similarity calculation.

To refine the backlog, we needed to eliminate duplicate
user stories and display only relevant stories with their level of
similarity. K-means clustering was used to achieve this by
initially setting the value of k and examining the graph to
identify the cut-off point where the slope changes. However,
we opted for the silhouette calculation method to automate the
k-value calculation at the outset. This approach enabled us to
find the optimal k-value right from the start, making it easier to

group user stories more efficiently. Then, we created a Python
code to accomplish this task.

C. User story Similarities and Opposite Meanings Detection

1) Identification of similar user story pairs: To refine the

backlog and detect duplicate user stories, we categorized the

user stories by actor and then measured the similarity rate

between each pair of user stories within each cluster. To

achieve this goal, we used a sentence transformer (SBERT) to

measure semantic similarity between the pairs of user stories.

Below are the steps conducted for each cluster:

 Convert a sentence into a vector using sentence
transformers.

 Convert several other sentences to vectors.

 Identify sentences with the smallest distance
(Euclidean) or angle (cosine similarity) between them.

 Highlight the most similar user stories with rates above
75%.

We used SBERT to transform sentences into vectors,
embedding them in a high-dimensional semantic space. Cosine
similarity is then used to measure the degree of similarity
between these vectors. More precisely, it assesses the
comparability of documents regardless of their size by
calculating the dot product of the vectors divided by the
product of their Euclidean norms, as illustrated in Eq. (1).

Similarity = cos(𝜃) =
𝐴.𝐵

||𝐴||||𝐵||
=

∑ A𝑖B𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 (1)

Here, A and B are two vectors. A.B is the dot product of
those two vectors.

We aimed to select the most efficient sentence transformer
that provides a higher percentage of similarity among pairs of
sentences exhibiting similarities. We focused on comparing
user stories that are similar but differ in their operations,
ensuring that any dissimilarities were captured.

We adopted a structured two-phase approach to choose the
most suitable model for measuring the similarity between pairs
of user stories. First, we carried out a comparative analysis of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

727 | P a g e

www.ijacsa.thesai.org

SBERT models to identify the most efficient model. Then, we
extended our evaluation by comparing the SBERT model with
other models available in the field.

On the one hand, Table I highlights the application of
various SBERT models to detect similarities among pairs of
user stories. This table presents the respective similarity rates
achieved by applying different SBERT models to some pairs of
user stories. On the other hand, Table III illustrates the
comparison of the similarity rates obtained from different
models, such as Elmo, Word2Vec, and a SBERT model,
among others. Furthermore, Table II highlights the application
of various SBERT models to detect similarities among pairs of
user stories. This table presents the respective similarity rates
achieved by applying different SBERT models to some pairs of
user stories. Table I and Table II illustrate the two-level
processes that form an integral part of our analysis approach.

Consider these user stories:

 US1: As a buyer, I am able to remove a product from
the list.

 US2: As a buyer, I can drop a product from the list.

 US3: As a buyer, I can edit a product in the list.

Table II shows the similarity score of previous user stories
by applying the sentence Transformers.

Based on the hierarchical structure of WordNet, Wup
similarity evaluates the similarity between words according to
their position in the lexical tree. Wup similarity does not take
into account the contextual meaning of the words being
compared unlike BERT, ELMO, and InferSent which integrate
context to evaluate similarity. This lack of contextual
consideration can limit Wup similarity's ability to capture
semantic nuances in a variety of contexts.

TABLE I. SIMILARITY SCORES OF USER STORIES US1, US2, AND US3

USING SENTENCE TRANSFORMERS

Sentence Transformers
Similarity score

US1-US2

Similarity score

US1-US3

all-MiniLM-L6-v2 0.8180 0.6819656

all-MiniLM-L12-v2 0.8838 0.7911284

all-mpnet-base-v2 0.9025 0.8001925

all-distilroberta-v1 0.9006 0.7651011

paraphrase-mpnet-base-v2 0.9046 0.69480187

TABLE II. SIMILARITY SCORES OF USER STORIES US1, US2, AND US3

USING SIMILARITY MODELS

Models and similarity

measures

Similarity score

US1-US2

Similarity score

US1-US3

USE 0.83511186 0.7759

SBERT(paraphrase-mpnet-
base-v2)

0.9046 0.69480187

WORD2VEC 0.84041464 0.7834515

InferSent 0.9690 0.9582

ELMO 0.9342766 0.8595803

Wup similarity 0.66107734 0.3823969

Both Tables I and II illustrate that the sentence transformer
“paraphrase-mpnet-base-v2” exhibits a considerable degree of
similarity. We observe operations of US1 and US3, which
involve different actions such as “remove” and “edit”.
Therefore, the model chosen to evaluate similarity must be able
to discern sentences with closely related but divergent
meanings. This discernment is essential to avoid any negative
impact on our analytical processes and backlog refinement.

To ensure that we had selected the appropriate Sentence
Transformer model for our approach, we carried out an
evaluation by testing several models on two distinct datasets.
This evaluation aimed at determining the performance and
effectiveness of each model in capturing the semantic meaning
of user stories and generating high-quality sentence
embeddings. To measure the performance of the models, we
used evaluation metrics such as cosine similarity, accuracy,
and F1-score. Through this evaluation process, we identified
the model that consistently demonstrated superior performance
and provided the most meaningful sentence embeddings.

We will provide further details of the evaluation in the next
section.

