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Abstract—Traditionally, the classification of mushroom 

cultures has conventionally relied on manual inspection by 

human experts. However, this methodology is susceptible to 

human bias and errors, primarily due to its dependency on 

individual judgments. To overcome these limitations, we 

introduce an innovative approach that harnesses machine 

learning methodologies to automate the classification of 

mushroom cultures. Our methodology employs two distinct 

strategies: the first involves utilizing the histogram profile of the 

HSV color space, while the second employs a convolutional 

neural network (CNN)-based technique. We evaluated a dataset 

of 1400 images from two strains of Pleurotus ostreatus mycelium 

samples over a period of 14 days. During the cultivation phase, 

we base our operations on the histogram profiles of the masked 

areas. The application of the HSV histogram profile led to an 

average precision of 74.6% for phase 2, with phase 3 yielding a 

higher precision of 95.2%.  For CNN-based method, the 

discriminative image features are extracted from captured 

images of rhizomorph mycelium growth. These features are then 

used to train a machine learning model that can accurately 

estimate the growth rate of a rhizomorph mycelium culture and 

predict contamination status. Using MNet and MConNet 

approach, our results achieved an average accuracy of 92.15% 

for growth prediction and 97.81% for contamination prediction. 

Our results suggest that computer-based approaches could 

revolutionize the mushroom cultivation industry by making it 

more efficient and productive. Our approach is less prone to 

human error than manual inspection, and it can be used to 

produce mushrooms more efficiently and with higher quality. 

Keywords—Machine learning; convolution neural networks; 

mushroom cultivation; rhizomorph mycelium 

I. INTRODUCTION 

Mushroom cultures can be initiated from either spores or 
tissue [1]. The choice of whether to initiate a mushroom culture 
from spores or tissue depends on several factors, including the 
type of mushroom being grown, the desired yield, and the level 
of control that the cultivator wants to have over the culture. 
When dealing with spores, one must choose a single strain 
from the numerous strains produced. Conversely, tissue culture 
enables the cultivator to preserve the precise genetic makeup of 
the parent mushroom. In either scenario, the outcome is a 
network of cells collectively referred to as the mushroom 
mycelium. According to study [2], there are two main forms of 
mushroom mycelium which are: rhizomorph mycelium and 
tomentose mycelium. The rhizomorph mycelium resembles 

plant roots, and only the growing rhizomorph mycelium is 
utilized for subsequent cultivation. 

According to study [3], mushroom cultivation needs a lot of 
labor. The standard practice for selecting mushroom culture for 
further cultivation is via eye inspection by an expert. This 
method depends on human experts, making it susceptible to 
human bias and errors. The expert classifies rhizomorph and 
fluffy growing mycelium by examining the "fluffiness" of the 
sample under a lamp while holding the petri dish. Intensive 
training is thus required for a worker/newcomer in this field to 
learn how to select the fast-growing rhizomorph mycelium and 
estimate the right moment to transfer the culture to an agar 
petri dish. The fastest-growing rhizomorph mycelium is 
selected and transferred to another agar petri dish. Those 
exhibiting slower growth rates or contamination are 
subsequently discarded. This is where the skill of mushroom 
growers comes into play, as they must discern the quality and 
the optimal moment to harvest the rhizomorph mycelium for 
cultivation in a petri dish. Note that mushroom mycelium can 
grow exponentially, achieving a mass thousands of times its 
original size. Choosing a quality rhizomorph mycelium is 
particularly important to ensure a sizeable harvest. 

We propose a computer vision approach in conjunction 
with a machine learning model. This would leverage 
discriminative image features to quickly identify growing 
rhizomorph mycelium cultures and ascertain the ideal timing 
for their transfer to an agar petri dish. Our objective is to 
differentiate fast-growing rhizomorph mycelium cultures from 
the ones with a slower growth rate. This paper also discusses 
the prediction of rhizomorph mycelium growth based on its 
diameter and identifies the good and bad mycelium. 

