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Abstract—The use of 3D Human Pose Estimation (HPE) has 

become increasingly popular in the field of computer vision due 

to its various applications in human-computer interaction, 

animation, surveillance, virtual reality, video interpretation, and 

gesture recognition. However, traditional sensor-based motion 

capture systems are limited by their high cost and the need for 

multiple cameras and physical markers. To address these 

limitations, cloud-based HPE tools, such as DeepMotion and 

MOTiON by RADiCAL, have been developed. This study 

presents the first scientific evaluation of MOTiON by RADiCAL, 

a cloud-based 3D HPE tool based on deep learning and cloud 

computing. The evaluation was conducted using the CMU 

dataset, which was filtered and cleaned for this purpose. The 

results were compared to the ground truth using two metrics, the 

Mean per Joint Error (MPJPE) and the Percentage of Correct 

Keypoints (PCK). The results showed an accuracy of 98 mm 

MPJPE and 96% PCK for most scenarios and genders. This 

study suggests that cloud-based HPE tools such as MOTiON by 

RADiCAL can be a suitable alternative to traditional sensor-

based motion capture systems for simple scenarios with slow 

movements and little occlusion. 

Keywords—3D; human pose estimation; animation; evaluation; 

motion tracking 

I. INTRODUCTION 

Due to its crucial applications in human-computer 
interaction, surveillance, virtual reality [36], video 
interpretation, gesture recognition, and many other fields, as 
depicted in Fig. 1, 3D human body pose estimation (3D HPE) 
has attracted substantial interest in computer vision. 
Nevertheless, despite recent advancements, motion capture 
(MoCap) systems still rely on costly sensor-based systems 
consisting of multiple-camera setups and heavy motion capture 
suits with physical markers that allow position estimation. A 
considerable number of studies have been conducted using 
several approaches. However, the most significant advances in 
that field have been made in recent years thanks to 
breakthroughs in deep learning and convolutional neural 
networks. 

Recently, cloud-based 3D HPE tools, such as MOTiON by 
RADiCAL and DeepMotion, have become more popular for a 
variety of reasons, including the needless for a powerful 
computer since processing is done in the cloud, the intuitive 
graphical user interface, and the ready-to-use outputs by almost 

all 3D computer graphics software. These tools are generally 
based on deep learning techniques and offer the ability to 
directly convert 2D videos to 3D coordinate files through FBX 
motion frames in a short time. Despite the widespread adoption 
of those tools, scientific evaluation of their accuracy has yet to 
be published to determine whether they can serve as an 
alternative to conventional sensor-based motion capture 
systems. 

In this research, we are especially interested in evaluating 
the accuracy and suitability of 3D HPE tools based on deep 
learning and cloud computing. We aim to address the 
following research questions: 

 How accurate are cloud-based 3D HPE tools in 

estimating human poses compared to ground truth 

data? 

 Can cloud-based 3D HPE tools serve as a feasible 

alternative to traditional motion capture systems in 

various scenarios? 

Therefore, MOTiON by RADiCAL 3D HPE tool was 
chosen as a case study. To achieve this goal, we now go over 
how the CMU dataset was cleaned and filtered for use in this 
study. The dataset contains multiple scenarios, each of which 
includes a range of actions seen in videos and the resulting 3D 
human poses. These videos were used to obtain 3D coordinates 
for each human joint. For quantitative evaluation, the results 
were compared to the ground truth after Procrustes alignment 
[1]. Several metrics, including Mean per Joint Position Error 
(MPJPE) and Percentage of Correct Keypoints (PCK), were 
used to evaluate the results of each scenario and both genders. 
The second sort of evaluation is qualitative, in which one frame 
from each situation is selected and visually evaluated. 