2) Identification of the user story pairs with opposite

meanings: When the similarity threshold is increased, the

number of similar user story pairs decreases. To identify

similar user stories, a minimum similarity rate of 75% is

required while a much higher threshold with similarity rates

exceeding 90% is necessary to detect duplicate user stories. In

the first range, similar user stories were sometimes found

where one story was included in another, providing additional

information to the third part of the story. This was mainly due

to the poor quality of the user stories. It is only by improving

the quality of these stories that the occurrence of such

similarities can be reduced.

However, in the second range, although we detected
duplicate user stories, they sometimes had opposite meanings
that were not captured by sentence similarity models.

Given these user stories:

 US4: As a buyer, I can add a product to the list.

 US5: As a buyer, I can not add a product to list.

 US6: As a user, I want backend changes for managing
enum lists.

 US7: As a user, I want frontend changes for managing
enum lists.

Table III displays the similarity scores of user stories with
opposite meanings, which are US4 with US5, and US6 and
US7.

In studying the ability of the SBERT model to detect pairs
of opposing user stories, it was noted that when two user
stories were presenting the same operation, with the same
action verb in the format "As [actor], I want [action_verb]" and
preceded by a negation "not", the model was able to identify
their opposition. However, if they are not having the same
operation, the SBERT model does not detect the dissimilarity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

728 | P a g e

www.ijacsa.thesai.org

Another case demonstrating opposite meanings is illustrated in
the cases described in Table IV. Using sentence transformers,
we observed a similarity score of 0.97 between user stories
US6 and US7, highlighting substantial similarity despite
contrasts in their content. To address this limitation, we
developed specific rules. We used Typed dependencies
provided by an NLP tool and the Wordnet API to search for
synonyms of operations and checked for the presence of
negation. Where negation was not explicitly expressed, we
opted to detect antonyms for operations which improved the
accuracy of detecting pairs of opposing user stories.

TABLE III. SIMILARITY SCORES OF USER STORIES WITH OPPOSITE

MEANINGS

Models and similarity

measures

Similarity score

US4-US5

Similarity score

US6-US7

USE 0.8806 0.9573

SBERT 0.42601973 0.9724

WORD2VEC 0.9803098 0.94255805

InferSent 0.9965 0.9912

ELMO 0.95751846 0.9578713

Wup similarity 0.6326058 0.6258217

As shown in Table III, we found a similarity of 0.97
between user stories US6 and US7 when using sentence
transformers, suggesting high similarity within their
differences. The WordNet approach was able to detect
opposing meanings in some pairs of user stories. However, this
method showed limited effectiveness for some examined pairs.
The rules, we have developed, combine the use of the Wordnet
API with typed dependency analysis to identify cases where
user stories are initially identified as duplicates, having
opposite meanings. These rules cover four different structures
of user stories listed in Table IV.

The defined rules are based on the Stanford CoreNLP
dependencies, such as neg, dobj, nmod, and advcl. This method
includes the steps described in the proposed algorithm as
follows.

Algorithm: Rules for negation extraction

1. Procedure(story1,story2):

2. Extract_part2(story1,story2)

3. Syn=Extract_synonyms(story1.verb1)

4. if [verb2 in Syn and check_negation(story1,story2)]

5. or are_antonyms(verb1, verb2) then

6. if dobj(verb1,obj1) = dobj(verb2,obj2)

7. or nmod(obj1,modifier)= nmod(obj2,modifier) then

8. return “negation found”

9. if story1.Action_advcl=story2.Action_advcl then

10. return “negation found”

The algorithm described above is designed to detect
negation in a pair of user stories. It worked by first extracting
the second part of the user stories that presented the action.
Then, it searched for synonyms of the first story's verb (verb1)
and checked whether the second story's verb (verb2) is a
synonym of the first story's verb (lines 1-3). In line 4, the
check_negation(story1, story2) function was implemented by
recognizing the negation indicator. In line 5, the algorithm
examined whether the verb in story 1 is either a synonym
preceded by a negation indicator or a direct antonym of the
verb in story 2. If these conditions, along with the direct object
or nominal modifier (nmod) had matched between the objects
(lines 6-8), the algorithm returns “negation found”. Line 9
checked whether the action in the “advcl” dependency is the
same in both stories. If this condition, and the previous
conditions, are met, the algorithm obtains the result “negation
found”. This condition is specific to Structure 4.

D. Similarity Detection in use Case Diagram

We used the Sentence Transformer technique to identify
similarities between use cases in use case diagrams. Our
approach involved concatenating the actor name and use cases,
and then checking for similarities with a similarity score of
over 90%, which was further improved by applying Wordnet
for lemma synset interactions. This approach helped us extract
similar use cases and user stories, which was very useful in
creating refined models with minimal redundancy and
inconsistency.

TABLE IV. STRUCTURES OF USER STORIES

Structures User stories Description Example

Structure 1
As an actor, I want/I am able/I can verb

dobj

An actor or role executes an action, which is

described by a verb and involves a direct
object.

As a customer, I want to view my order history

so that I can track my purchases.

Structure 2
As an actor, I want/I am able/I can verb

dobj preposition nmod

This structure includes additional detail about

the direct object by adding a noun modifier.

As an administrator, I want to delete inactive user

accounts more than 6 months old so that the
database remains optimized.

Structure 3
As an actor, I want/I am able/I can …
preposition1 nmod1… preposition2…

nmod2

This structure adds a second nominal modifier

to further clarify the objective of the user story.

As a manager, I want to include videos in courses

for students.