Section II examines prior research that has employed 
computer-based technology in mushroom farming and Section 
III describes the process of collecting data for this study. 
Section IV presents the methods used for predicting growth 
rate and identifying good and bad mycelium and Section V 
presents the results of this study. Finally, Section VI concludes 
the paper. 

II. RELATED WORKS 

Computer-based solutions in the field of mushroom 
cultivation mainly focus on two areas: recognizing edible 
mushroom types and monitoring mushroom growth using 
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computer assisted technology such as the Internet of Things 
(IoT). 

Several studies centered on mushroom classification 
include [4]-[10]. The study in [4] classified mushrooms into 
two categories, poisonous and non- poisonous using different 
algorithms like neural network (NN), Support Vector Machines 
(SVM), Decision Tree, and k Nearest Neighbors (kNN). They 
utilized a dataset comprising mushroom images, which 
includes images with and without backgrounds. Experimental 
findings reveal that the most effective technique for classifying 
mushroom images is kNN, achieving an accuracy of 94% when 
utilizing features extracted from images with real dimensions 
of mushroom types, and 87% when using features extracted 
solely from images. The research in [5] proposes a new model 
of classifying 45 types of mushrooms including edible and 
poisonous mushrooms by using a technique of Convolution 
Neural Networks (CNN). They used the library KERAS2.3.1 
for running the CNN TensorFlow and the proposed model 
gives the results of 0.78, 0.73, and 0.74 for precision, recall, 
and F1 score, respectively. The study in [7] used deep learning 
approaches like InceptionV3, VGG16 and Resnet50 to identify 
the mushrooms based on their category on 8190 mushrooms 
images where the ratio of training and testing data was 8:2. 
They used The Contrast Limited Adaptive Histogram 
Equalization (CLAHE) method along with InceptionV3 to 
obtain the highest test accuracy. InceptionV3 achieved the 
highest accuracy of 88.40% among the implemented 
algorithms. The research in [8] conduct a comparison between 
the performance of Random Forest and Reduced Error Pruning 
(REP) tree classification algorithms in classifying edible and 
poisonous mushrooms. The study in [9] employed Gaussian 
naïve Bayes along with Linear Discriminant Analysis (LDA) to 
separate edible and non-edible mushrooms. LDA was used to 
reduce the dataset, which helped in reducing the dimensionality 
of the feature space and removing irrelevant features. LDA 
aims to enhance the distinction between various classes by 
identifying a linear combination of features that most 
effectively discriminates among them. A slightly different 
work by [10] where they utilize K Means clustering algorithm 
to classify mushrooms based on attributes such as structure, 
surface size, cap tone, gill, stalk, smell, place of growth, and 
population. From their study, it is evident that the odor attribute 
stands out as the most significant factor contributing to the 
highest classification accuracy. 

In study [11] proposed an IoT-based monitoring and 
control system for shiitake mushroom farms using wireless 
sensors. According to study [11], implementing IoT technology 
in mushroom farms presents challenges such as energy 
management, data security, sensor node placement, internet 
connectivity, and transmission range. The research in [12] 
designed a smart system called SENSEPACK to monitor the 
environment of a mushroom cultivation farm. This system 
measures temperature, humidity, light, and CO2 levels using 
appropriate sensors to control the environment of the nursing 
room. 

Recently, there has been a notable increase in endeavors to 
automate mushroom cultivation in controlled environments, 
utilizing not only IoT but also mobile applications, such as [13] 
[14]. The study in [13] proposed a solution utilizing an 

Android app was proposed to distinguish between edible and 
poisonous mushrooms. In this work, machine vision and CNN 
classification algorithm is used to develop the app.  The 
automation system introduced by utilizing sensors within the 
mushroom house guarantees ideal conditions for the growth of 
mushroom. 