Quantitative results revealed that the MOTiON by 
RADiCAL tool is adequate for most scenarios and genders. 
However, it has several limitations, particularly for occlusion 
and dynamic motions. After data analysis, it is considered that 
these cloud-based tools could advantageously replace the 
expensive traditional tools for simple scenarios with slow 
movements and little occlusion. As for qualitative results, nine 
scenarios have been accurately estimated, whereas the skeleton 
or some of its components were misaligned in the other 
scenarios. 
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Fig. 1. Facebook’s markerless body tracking for VR from a single sensor. 

This study is structured to provide a comprehensive 
evaluation of cloud-based 3D HPE tools, with a specific focus 
on the MOTiON by RADiCAL system. The structure and goals 
of this research are aligned to achieve several key 
contributions: 

1) Presents the first comprehensive scientific evaluation of 

a case study of cloud-based 3D HPE, assessing its accuracy 

using robust metrics. 

2) It contributes to the broader understanding of the 

potential and limitations of cloud-based 3D HPE tools in 

various realistic scenarios. 

3) The findings could potentially influence future 

developments in 3D HPE technology, enhancing the 

accessibility and applicability of cloud-based motion capture 

solutions. 

The organization of the paper is as follows: the related 
works in Section II reviews prior studies and developments 
within the field, detailing advancements and challenges in 3D 
HPE, setting the stage for the current research. The 
methodology in Section III details the datasets employed in the 
study, the evaluation metrics used specifically MPJPE and 
PCK and the experimental setup designed to test the efficacy of 
the 3D HPE tool. Results in Section IV, presents both 
quantitative and qualitative analyses that compare the 
performance of MOTiON by RADiCAL against established 
ground truth data, highlighting the tool's accuracy and 
operational characteristics in various scenarios. The discussion 
in Section V interprets these results, exploring their 
implications for the field of 3D HPE and discussing potential 
limitations of the study. Finally, the conclusion in Section VI 
summarizes the key findings and proposes directions for future 
research, suggesting how improvements could enhance the 
utility and accuracy of cloud-based 3D HPE tools. 

II. RELATED WORKS 

A. 3D Human Pose Estimation 

Over the past few years, there has been a growing interest 
in 3D HPE due to its ability to provide accurate information 
about the 3D structure of the human body. 3D HPE seeks to 
predict the location of body joints in 3D space. It can be 

applied to a variety of situations (e.g., 3D animation movies, 
extended realities, and cloud-based 3D action estimation). 
Even though 2D HPE has recently seen significant 
advancements, 3D HPE is still a challenging task to complete. 
Recent research in the field of computer vision has been 
focused on the extraction of 3D human pose estimation (HPE) 
from monocular images or videos. Those are a 2D 
representation of a 3D scene, resulting in the loss of one 
dimension. As a result, researchers have been working on 
developing algorithms and techniques to accurately estimate 
the 3D pose of human subjects from these 2D images. 3D 
human pose estimation can be a well-defined problem that is 
solvable using information fusion methods if there are multiple 
perspectives or additional sensors such as IMU and LiDAR 
available. However, one drawback of using deep learning 
models for this task is their high data dependence and 
sensitivity to data collection circumstances. Extensive amounts 
of annotated data are necessary for these models to learn 
accurate representations of input and output spaces, and factors 
such as lighting conditions, camera positions, and background 
can influence their performance negatively. 

While obtaining accurate two-dimensional posture 
annotations for human datasets is relatively straightforward, 
obtaining accurate three-dimensional pose annotations is 
considerably more challenging and cannot be done manually. 
Furthermore, datasets are often collected in controlled indoor 
settings that focus on specific activities, making them biased 
towards these scenarios. Recent studies have shown that 
models trained on such biased datasets tend to perform poorly 
when applied to other datasets, as demonstrated by cross-
dataset inference [2], [3]. 