Structure 4
As an actor, I want/I am able/I can verb1

dobj1… preposition1 nmod

preposition2 advcl… verb2 dobj2…

It involves an initial action with a direct object,
followed by a preposition and a modifier,

leading to a second action with its direct object

As a manager, I want to generate reports of sales

data by preserving product prices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

729 | P a g e

www.ijacsa.thesai.org

E. UML Diagrams Generation

After dividing the system into requirements by actors, we
automated the process of generating UML models (class
diagrams and use case diagrams) from the resulting clusters.
To achieve this, we used various types of dependency present
in NLP to implement specific NLP rules in the Prolog language
to extract the elements making up the diagrams. Our first step
involved generating the class diagram, followed by the use
case diagram. Based on our previous work [11], we have
developed Prolog rules to identify classes and associations.
Facts were provided by an NLP tool that supplies nouns, verbs,
and typed dependencies. The process of extracting class
attributes followed the methodology described in study [10].
Hence, this method refined classes into attributes and
converted certain associations into operations on classes.
Prolog rules are presented as follows: Association(X, Y, Z); X
is the name of the association, and Y and Z are the classes in
the class diagram.

Extracting classes and associations is useful in generating
use cases while association types, such as composition, helps
determine the relationship between the use cases.

Given the importance of the terms used to represent the
elements of the diagrams, refining the diagrams is essential as
well. After the generation of UML diagrams, the next critical
phase involved their refinement, which had been facilitated by
the development of an ontology to store word equivalents [11].

F. Web-Based Framework

We developed a web-based tool that allows users to display
similar user stories and their similarity percentages in selected
clusters. Based on this percentage, users can decide whether to
delete similar stories or to keep them. On the homepage, users
can select a file containing user stories and click on a button to
group them by actor. The file is automatically split into
multiple ones, and users can then choose an actor from a drop-
down list. Clustering by meaning is then performed, and the
similarity rate is displayed. The results are presented in a table
format, showing the similarity between each pair of user
stories. We set the maximum similarity threshold at 75%. Once
users have refined their backlog, they can generate UML class
and use case diagrams to further improve the system design
and development process.

V. RESULTS AND DISCUSSION

This section presents the case studies and performance to
evaluate the methodology of our approach for clustering,
detecting more similar user stories, and generating a UML
diagram for each cluster.

A. Evaluation

In this section, we present the evaluation of our approach.
We firstly compare evaluating the “Paraphrase-mpnet-base-v2”
model and the “all-MiniLM-L6-v2” model, which both belong
to the SBERT models. We then compare our approach with
other similarity detection models such as the Universal
Sentence Encoder (USE), ELMO, and Word2vec. These
models were evaluated for their performance in detecting
similarities and distinguishing nuances in user stories.

Therefore, we evaluated the UML class and use case diagrams
that have been generated.

1) User stories clustering: In our study, we acknowledge

the absence of a baseline or established benchmarks in the

literature that specifically address the clustering of user stories

using the k-means algorithm based on the “paraphrase-mpnet-

base-v2” model.

It was therefore difficult to make a direct comparison with
existing results or measurements. Although the lack of
references limited our ability to quantitatively assess the
performance of our approach, we solved this problem by
carrying out a qualitative evaluation of the content of the
groupings. To validate the effectiveness of the clusters in
capturing similarities and relationships between user stories, a
thoughtful manual evaluation was carried out. The latter was
conducted by a team of experts who examined the logical
consistency and relevance of the clusters. The findings of this
evaluation validated the cluster quality and their ability to
accurately represent the underlying patterns in the user stories.

2) Sentence transformer and word embedding models for

similarity detection: The SBERT “Paraphrase-mpnet-base-v2”

sentence transformer model was selected to measure

similarities between user stories. This choice was based on its

enhanced robustness in capturing the deep semantics of

sentences, thus offering high-quality representations. We

chose this model thanks to its ability to handle sentences with

similar but different meanings, a crucial feature for in-depth

analysis of user stories.

Course management and Archivespace, which are two
distinct datasets, were used to evaluate Sentence transformer
models. The first dataset, retrieved from the website Mountain
Goat Software, consists of 102 user stories. The second dataset,
from Archivespace, included 160 user stories. We collected
these user stories as a part of the ArchiveSpace software
development project.

We carried out evaluations to compare and assess the
performance of the “all-MiniLM-L6-v2” and “Paraphrase-
mpnet-base-v2” sentence transformer models, as well as the
USE, ELMO, and Word2vec models, using several pairs of
user stories. Table V presents the performance scores for the
Archivespace dataset, including those of the sentence
transformer and word embedding models.

Fig. 3 illustrates the similarity ranges between pairs of user
stories by using Paraphrase-mpnet-base-v2, All-MiniLM-L6-
v2, USE, Word2vec, and ELMO.

TABLE V. THE PERFORMANCE SCORES OF SIMILARITIES BETWEEN USER

STORIES USING SENTENCE TRANSFORMERS AND WORD EMBEDDING MODELS

Sentence

transformer Model
Score<0.5

0.5<

score<0.7

0.7< score<

0.9

Score>

0.9

All-MiniLM-L6-v2 4076 426 53 5

Paraphrase-mpnet-

base-v2
2820 1635 100 5

USE 4139 388 31 2

Word2vec 4 1067 3462 27

ELMO 0 285 4234 41

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

730 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 3. Comparison of paraphrase-mpnet-base-v2 and All-MiniLM-L6-v2 (a),

and comparison of SBERT (Paraphrase-mpnet-base-v2), USE, Word2vec,

ELMO (b) in different ranges.