Other than that, the study in [15] presented a novel 
approach in the mushroom cultivation field, utilizing 
computer-assisted technology to classify mushroom samples 
based on the enzymatic browning reaction. This reaction 
occurs when mushrooms are exposed to the atmosphere, and 
the proposed method employs a support vector machine (SVM) 
classifier to achieve a classification accuracy of 80%. The 
research in [16] employs a dataset sourced from Kaggle for 
mushroom classification and model training purposes. They 
apply methods such as SVM, naive Bayes, and random forest 
algorithms in this study. Their findings reveal that their data is 
prone to overfitting, attributed to its near-linear separability as 
observed through the principle of SVM. Another similar work 
by [17] used decision tree to classify five types of mushrooms, 
they are Button mushrooms, Wood Ear mushrooms, Straw 
mushrooms, Reishi mushrooms and Red Oyster mushrooms. 
Among the feature extracted from the mushroom images are 
mean, skewness, variance, kurtosis, and entropy from the 
mushroom images. 

In general, deep learning techniques are also employed in 
the other agricultural sector to categorize, quantify, and 
partition the areas of significance pertaining to crops. The 
study in [18] published a dataset that uses deep-learning-based 
classification and detection in precision agriculture. CropDeep 
consists of 31,147 images with over 49,000 annotated instances 
from 31 different classes. Based on the results, they suggested 
that the YOLOv3 network has good potential application in 
agricultural detection tasks. The study in [19] proposes a deep 
learning-based solution for object detection in Smart 
Agriculture. The solution can automatically detect damage in 
leaves and fruits, locate them, classify their severity levels, and 
visualize them by contouring their exact locations. Their results 
reveal that the proposed solution which is based on Mask-
RCNN, achieves higher performances in features extraction 
and damage detection/localization compared to other pre-
trained models such as VGG16 and VGG19. Another different 
work proposed by [20] works on algorithm to classify wild 
mushrooms using a deep CNN and Residual Network [20] also 
introduces an optimization method that improved the 
classification effect of the algorithm model, enhancing the 
overall performance of the classification algorithm 

Based on our current understanding of the literature, there 
has been no prior investigation into the use of histogram 
profiles and machine learning approach for the recognition of 
fast-growing rhizomorph mycelium through the analysis of 
image features. As a result, the research problem we are 
currently pursuing represents an unexplored area of inquiry 
within this field. 

III. DATA COLLECTION 

Two strains are used in the experiments, and both are 
Pleurotus ostreatus.  A disk of mycelium of 5 mm diameter 
was placed in the center of a Petri dish containing Potato-
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Dextrose-Agar (PDA) medium. During the spawn-run 
(development and growing of the mycelium) the sealed Petri 
dishes are stored in a dark and neat place. Petri dishes with 
fungi were numbered for identification. Each strain has about 
fifty samples. 

 

Fig. 1. The growth of a good rhizomorph mycelium in 14 days. 

An android camera phone mounted on a tripod. Images of 
Petri dishes with mycelia were obtained against a white 
background and identified with a paper label of a known area 
of 4 cm2 (2 x 2 cm). Photographs were taken daily for fourteen 
days for both strains, totaling 1400 images. Fig. 1 shows a 
sample of a good rhizomorph mycelium sample in 14 days. 
There are three phases (classes) used to categorize the growth 
of mycelium: Phase 1 (Day 1 – Day 5); Phase 2 (Day 6- Day 9) 
and Phase 3 (Day 10 - Day 14). From the observation of the 
sample, the growth is quite drastic in phase 2. During phase 3, 
the growth is the same for the last five days and human eyes 
cannot easily observe the difference for each day. Human eyes 
can also make mistakes during the last two days in phase 2, as 
it can be mistakenly labeled as phase 3. 

 
Fig. 2. The growth of a contaminated rhizomorph mycelium in 14 days. 

Fig. 2 shows a sample of a contaminated rhizomorph 
mycelium sample in 14 days. During phase 1, the good and 
contaminated mycelium cannot be differentiated, as it grows 
the same. However, during phase 2, the contaminated one can 
be easily recognized on day 7. Like good mycelium, during 
phase 3, the growth of the contaminated one is the same for the 
last five days. 