1) Single-person 3D HPE: The strategies of Single-person 

3D HPE can be categorized as model-free or model-based 

methods. The first one can be divided into two categories: 

a) Direct estimate techniques: instead of first estimating 

the 2D pose representation, some algorithms in 3D human 

pose estimation employ direct estimation techniques, as seen 

in [4], [5], to directly infer the 3D human position from 2D 

images. Recent advancements include the study by H Ye et 

al., which enhances real-time 3D pose estimation efficiency 

through orthographic projection techniques, simplifying the 

direct estimation process from images without intermediate 

2D pose estimation [33]. 

b) 2D to 3D lifting techniques: The process of inferring 

3D poses from intermediate 2D pose pairings is inefficient 

because it requires multiple network inferences. Human body 

models are not used in the model-free approaches for 

recreating 3D human representations. Standard 2D HPE 

models are used in the first stage to estimate the 2D posture, 

and 2D to 3D lifting is used in the second stage to construct 

the 3D pose, such as [6], [7], and [5]. 2D heatmaps rather than 

2D poses were used as intermediate representations to 

estimate 3D posture ([8] and [9]). Through distance matrix 

regression, Moreno-Noguer [10] deduced the 3D human 

position from the distances between the joints in the 2D and 

3D body (EDMs). When normalization techniques are used, 

EDMs are invariant to scaling invariance as well as in-plane 
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image rotations and translations. A Paired Ranking 

Convolutional Neural Network (PRCNN) was created by 

Wang et al. [11] to predict the depth ranking of pairwise 

human joints. The 3D pose was then regressed from the 2D 

joints and the depth ranking matrix using a coarse-to-fine pose 

estimator. Li and Lee [12], Sharma et al. [13], and Jahangiri 

and Yuille [14] were the first to develop numerous, different 

3D pose hypotheses. Recent work by C Han et al. introduces 

uncertainty learning to improve the accuracy and robustness of 

3D pose estimations from single images, effectively enhancing 

this lifting process [34]. 

Parametric body models, such as kinematic and volumetric 
models, are utilized by model-based methods to estimate 
human position, as illustrated in Fig. 2. 

The kinematic model represents the body as a series of 
joints and articulating bones, and in recent years, it has 
garnered increasing attention in the field of 3D human pose 

estimation. Pavllo et al. [15] suggested a temporal convolution 
network for estimating 3D posture from sequential 2D 
sequences using 2D keypoints. A Short-Term Long Memory 
(LSTM) unit and shortcut connections were employed in a 
recurrent neural network to leverage temporal information 
from human pose data [16]. 

The Skinned Multi-Person Linear (SMPL) model is among 
the most commonly utilized volumetric models in the field of 
3D HPE, as evidenced by its implementation in works such as 
[17], [18]. 

2) Multi-person 3D HPE: There are two approaches for 

3D multi-person human pose estimation from monocular RGB 

images or videos, which are classified into top-down and 

bottom-up categories. These approaches are illustrated in Fig. 

3. 

 
Fig. 2. Frameworks of 3D single-person pose estimation [19] (a) This method is done in one stage, i.e., directly from RGB image to 3D pose. (b) The approaches 

perform 3D HPE using a two-stage approach, i.e., it performs 2D HPE first and then uses the 2D keypoints to get 3D ones. (c) The 3D mesh is obtained using a 

regression stage on the 3D HPE outputs. 

 
Fig. 3. Frameworks of 2D and 3D multi-person pose estimation [27] (edited). (a) The top-down approach uses person detection techniques to determine the 

number of persons detected in the frame, and then it applies a 2D single-person estimation framework. (b) The bottom-up approach identifies each joint in the 

image and then associates each one with individuals. 
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a) Top-down approaches: They use human detection to 

estimate each person's position. Each time a person is 

identified, 3D pose networks estimate their root (the human 

body's central joint) coordinate and their 3D root-relative 

posture. Rogez et al. [20] targeted candidate areas of each 

individual to produce prospective postures and then utilized a 

regressor to improve the pose suggestions jointly. The LCR-

Net technique, which involves localization, classification, and 

regression, performed well on datasets collected in controlled 

environments, but not on images captured in natural settings. 