While evaluating the Sentence Transformers models, we
found significant differences between the two datasets. The
“Paraphrase-mpnet-base-v2” and "All-MiniLM-L6-v2" models
were initially tested for interval similarities greater than 0.9,
and we discovered that these intervals gave almost identical
results. However, when similarities were between 0.7 and 0.9,
the evaluation of user story pairs presented challenges in
determining whether they were similar or duplicates. In some
cases, user stories appeared to be similar but turned out to be
opposite or dissimilar. The results indicated that both models
exhibited similar levels of similarity for most pairs of user
stories. However, when considering slightly similar user
stories, “Paraphrase-mpnet-base-v2” showed a distinguishing
characteristic compared to the other model. It demonstrated a
better ability to capture nuanced similarities and subtle
differences between such user stories.

To compare the sentence transformer models with the use
of USE, Word2vec, and ELMO, we conducted a second
evaluation. The results revealed that USE detected lower
similarity values than those detected by the sentence
transformer models, even when the similarity interval was
greater than 0.9. Furthermore, for pairs of user stories that

should have a similarity rate below 0.8, USE often detected
values above 0.8, particularly for user stories that appeared to
be opposite or less similar. This divergence can be explained
by saying that although user stories are similar in their action,
differences in their description prevent them from being
considered duplicated. Furthermore, the Sentence Transformers
models, in particular the “paraphrase-mpnet-base-v2” model,
showed better performance for the datasets used in this study.
USE, while performing less well than SBERT, is still more
reliable than Word2Vec and ELMO in assessing the similarity
between these stories.

Further analysis revealed that Word2Vec, a widely used
sentence embedding model, had limitations in detecting
dissimilarity between user stories. Word2Vec may face
challenges when distinguishing between user stories that are
textually similar but involve different operations.

For example, it may struggle to discern the nuances
between sentences such as “Users can add items to their
shopping cart” and “Users can remove products from their
shopping cart”, which is crucial in the context of software
development.

In contrast, models such as Sentence Transformers are
specifically designed to capture these contextual and
operational nuances. They are highly accurate in measuring
similarity while being more sensitive to subtle differences
between similar user stories. In areas such as software
engineering, where a precise understanding of requirements is
essential, Sentence Transformers prove to be more effective for
analyzing and planning software development.

After observing the similarity scores of different models in
distinct ranges, notably between 0.5 and 0.7, as well as those
above 0.7, we found that the SBERT model, in particular the
"paraphrase-mpnet-base-v2" model, presented more consistent
scores when compared to a manual approach. However, to
better assess model choice, we used various metrics, including
precision, recall, and F1 score [35]. Similarity identification
was measured by accuracy, while coverage was measured by
recall. We calculated precision, recall, and F1 score based on
true positives, false positives, and false negatives. True
positives (TP) corresponded to similarities correctly identified
by our automated approach, while false positives (FP) referred
to similarities incorrectly identified. A false negative (FN) was
a labeled similarity not identified by an automated approach.

The evaluation metrics are measured as follows, as
illustrated in Eq. (2), Eq. (3), and Eq. (4):

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F1 Score =
2∗Precision∗Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Table VI shows the precision, recall, and F1 scores for each
user story dataset for similarity pairs obtained using SBERT.

Table VII displays the similarity detection metric related to
USE, Word2vec, and SBERT Models for User Story Pairs of
the Archivespace dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

731 | P a g e

www.ijacsa.thesai.org

TABLE VI. EVALUATION METRICS FOR SIMILARITY DETECTION OF USER

STORIES OF THE FIRST DATASET

Models
Similarity of user stories pairs

TP FP FN Precision Recall
F1-

score

ELMO 7 13 3 35% 70% 46%

Word2vec 14 65 0 17% 100% 29%

USE 5 1 6 83% 45% 58%

SBERT 14 1 0 93% 100% 96%

TABLE VII. COMPARISON OF SIMILARITY DETECTION MODELS FOR USER

STORY PAIRS OF ARCHIVE SPACE DATASET

Models
Similarity of user stories pairs

TP FP FN Precision Recall
F1-

score

ELMO 7 13 3 35% 70% 46%

Word2vec 14 65 0 17% 100% 29%

USE 5 1 6 83% 45% 58%

SBERT 14 1 0 93% 100% 96%

Table VI and Table VII show similar user stories with
similarity rates above 90%. When the similarity rate exceeds
90%, the user stories are more similar. The low similarity
metrics obtained using Word2Vec to evaluate user stories can
be explained by the fact that this model does not capture the
semantic complexity of texts as effectively as more recent
approaches such as USE and SBERT.

 In some cases, one user story was included in another one
which added more information in the third part of the user
story which was due to poor writing of user stories. If the user
stories were of high quality, they could reduce the occurrence
of similar user stories. In other cases, the approach detected
two similar user stories with opposite meanings. However, by
using Wordnet and our defined rules, we have overcome this
shortcoming.

Grouping user stories by actor before detecting similarity
between pairs of stories had been found to help address the
problem of false positives that can occur when multiple actors
perform the same action. If stories were not grouped by actor,
the similarity approach may identify false similarities between
two stories that had different actors. However, the Universal
Sentence Encoder (USE) model is limited in detecting explicit
negation. Because of relying on language patterns, it can
struggle to capture the opposite or contradictory meaning
introduced by negation words like “not”. This can result in
inaccurate detection of differences in meaning when negation
is present.

3) Evaluation of UML class and use case models: During

the evaluation process, our primary focus was to compare the

UML use case diagrams generated by the proposed approach

with the manual UML use case diagrams created by our team

of experts. These diagrams were based on user stories. We

aimed to assess the accuracy and effectiveness of the

generated models in comparison to the manual approach and a

relevant existing approach in the field. However, we were

unable to make a direct comparison between our results and

those of the referenced article because the identical case study

used by the authors was unavailable.