IV. METHOD 

A. Classification Based on HSV Histogram Profile 

For rhizomorph mycelium growth analysis measurement, 
mask ROI segmentation and elimination is used to determine 
the cultivation of the phases. The proposed method determines 
the cultivation phase based on the mask area’s histogram 
profile. Given a top-view and close-up image of the petri dish 
sample, we obtained n candidate mask(s) using Hough circles. 
We set the min circle radii to a default value of 1400px to 
exclude smaller circles. The default threshold value was 
determined heuristically from random sample images of our 
dataset. Next, we build a 2D HSV histogram map (30 hue bins 
x 32 saturation bins) for each candidate mask. Three examples 
of such maps are shown in Fig. 3. The intensity value of each 
cell represents the frequency of occurrence of that hue-
saturation combination for that image. A lighter shade indicates 
a higher peak and vice versa. 
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Fig. 3. 2D HSV histogram maps, each produced from the final mask of an 

image belonging to TK-60-1-10-1. The three images were captured on Day 3, 

Day 7 and Day 12, respectively. We also reported the number of non-zero 
cells for comparison. 

We eliminate a mask candidate if it returns a high entropy 
value since it is more likely to be produced due to a 
segmentation error. The segmented area includes background 
pixels (i.e., petri dish and desk surface) hence the higher 
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variety of hue-saturation combinations. The mask candidate 
with the lowest entropy value (i.e., the lowest number of non-
zero cells) is thus retained as the final mask. 

  

TK-60-1-10-5 

Day 1 
Note: Mask 1 is 

selected. 

Mask 1, 30 non-zero 

cells 
Mask 2, 42 non-zero 

cells 
 

   
Mask 1, 24 non-zero 

cells 

Mask 2, 28 non-zero 

cells 

Mask 3, 32 non-zero 

cells 

Fig. 4. Two instances of the segmentation function returning n>1 mask 

candidates. The mask area is enclosed inside the green-colored circle. 

Fig. 4 shows two instances of our mask ROI segmentation 
function returning multiple candidates. The number of non-
zero cells for each candidate is reported for comparison. Mask 
candidates with more non-zero cells tend to include many 
background pixels. For TK-60-1-10-5, mask number 2 was 
rejected since the Hough circle encloses a larger portion of the 
petri dish rim than mask number 1. For TR-60-1-20-20, the 
decision is not as clear-cut since all three masks enclose (with 
varying degrees) some parts of the rim. Nevertheless, mask 
number 1 was chosen because it contains the least non-zero 
cells. Images with no mask detected are discarded. Such cases 
are typically due to poor image quality during capture. 

Given a 2D HSV histogram map, 𝑀𝑖  our method 
determines the specimen’s label by counting the number of 
non-zero cells, NZERO (M_i), with an intensity value 
exceeding the set threshold, thresh. We then compute the 
absolute difference between the counted value and two 
constants, i.e., lower bound, LBOUND, and upper bound, 
LBOUND. Value for each constant was determined from our 
training set, either using Median, Mod or Average. The first 
constant represents the NON-CONTAMINATED set (i.e., 
lower entropy), and the latter represents the 
CONTAMINATED set (i.e., higher entropy). Thus, the 
formula to obtain the final classification label, i.e., 
CONTAMINATED, C, vs. NON-CONTAMINATED, NC, is 
given below, 

𝐿𝐴𝐵𝐸𝐿(𝑀𝑖) =

{
C,    𝑖𝑓 |NZERO(𝑀𝑖) − 𝐿𝐵𝑂𝑈𝑁𝐷| ≥ |NZERO(𝑀𝑖) − 𝑈𝐵𝑂𝑈𝑁𝐷|

NC,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (1) 

For phase determination, we limit the test dataset to NON-
CONTAMINATED only since contaminated specimens are 
almost impossible to classify due to their chaotic appearance. 
We determine the phase label as a distance function between 

the current image’s non-zero cell count and the LBOUND 
value of each phase, 

PHASE(Mi)= 

{

 1 if |NZERO(Mi)-LBOUND2|>|NZERO(Mi)-LBOUND1|<|NZERO(Mi)-LBOUND3|

2 if |NZERO(Mi)-LBOUND1|>|NZERO(Mi)-LBOUND2|<|NZERO(Mi)-LBOUND3|

3 otherwise

 