To address this limitation, LCR-Net++ was introduced, which 

utilizes synthetic data augmentation during training to 

improve performance. [21]. The 3D multi-person HPE module 

was enhanced with scene constraints and semantic 

segmentation [22]. The 3D temporal assignment problem was 

also tackled by the Hungarian matching approach for video-

based multi-person 3D HPE, which achieved impressive 

results in [23], [24]. L Jin et al. introduced a single-stage 

method that integrates human detection and pose estimation, 

simplifying the process and enhancing efficiency by directly 

estimating 3D poses from detected individuals in a single 

network pass, demonstrating significant improvements over 

traditional multi-stage methods [35]. 

b) Bottom-up approaches: First, generate joint positions 

and depth maps for all body joints. They then assign body 

parts to each individual based on the root depth and relative 

depth of the body component [25], [26]. How to categorize 

human body joints is a fundamental difficulty for these 

techniques. Methods at a lower level exploit the common 

latent space between two distinct modalities. 

B. Datasets for 3D HPE 

Obtaining precise 3D labeling for 3D human pose 
estimation datasets is a difficult endeavor that necessitates the 
use of motion capture techniques such as MoCap and wearable 
IMUs. Since the 3D HPE deep learning-based needs larges 
datasets to train, validate, and test their models, several 3D 
posture datasets are created due to this need. 

1) HumanEva Dataset [28]: It includes seven calibrated 

video sequences (4 grayscale and three colors) with ground 

truth 3D annotation taken by a ViconPeak commercial MoCap 

system. The database comprises four scenarios executing six 

common actions in a 3m × 2m area: walking, jogging, 

pointing, throwing and catching a ball, boxing, and 

combination. 

2) Human3.6M [29]: One of the most commonly used 

datasets for indoor 3D human pose estimation from monocular 

images and videos. The dataset features 11 professional actors 

(six males and five females) performing 17 actions (such as 

smoking, taking photos, and talking on the phone) in a 

laboratory environment captured from four different 

perspectives. 

3) The CMU Graphics Lab Motion Capture Database 

(CMU) [30]: CMU is one of the most publicly large databases 

of motion capture data. Numerous researchers within the 

scientific world have utilized it to develop previous models of 

human motion. However, the dataset is poorly synced and 

contains some films unsuitable for HPE due to multiple actors 

in each scene. The database comprises more than 100 

scenarios executing several actions in a 3m × 8m area. 

III. METHODOLOGY 

After extracting videos from CMU and their associated 
BVH pose files, a preprocessing stage comprising: cleaning 
(i.e., avoid corrupted sequences or those that do not verify the 
necessary conditions), reorganization (i.e., reclassifying all 
sequences into 12 scenarios), and synchronization (because the 
BVH poses files are not synchronized with the associated 
videos) was performed. The sequences in video format were 
then processed in the cloud with RADiCAL. Both BVH poses 
of CMU and RADiCAL were rendered using a virtual camera 
to get the 3D coordinates of each joint. Then two evaluation 
types were performed; the first one was quantitative, which 
compared both poses of RADiCAL (as predicted results) and 
those of CMU (as a ground-truth one). The other evaluation 
type is a qualitative one based on visual analysis of the 
predicted 3D human pose scenario according to the ground 
truth. The workflow was summarized in Fig. 4. 

A. Data Preprocessing 

The CMU Graphics Lab Motion Capture Database (CMU) 
was obtained using 12 Vicon MX-40 infrared cameras, each 
capable of collecting 4-megapixel pictures at 120 Hz. The 
cameras are positioned around a 3m x 8m rectangle area in the 
center of the room. The actor wears a black jumpsuit with 41 
markers affixed to it while infrared Vicon cameras detect the 
markings. The pictures captured by the numerous cameras are 
triangulated to provide three-dimensional data. 