To assess the quality and relevance of the UML use case
models, we implemented a manual evaluation approach. Our
team of experts carefully examined the models, comparing
them with the corresponding user stories to ensure accuracy
and consistency. In addition, to evaluate class diagrams, we
used the same case study as [4], enabling a comparative
analysis of the approach to extracting artifacts from class
diagrams. This evaluation involved examining the artifacts
extracted and comparing them with the expected artifacts
derived from the case studies. We considered aspects such as
completeness, correctness, and relevance to assess the
effectiveness of our approach.

 Case study

The user stories, in this case study, represented event
management: booking and purchasing an event ticket [36].

Tokenization, lemmatization, stemming, and part-of-speech
(POS) analysis were used to process user stories. Typed
dependencies were then applied to each user story. The
extraction of design components was based on defined rules,
which relied on the dependencies that were exploited and
analyzed.

The final results of the extraction of design elements for the
given user story are presented in the tables below. Classes and
their attributes are listed in Table VIII.

TABLE VIII. CLASSES AND THEIR ATTRIBUTES

Classes Attributes

Account Password

Visitor Personal_details

Ticket Price

Ticket Type

The relationship results are shown in Table IX.

TABLE IX. RELATIONSHIPS RESULTS

Relationships

Create (account, Visitor)

Have (account, Visitor)

Rename (account, Visitor)

Choose (event, Visitor)

Search (event, Visitor)

See (event, Visitor)

Choose (payment_methods,Visitor)

Buy (ticket, Visitor)

Book (ticket, Visitor)

Purchase (ticket, Visitor)

Receive (ticket, Visitor)

Have (ticket, event)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

732 | P a g e

www.ijacsa.thesai.org

Table X indicates the results of the operations.

TABLE X. GENERATION OF CLASS OPERATIONS

Classes Operations

Visitor Provide (personal_details)

Account Change(password)

Event Filter(type)

Ticket See (price)

Ticket Choose(type)

Event Choose(type)

The Visual Narrator tool [4] identified several classes,
including Visitor, Account, System, Event, Ticket, EventType,
Type, AccountPassword, Password, TicketPrice, Price, Detail,
and Method. However, there are some relationships that the
tool extracted, but our approach did not, such as hasType
(Event, EventType), hasPrice (Ticket, TicketPrice), and
hasPassword (Account, AccountPassword). Additionally, the
tool detected that Visitors and Systems can log in and log out,
but our approach did not.

The Visual Narrator tool [4] uses an approach that creates
numerous compound classes and inheritance relationships.
However, this method can result in complex classes and
inheritance relationships that are unnecessary due to the
absence of attribute extraction rules. Table XI compares the
total items detected by [4], our approach, and manual analysis.

TABLE XI. THE TOTAL OF DESIGN ELEMENTS DETECTED BY [4] AND OUR

APPROACH [36]

 Actors
Classes/

Entity
Attributes

Relations-

hips
Operations

[4] 1 13 0 19 0

Our

approach
1 5 5 12 6

Manually 1 5 5 12 6

Our approach, in the case studies, demonstrated significant
improved performance compared to the method described in
[4], achieving a high precision rate of 98% when comparing
these results to those obtained manually.

B. Results

We provided a detailed explanation with the help of figures
to clarify the process of clustering and generating UML
diagrams using our tool.

Fig. 4 shows a web page that allows the user to download a
file containing a set of user stories. Once downloaded, we
performed the clustering by actor by clicking the “Clustering
by actor” button. The extracted actors were then included in a
drop-down list. To perform clustering by meaning, the user
needed to click on the “Analyze” button, as illustrated in Fig. 5.
It is worth noting that a text field to specify the number of
clusters was not included from the beginning. This process was
automated based on silhouette calculations.

Fig. 5 displays the clusters in a table, along with keywords
representing the cluster's meaning, as well as links to select
similar user stories. This table allows the user to easily
navigate through the clusters and select the most relevant user
stories.

Fig. 4. Items generated in the drop-down list from the user stories file.

Fig. 5. Clusters generated corresponding to Participant actor.

Fig. 6 and 7 show the similarity scores generated for pairs
of user stories within the cluster of the Instructor and
Participant actors. By highlighting the most similar user stories,
our tool facilitated the decision to delete or keep them.

Fig. 6. Similarity scores generated for pairs of user stories within the cluster

of the Instructor actor.

Fig. 7. Similarity scores generated for pairs of user stories within the cluster

of the Participant actor.

Finally, Fig. 8-12 display the generated class and use cases
UML diagrams corresponding to the “Participant” and
“Instructor” actors. These diagrams provide a clear and
consistent understanding of the product requirements, making
it more convenient for team members to collaborate and work
efficiently.

As can be seen in Fig. 10 and 12, using sentence
transformers allows for the detection of duplicate use cases
such as “receive feedback” and “get feedback”, the same for
the “receive” and “get” associations between the participant
and feedback class. Regarding the use cases “upload PDFS”
and "download PDFS" these components were similar in using
sentence transformation yet using the Wordnet approach shows
that they had opposite meanings. We believe that combining
both approaches can achieve better performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

733 | P a g e

www.ijacsa.thesai.org

Fig. 8. Generated the UML class diagram corresponding to the instructor’s cluster.

Fig. 9. Generated the UML use case diagram corresponding to the instructor’s cluster.