 

Fig. 4. Overview of the suggested approach. 
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Despite the dataset covering many scenarios (more than 
100), several sequences are without their corresponding videos. 
Many videos are corrupted, contain more than one actor, or do 
not contain all body parts. In addition, all files, including BVH 
and Videos, need to be synced. Therefore the dataset was 
edited following the three steps below: 

1) Cleaning: some corrupted videos were eliminated, and 

the rest were repaired by hiding the second actor, if that is 

possible. 

2) Reorganization: the sequences were classified into 12 

essential scenarios, as shown in Table I. 

3) Synchronization: since all BVH frames are not synced 

with videos, a manual process was manually done using 

Blender. Also, the sequences captured with 120 or 60 FPS 

were decreased to 30 FPS since the RADiCAL support only 

motion capturing with 30 FPS. 

B. MOTiON by RADiCAL 

MOTiON by RADiCAL is a model-based 3D HPE AI-
driven and cloud-based software that converts 2D movies into 
complete 3D animation with 6 degrees of freedom. The 
animation data is stored with 30 FPS into FBX (Filmbox), a 
format that allows the exchange of geometric and animation 
data between 3D animation software, such as Blender. 

For the study, the sequences in MPG format were imported 
to the RADiCAL cloud then the HPE was processed using the 
RADiCAL model. After a few moments, the FBX files were 
done. In order to compare those results to CMU's ground truth, 
the FBX output files were converted to BVH format using 
Blender. The output skeleton and the joints are shown in Fig. 5. 

C. BVH Projecting to 3D Coordinates 

The motion capture of videos from the RADiCAL and 
CMU datasets is stored in BVH format, including the root 
transaction coordinates and Euler angles for each joint. As 
illustrated in Fig. 6, all the coordinates, including those in the 

BVH files, were projected to a 3D virtual camera to obtain the 
3D coordinates of each joint. 

Algorithm 1 computes the joint coordinates in camera 
space from a BVH file containing joint hierarchy and motion 
data. The algorithm starts by defining the camera intrinsic 
matrix K, which represents the camera's internal parameters 
such as focal length and principal point. The camera extrinsic 
matrix C is also defined, which represents the camera's external 
parameters such as position and orientation in global space. 

𝐾 = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

)       (1) 

Algorithm 1: Extract 3D Joint Coordinates from BVH File. 

Algorithm: Compute Joint Coordinates in Camera Space from 

BVH File 

Input: BVH file with joint hierarchy and motion data 

Output: 3D joint coordinates in camera space for each frame of 

motion data 

1) Load BVH file and extract joint hierarchy and motion 

data. 

2) Define camera intrinsic matrix K with focal lengths 𝑓𝑥 

and 𝑓𝑦 and principal point coordinates 𝑐𝑥 and 𝑐𝑦. 

3) Define camera extrinsic matrix C with rotation matrix R 

and position vector P. 

4) For each frame of motion data, traverse the joint 

hierarchy in forward kinematics to compute global joint 

positions. 

5) Transform global joint positions to camera coordinates 

using K and C. 

6) Output the 3D joint coordinates in camera space for 

each frame of motion data. 

End algorithm. 

 

TABLE I. CMU DATASET COMPONENT AFTER CLEANING, FILTERING, AND CLASSIFICATION 

Number of scenarios Number of sequences Number of views Frequency Scenarios Number of frames 

12 279 1 30 FPS 

Animal behaviors 62 454 

Climbing 981 

Daily activities 6 306 

Dancing 1 122 

Home activities 56 359 

Jumping 1 553 

Reactions 12 852 

Running 332 

Sitting 4 548 

Sport 9 714 

Walking 16 493 

Working 11 952 

    
Female 71 759 

Male 112 907 

    All 184 667 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

48 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Skeleton model hierarchy of CMU. (B): Skeleton model hierarchy of RADiCAL. The red ones are the chosen joints to perform the quantitative evaluation. 

 
Fig. 6. Rendering process of CMU and RADiCAL skeletons. The purpose is to obtain the 3D pose coordinate of joints from angles. 

where, 𝑓𝑥  and 𝑓𝑦  are the focal lengths of the camera in x 

and y directions, and 𝑐𝑥  and 𝑐𝑦  are the coordinates of the 

principal point of the camera. 