(a)

(b)

Fig. 10. Generated the UML class diagrams corresponding to participant’s clusters #1 (a) and #2 (b).

Fig. 11. Generated the UML use case diagram corresponding to participant’s cluster #1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

734 | P a g e

www.ijacsa.thesai.org

Fig. 12. Generated the UML use case diagram corresponding to Participant’s cluster #2.

C. Threats to Validity

In this section, we will discuss the possible threats to the
validity of our proposed approach.

 Internal Validity: The quality of user stories can have a
significant impact on the results, particularly if they are
poorly written or contain non-functional scenarios. This
can negatively affect the relationships between classes
and generate inadequate UML diagrams.

To overcome this problem, it is essential to ensure the
quality and functional accuracy of user stories.

 Construct Validity: The rules defined for assessing
similarities between user stories may be limited, as they
only capture a restricted set of sentence structures in the
context of opposite meanings. It is necessary to have a
more comprehensive analysis that considers the
semantic meaning and context of the user stories to
accurately identify and handle potential contradictions.

 External Validity: In evaluating our approach, we
analyzed two case studies to determine the effectiveness
of our approach in detecting similar user stories.
Although the initial results were promising, there is a
need to extend our evaluation to a larger number of case
studies.

D. Discussion

In this section, we compare our approach with existing
state-of-the-art techniques [14], [16] that also use user stories
as input. Although these approaches focus on clustering and
duplicate detection, they do not include diagram generation.
Another study [24] focused on generating use case diagrams
from user stories, but it only considered user stories with a
simple structure and did not address duplicate or similarity
detection. In [25] Detection of similarities in user stories is
ineffective because their method is unable to distinguish
between operations such as “delete” and “add” in stories.
These operations, which represent the core functionality,
remain indistinguishable. The model used to detect similar user
stories, namely USE, lacks the ability to discern negations in
these stories, such as “not add” and “add”.

In contrast, our approach built on our previous work [10]-
[12],[36], in which we used NLP techniques to generate
various UML diagrams from user stories. The paper [36]
expands upon the content of [10].

The previous approach [11], based on ontology, Prolog
rules, and WordNet synsets, focused on refining UML

diagrams by defining explicit relationships and using domain-
specific vocabulary. It addressed redundancy and duplicate
detection to some extent, but it had limitations. Maintaining
and updating the ontology with relevant vocabulary posed
challenges. Focusing on explicit definitions might overlook
subtle nuances in redundancy and duplication. Additionally,
the approach required extensive domain knowledge and
manual refinement.

In contrast, the new approach incorporated AI techniques,
in particular SBERT models and clustering to refine the
generated backlog and UML diagrams. It used machine
learning to capture semantic similarities as well as the rules we
defined to achieve better results. This enabled duplicates to be
detected without the need to explicitly define an ontology.

Our approach focused on improving the refinement process
to enhance the quality and accuracy of the generated models.
The backlog was refined using clustering and similarity
detection techniques before generating the UML diagrams.
This step helped in handling the large number of user stories
present and guaranteed the accuracy of the generated diagrams.

Refining the use case diagrams and detecting similar use
cases made our approach more complete and refined compared
to other approaches used by different authors.

Table XII summarizes the relevant related works.

Table XIII presents a comparison between the previous
approach and our proposed approach.

In comparison to old approaches, our approach offered
several significant advantages using automatic refinement of
UML diagrams. Firstly, by integrating prior refinement of the
user story backlog, early detection and elimination of
redundancies in the process can be achieved. This allowed us
to create more concise, better organized, and more relevant
UML diagrams to represent the system's functionalities.

Secondly, through using AI techniques, particularly
SBERT models, our approach offered better detection of
duplications and similarities between user stories. Clustering
user stories and subsequently labeling these clusters, allowed
for an efficient backlog structuring and an improved
organization. The refinement process eliminates redundant
information and similar functionalities with great precision,
resulting in clearer and more readable UML diagrams.

Automating the backlog refinement process saves the team
valuable time. Employing the AI-based prototype allows for
quick and accurate execution of tasks such as similarity
detection, user story clustering, and diagram generation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

735 | P a g e

www.ijacsa.thesai.org

TABLE XII. SUMMARY OF RELEVANT LITERATURE

Approach Models and tools Input Output

[14] K-means clustering algorithm applied to user stories. user stories Clusters of user stories

[16]

- Semantic similarity measures to suggest possible cases of duplication

between user stories.
- Analysis of semantic similarity measures based on the WordNet lexical

database, in particular WuP similarity.

user stories
Determine the level of similarity among
user stories

[24]

- Agglomerative Hierarchical Clustering (AHC) algorithm to group

requirements into clusters.
- Use of the Gensim API to extract keywords by group.

- Definition of simple NLP rules for component extraction to generate a use

case diagram

user stories Use case diagram

[25]
- The model USE for calculating similarity
- For app development: Laravel and React.

- Manual approach to detect similarities greater than 60%

User stories

- Estimate efforts and costs for agile

projects: Time spent on similar past

projects
- Similarity user stories detection

Our approach

- Flask

- Python
- SBERT models

- Defining NLP rules to identify every dissimilar previously classified as

similar by SBERT models

User stories

- Similarity user stories detection

- Clustering and labeling each cluster

- UML diagram generation

TABLE XIII. COMPARISON BETWEEN THE PREVIOUS APPROACH AND OUR PROPOSED APPROACH

Features Old Approach New Approach

Refinement Method Prolog rules, ontology, WordNet synsets Clustering, SBERT models, and definition of rules

Refinement Stage Post-generation refinement of UML diagrams
Initial backlog refinement to detect and eliminate

redundancy

Contextual Meaning Not considered Contextual meaning detection with SBERT models

Backlog Refinement Not addressed Initial backlog refinement to detect similar user stories

Duplicate Detection
Limited capability in detecting duplicates and
similarities

Improved accuracy in identifying duplicate user stories
through advanced AI techniques

VI. CONCLUSION

In Agile project management, Backlog refinement is a
crucial process. It aims to ensure that the backlog contains
prioritized and well-defined user stories. However, refining the
backlog using a traditional manual approach is time-consuming
and prone to errors.