𝐶 = (

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

)       (2) 

where, 𝑟𝑖𝑗  is the rotation matrix that describe the camera's 

orientation in global space, and 𝑡𝑖  is translation offset. The 
joint positions and orientations for each frame in the motion 
data are then computed using forward kinematics, with the root 
joint's global position and orientation serving as the initial 
values. The global positions and orientations of child joints are 
then computed by traversing the joint hierarchy, and the 
resulting global joint positions are transformed to camera 
coordinates using the intrinsic and extrinsic matrices. This 
transformation can be represented mathematically as: 

(

𝑋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎

𝑌𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎

𝑍𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎

) = 𝐾 × 𝐶 × (

𝑋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙

𝑌𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙

𝑍𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙

1

) (3) 

where, (𝑋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑌𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑍𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙)the 

global joint position in 3D space, and the resulting is 

(𝑋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎 , 𝑌𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎 , 𝑍𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑐𝑎𝑚𝑒𝑟𝑎) is the joint 

position in camera coordinates. This algorithm provides the 
way to extract joint positions in camera space from a BVH file.  

D. Skeleton Scaling and Evaluation Metrics 

1) Skeleton scaling: Since the skeletons of CMU and 

Radical are not similar, the Procrustes analysis was used to 

determine the scale [1], rotation, and translation. Given 

correspondences of points 𝐴𝑗 ∈ 𝑅3 and 𝐵𝑗 ∈ 𝑅3  of the joint 𝑗 

find scaling, rotation, and translation transformation, called 

similitude transformation that satisfies: 
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𝐴𝑗 = 𝑠𝑅𝐵𝑗 + 𝑇     (4) 

For 𝑅 ∈ 𝑆𝑂(3), 𝑇 ∈ 𝑅, 𝑎𝑛𝑑 𝑠 ∈ 𝑅+ 

2) Evaluation metrics: Our experiments use two metrics. 

The first is the mean per-joint position error (MPJPE [29]) 

between the ground-truth 3D pose and the predicted 3D pose, 

which is calculated using the Eq. (5): Then, we calculate the 

mean error across all poses and actions in the dataset.  

𝑀𝑃𝐽𝑃𝐸 =
1

𝑚
∑ ‖𝑝𝑖

3 + 𝑝𝑖
3̅̅ ̅‖

2
𝑚
𝑖=1   (5) 

For a given skeleton comprising m joints, 𝑝𝑖
3  denotes the 

actual 3D pose of joint 𝑖, whereas 𝑝𝑖
3̅̅ ̅ signifies the predicted 3D 

pose of the same joint. 

The second metric is the Percentage of Correct Keypoints 
for 3D Pose Estimation (PCK3D) [31], a 3D version of the 
PCK utilized for 2D pose estimation [32]. If the estimated joint 
location is within a reasonable distance of the ground-truth 
joint, it is considered to be accurately estimated. Then, the 
proportion of accurately calculated joints is computed. As in 
earlier research, the neighborhood threshold is chosen at 
150mm [31], corresponding to about half the head size. This 
statistic is more expressive and robust than MPJPE, 
highlighting joint mispredictions more clearly. A 15 keypoints 
were examined, which are indicated in red in Fig. 5. 

IV. RESULTS 

As stated previously, qualitative and quantitative 
evaluations were performed. With the restructured CMU 
dataset, the initial step was to obtain the MPJPE and the PCK 
by scenario and gender. The second sort of evaluation 
consisted of picking 3D postures of various scenarios and 
visually analyzing the results' accuracy.  

A. Quantitative Evaluation 

The results obtained using MOTiON by RADiCAL cloud-
based were compared with the ground-truth 3D poses from the 
reconstructed CMU dataset using two metrics measurements 
(MPJPE and PCK). The 3D poses were classified by gender 
and scenario to assess the accuracy of each one. Then the 
accuracy of each joint was discussed. 

1) Comparing by joints: In this evaluation, 15 crucial 

joints were analyzed, as depicted in Fig. 5 where the red joints 

are highlighted. The results are presented in Table II and Fig. 

7, displaying the highest mean error values of the Middle Hip, 

Left Wrist, and Right Wrist joints. While, the lowest mean 

error values were obtained for the Shoulders, Knees, Nose, 

and Nick. 

2) Comparing by scenarios: Fig. 8 and Table III show that 

the MPJPE varied from 90,7 mm to 119,1 mm, depending on 

the scenario. The walking scenario was the most accurate, 

with an MPJPE of 90.7 mm, whereas the running scenario was 

the least accurate. 

Each scenario's MPJPE (walking, jumping, dancing, 
reaction, and animal behavior) was under 100 mm while they 

were near one another, except for home activities, who’s 
MPJPE was just under 100 mm. The MPJPE is more than 100 
mm for the remaining scenarios (daily activities, working, 
climbing, sitting, sports, and running). Expect "Running," 
"Sitting," and "Sport"; all the scenarios were accurate with 
higher than 90% of correct joints according to the PCK values 
of each one. The scenarios: "Home activities," "Jumping," 
"Reactions," and "Walking" had a PCK near 100%. Expect 
running and sports scenarios with a standard deviation of 
around 70 mm. Every other scenario was within 50 mm. 

TABLE II. MEAN ERROR BY JOINTS 

Joints Mean (mm) Standard deviation (mm) 

Nose 85.28 36.11 

Neck 87.15 27.30 

Right 

Shoulder 
77.96 33.85 

Right Elbow 99 41.29 

Right Wrist 116.96 77.72 

Left Shoulder 70.52 30.86 

Left Elbow 103.61 49.12 

Left Wrist 122.73 85.58 

Middle Hip 170.49 20.33 

Right Hip 94.78 24.28 

Right Knee 80.91 37.07 

Right Ankle 92.17 59.06 

Left Hip 91.13 25.73 

Left Knee 89.61 42.77 

Left Ankle 99.07 50.24 

TABLE III. MPJPE BY SCENARIOS 

Scenarios MPJPE (mm) 
Standard 

deviation (mm) 
PCK (%) 

Animal behaviours 92.14 52.33 96.5 

Climbing 112.65 54.48 95.62 

Daily activities 101.92 53.56 95.8 

Dancing 92.14 63.09 94.55 

Home activities 99.44 47.66 97.3 

Jumping 91.30 40.58 99.03 

Reactions 92.97 47.67 98.63 

Running 119.10 72.22 83.68 

Sitting 116.75 59.32 87.28 

Sport 118.31 68.82 83.75 

Walking 90.71 45.39 98.13 

Working 104.79 56.47 91.57 

All 98.76 52.06 95.8 
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Fig. 7. The results of MPJPE by joints. 

 
Fig. 8. The results of MPJPE by scenarios. 

 

Fig. 9. The thresholds and the corresponding PCK. 

Fig. 9 shows a clear progression of the Percentage of 
Correct Keypoints (PCK) in response to the changing Mean 
Per Joint Error (MPJPE) threshold. As the MPJPE threshold 
increases, the PCK also follows suit. Notably, at a relatively 
stringent threshold of 75 mm, the PCK already reaches about 
44%, almost half of the keypoints estimated correctly within 
this error range. This trend continues and the PCK grows to 
about 96% when the MPJPE threshold is relaxed to 150 mm, 
indicating a substantial portion of the estimated keypoints are 
accurately detected within this margin of error. As we further 
expand the MPJPE threshold beyond 150 mm, the PCK 
continues to increase, albeit at a slower rate. The curve 
eventually approaches a saturation point near 100%, indicating 
that practically all keypoints are accurately estimated within 
these larger margins of error. 