In this paper, we proposed an approach to refine the
backlog by detecting similar user stories with a percentage that
will help the designer decide to delete or leave the concerned
user stories. Additionally, we aimed to reduce the occurrence
of similar use cases in the use case diagram UML. Our
proposed approach combined clustering and duplicate
detection to automatically generate UML diagrams from a set
of refined user stories in each cluster. To achieve this, we used
the K-means algorithm to cluster similar user stories. In
addition, we incorporated the SBERT model to measure the
similarity between these user stories and use cases. Using
multiple pairs of user stories, the case studies conducted show
that our proposal achieves high performance.

In future work, we plan to further improve our approach by
using multiple datasets to improve performance. Furthermore,
we aim to define more rules to detect opposite meanings in
user stories. Finally, we will focus on detecting non-functional
requirements and generating acceptance criteria from them to
improve the quality of user stories. It is essential to ensure that
user stories remain well-defined and focused on functional
aspects, while keeping non-functional requirements, such as

performance, security, and usability constraints, specified in
the acceptance criteria. By addressing these challenges, we can
further enhance the accuracy and efficiency of requirements
engineering in software development, ultimately leading to an
overall improvement in product quality.

REFERENCES

[1] Belani H, Vukovic M, Car Z. Requirements engineering challenges in
building AI-based complex systems. Proceedings - 2019 IEEE 27th
International Requirements Engineering Conference Workshops, REW
2019, Institute of Electrical and Electronics Engineers Inc.; 2019, p.
252–5.

[2] Yang C, Liang P, Avgeriou P. A systematic mapping study on the
combination of software architecture and agile development. Journal of
Systems and Software 2016;111:157–84.
https://doi.org/10.1016/j.jss.2015.09.028.

[3] Chantit S, Essebaa I. Towards an automatic model-based scrum
methodology. Procedia Comput Sci, vol. 184, Elsevier B.V.; 2021, p.
797–802. https://doi.org/10.1016/j.procs.2021.03.099.

[4] Lucassen G, Robeer M, Dalpiaz F, van der Werf JMEM, Brinkkemper
S. Extracting conceptual models from user stories with Visual Narrator.
Requir Eng 2017;22:339–58. https://doi.org/10.1007/s00766-017-0270-
1.

[5] Javed M, Lin Y. Iterative process for generating ER diagram from
unrestricted requirements. ENASE 2018 - Proceedings of the 13th
International Conference on Evaluation of Novel Approaches to
Software Engineering2018;2018-March:192–204.
https://doi.org/10.5220/0006778701920204.

[6] Y. Rhazali, Y. Hadi, I. Chana, M. Lahmer, and A. Rhattoy, “A model
transformation in model driven architecture from business model to web
model.” IAENG International Journal of Computer Science, vol. 45, no.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

736 | P a g e

www.ijacsa.thesai.org

1, pp. 104–117, 2018. [Online]. Available:
https://www.researchgate.net/publication/323275958.

[7] Jaiwai M, Sammapun U. Extracting UML Class Diagrams from
Software Requirements in Thai using NLP. 2017 14th International Joint
Conference on Computer Science and Software Engineering (JCSSE).
IEEE, 2017. p. 1-5. https://doi.org/10.1109/JCSSE.2017.8025938.

[8] Abdelnabi EA, Maatuk AM, Hagal M. Generating UML Class Diagram
from Natural Language Requirements: A Survey of Approaches and
Techniques. 2021 IEEE 1st International Maghreb Meeting of the
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering, MI-STA 2021 - Proceedings, Institute of
Electrical and Electronics Engineers Inc.; 2021, p. 288–93.
https://doi.org/10.1109/MISTA52233.2021.9464433.

[9] Yang S, Sahraoui H. Towards automatically extracting UML class
diagrams from natural language specifications. Proceedings -
ACM/IEEE 25th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2022: Companion Proceedings,
Association for Computing Machinery, Inc; 2022, p. 396–403.
https://doi.org/10.1145/3550356.3561592.

[10] Nasiri S, Rhazali Y, Lahmer M, Chenfour N. Towards a Generation of
Class Diagram from User Stories in Agile Methods. Procedia Comput
Sci 2020;170:831–7. https://doi.org/10.1016/j.procs.2020.03.148.

[11] Nasiri S, Rhazali Y, Lahmer M, Adadi A. From User Stories to UML
Diagrams Driven by Ontological and Production Model. International
Journal of Advanced Computer Science and Applications, vol. 12, no. 6,
2021. https://doi.org/10.14569/IJACSA.2021.0120637.

[12] Nasiri S, Adadi A, Lahmer M. Automatic generation of business process
models from user stories. International Journal of Electrical and
Computer Engineering 2023;13:809–22. https://doi.org/10.11591/ijece.
v13i1.pp809-822.

[13] Salman HE, Hammad M, Seriai AD, Al-Sbou A. Semantic clustering of
functional Requirements using agglomerative hierarchical clustering.
Information (Switzerland) 2018;9. https://doi.org/10.3390/info9090222.