3) Comparing by gender: The findings of gender-based 

evaluations are depicted in Table IV and Fig. 10. Male and 

female MPJPEs were comparable, with the female MPJPE (95 
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mm) being 5 mm better than the male MPJPE (100 mm). The 

same holds for the standard deviation, which was almost 

identical. The PCK of both genders was almost the same, with 

95.7%. As shown in Fig. 11, comparing all joints by gender 

reveals a lower mean error for eight male joints. 

TABLE IV. MPJPE BY GENDER 

 Female Male 

MPJPE (mm) 95.7 100.71 

Standard deviation (mm) 53.06 51.31 

PCK (%) 95.9 95.7 

B. Qualitative Evaluation 

One challenging frame from each scenario was selected, 
and RADiCAL output was visually compared to the ground-
truth frame. As demonstrated in Fig. 12, the scenarios such as 
"Animal Behaviors," "Daily Activities," "Reactions," 
"Dancing," "Jumping," "Home Activities," and "Walking" 
imitate the ground-truth quite accurately. In addition, all 
skeletal parts are in their proper locations. In the remaining 
instances, RADiCAL correctly estimated all skeleton parts. 
However, its orientation was incorrect. The "Working" 
scenario was estimated correctly, except for the head in several 
frames. Some parts of the "Sports" scenario, such as the hand, 
were not precisely estimated. 

 
Fig. 10. The results of MPJPE by gender. 

 
Fig. 11. The MPJPE results of comparison of joints by gender. 
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Fig. 12. The qualitative results of each scenario. 

V. DISCUSSION AND LIMITATIONS 

This study provides the first comprehensive evaluation of 
MOTiON by RADiCAL, a cloud-based 3D human motion 
estimation tool, revealing both its potential advantages and 
inherent limitations. In scenarios involving less complex 
actions or slower movements, such as walking or light exercise 
routines, our evaluation demonstrated a relatively low Mean 
Per Joint Position Error (MPJPE) and a high Percentage of 
Correct Keypoints (PCK), signaling promising performance. 
However, the tool's performance diminished in complex, 
dynamic scenarios, including sports movements, actions 
involving occlusion, or tasks requiring significant height 
variation like climbing. 

The distinction in performance directly influences the range 
of applications suitable for MOTiON by RADiCAL. In digital 
content creation fields such as simple animation for games or 
films, or casual fitness tracking where millimeter-level 
precision may not be paramount, the tool's cost-effectiveness 
and accessibility offer substantial benefits. 

However, for applications demanding high-precision 
motion capture, such as advanced biomechanical analysis, 
sports performance analysis, or precise virtual reality 
interaction, the current version of MOTiON by RADiCAL may 
not provide the necessary accuracy. The MPJPE of 98mm 
found in our study, while acceptable in some contexts, could 
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lead to significant errors in these precision-demanding 
applications. 

VI. CONCLUSION 

MOTiON by RADiCAL, as evaluated in this study, shows 
promise as a cost-effective, user-friendly alternative to 
traditional sensor-based motion capture systems. However, the 
tool's current performance suggests its best fit for applications 
where absolute precision is not a critical requirement. 

In realms like basic animation for gaming, motion-guided 
user interface design, or casual fitness tracking, the tool's slight 
inaccuracies are unlikely to substantially impact the end result, 
making it a beneficial tool. Its cost and usability advantages are 
particularly beneficial for independent creators, small studios, 
or hobbyists in these fields. 

However, in precision-critical applications, such as 
advanced biomechanical research, sports performance analysis, 
or high-end virtual reality systems that require nuanced 
interaction, the existing error levels in MOTiON by RADiCAL 
may be prohibitive. For these applications, traditional sensor-
based systems, despite their higher cost and complexity, may 
remain the gold standard. 

In summary, MOTiON by RADiCAL represents a 
significant step forward in democratizing access to 3D human 
motion estimation. However, its current performance 
limitations suggest that it is not a one-size-fits-all solution. 
Future research should explore ways to improve the precision 
of such tools to extend their applicability to a broader range of 
scenarios. 
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