[14] Kumar B, Tiwari UK, Dobhal DC, Negi HS. User Story Clustering using
K-Means Algorithm in Agile Requirement Engineering. 2022
International Conference on Computational Intelligence and Sustainable
Engineering Solutions (CISES), 2022, p. 1–5.
https://doi.org/10.1109/CISES54857.2022.9844390.

[15] R. Selva Birunda S. and Kanniga Devi. Review on Word Embedding
Techniques for Text Classification. Innovative Data Communication
Technologies and Application, 2021, pp. 267–281.

[16] Barbosa R, Silva AEA, Moraes R. Use of Similarity Measure to Suggest
the Existence of Duplicate User Stories in the Scrum Process.
Proceedings - 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN-W 2016, Institute Of
Electrical and Electronics Engineers Inc.; 2016, p. 2–5.
https://doi.org/10.1109/DSN-W.2016.27.

[17] Wang J, Dong Y. Measurement of text similarity: a survey. Information.
2020 Aug 31;11(9):421.

[18] Banerjee S, Pedersen T. An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. International Conference on Intelligent
Text Processing and Computational Linguistics, pp. 136-145, 2002.
https://doi.org/10.1007/3-540-45715-1_11.

[19] F. S. Bäumer MG. Running out of words: How similar user stories can
help to elaborate individual natural language requirement descriptions.
Commun. Comput. Inf. Sci., vol. 639, pp. 549-558, Oct. 2016.
https://doi.org/10.1007/978-3-319-46254-7.

[20] Wautelet Y, Heng S, Kolp M, Mirbel I. Unifying and extending user
story models. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 2014;8484 LNCS:211–25. https://doi.org/10.1007/978-
3-319-07881-6_15.

[21] Rodeghero P, Jiang S, Armaly A, Mcmillan C. Detecting User Story
Information in Developer-Client Conversations to Generate Extractive
Summaries. Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering, ICSE 2017, pp. 49–59,
https://doi.org/10.1109/ICSE.2017.13.

[22] Dalpiaz F, van der Schalk I, Lucassen G. Pinpointing ambiguity and
incompleteness in requirements engineering via information
visualization and NLP. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10753 LNCS, Springer Verlag; 2018, p. 119–35.
https://doi.org/10.1007/978-3-319-77243-1_8.

[23] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” Aug. 2019, [Online]. Available:
http://arxiv.org/abs/1908.10084.

[24] T. Kochbati, S. Li, S. Gérard, and C. Mraidha, “From user stories to
models: A machine learning empowered automation,” in
MODELSWARD 2021 - Proceedings of the 9th International Conference
on Model-Driven Engineering and Software Development, SciTePress,
2021, pp. 28–40. doi: 10.5220/0010197800280040.

[25] A. Grzegorz Duszkiewicz, J. Glumby Sørensen, N. Johansen, H. Edison,
and T. Rocha Silva, “On Identifying Similar User Stories to Support
Agile Estimation based on Historical Data,” 2022. [Online]. Available:
https://www.sdu.dk/staff/hedis.

[26] C. Wu, C. Wang, T. Li, and Y. Zhai, “A Node-Merging based Approach
for Generating iStar Models from User Stories,” in Proceedings of the
International Conference on Software Engineering and Knowledge
Engineering, SEKE, Knowledge Systems Institute Graduate School,
2022, pp. 257–262. doi: 10.18293/SEKE2022-176.

[27] T. Wang, C. Wang, T. Li, Z. Liu, and Y. Zhai, “User Story Quality
Assessment Based on Multi-dimensional Perspective: A Preliminary
Framework,” 2022. [Online]. Available: http://ceur-ws.org.

[28] R. Selva Birunda S. and Kanniga Devi, “A Review on Word Embedding
Techniques for Text Classification,” in Innovative Data Communication
Technologies and Application, A. M. and B. R. and B. Z. A. Raj Jennifer
S. and Iliyasu, Ed., Singapore: Springer Singapore, 2021, pp. 267–281.

[29] A. Jalilifard, V. F. Caridá, A. F. Mansano, R. S. Cristo, and F. P. C. da
Fonseca, “Semantic Sensitive TF-IDF to Determine Word Relevance in
Documents,” Jan. 2020, doi: 10.1007/978-981-33-6977-1.

[30] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word
Vectors with Subword Information”, 2017, doi:
10.1162/tacl_a_00051/1567442/tacl_a_00051.pdf.

[31] E. M. Dharma, F. Lumban Gaol, H. Leslie, H. S. Warnars, and B.
Soewito, “The Accuracy Comparison Among Word2vec, Glove, And
Fasttext Towards Convolution Neural Network (Cnn) Text
Classification,” J Theor Appl Inf.

[32] D. Cer et al., “Universal Sentence Encoder,” Mar. 2018, [Online].
Available: http://arxiv.org/abs/1803.11175.

[33] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
2000.

[34] M. Cohn, User Stories Applied: For Agile Software Development. 2004.

[35] H. Schütze, C. D. Manning and P. Raghavan, Introduction to
Information Retrieval, Cambridge, U.K.:Cambridge University Press,
2008.

[36] S. Nasiri, Y. Rhazali, and M. Lahmer, “Towards a Generation of Class
Diagram From User Stories in Agile Methods,” 2021, pp. 135–159. doi:
10.4018/978-1-7998-3661-2.ch008.

https://doi.org/10.1007/978-3-319-07881-6_15
https://doi.org/10.1007/978-3-319-07881-6_15