  (2) 

B. Classification using CNN-based Method 

On top of the previous method, CNN-based method was 
also chosen to analyze the images of the mushroom. Using 
machine learning does not require handcrafted feature analysis 
and it performs feature analysis within the network. There are 
two neural networks used to predict the growth rate and 
contamination of the mushroom named MNet and MConNet 
respectively (see Fig. 5). The underlying architecture for both 
neural networks is similar except for the activation function for 
the last layer such that the final layer of the neural network is 
using SoftMax for MNet while using sigmoid for MConNet. 

 
Fig. 5. The architectural diagram for MNet and MConNet. 

The architecture of both models is utilizing transfer 
learning from MobileNetV3 due to its acceptable performance 
in low-end mobile devices and possible real-time prediction. 
Moreover, there are two layers such as RandomFlip and 
RandomRotation for generalizing the samples and preventing 
overfitting during the training. The side-effect of this also 
virtually increases the number of samples. Though similar, 
both the neural networks can be combined for improvement in 
performance and latency. However, the method described is not 
feasible when there are mixes of contaminated and non-
contaminated images in the training samples. 

A total of 1400 samples collected earlier are split into 64%, 
16%, and 20% for training, validation, and testing, 
respectively. The samples were trained through TensorFlow by 
minimizing sparse categorical cross entropy for MNet and 
binary cross-entropy for MConNet. The trained models were 
evaluated with testing samples that are not included in the 
training samples. 

V. RESULTS AND ANALYSIS 

In this section, we explained the results in two parts: (a) 
rhizomorph mycelium contamination recognition; and (b) 
growth analysis measurement using two different methods as 
explained in the previous section. 

A. Classification Based on HSV Histogram Profile 

To discover the optimal lower and upper bound values, we 
clustered all images belonging to 30 training specimens 
according to phases, i.e., Phase 1 (Day 1 – 5), Phase 2 (Day 6 – 
8), and Phase 3 (Day 9 – 12), and classification labels. We 
obtained each cluster's median, mod, and average non-zero cell 
count under each intensity threshold value. The results are 
tabulated in Table I. 
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TABLE I. LBOUND AND UBOUND VALUES FOR EACH CLUSTER VS. 
METRIC COMBINATION 

Cluster Metric 

Number of non-zero cells with intensity value 

exceeding threshold 

>0 >64 >128 

NC C NC C NC C 

PHASE 1 

Median 26.0 29.0 4.0 5.0 3.0 3.0 

Mod 23.0 30.0 3.0 4.0 2.0 2.0 

Average 26.0 28.6 4.8 5.0 3.0 3.2 

PHASE 2 

Median 20.0 29.0 5.0 8.0 3.0 5.0 

Mod 16.0 25.0 5.0 8.0 2.0 5.0 

Average 22.5 32.9 6.1 8.1 3.4 4.8 

PHASE 3 

Median 19.0 33.5 5.0 7.0 3.0 4.0 

Mod 17.0 27.0 5.0 6.0 3.0 4.0 

Average 21.2 36.0 5.6 7.9 3.4 4.6 

1) Rhizomorph mycelium contamination recognition: We 

report the average precision of each combination to predict the 

specimen’s label (CONTAMINATED vs. NON-

CONTAMINATED), see Fig. 3, on a test set containing 

never-seen-before images of 20 specimens. The test set 

contains ten contaminated and ten non-contaminated 

specimens. We contrast the results obtained when making the 

prediction based on Phase 2’s images (n=63) vs Phase 3’s 

images (m=72). We exclude Phase 1’s images as 

contamination signs only start to appear from Phase 2 

onwards. 

 
Phase 2 

 
Phase 3 

Fig. 6. Average precision for label prediction on test images belonging to (a) 

Phase 2 and (b) Phase 3. We used different metrics (i.e., Median, Mod and 

Average) on the training set to determine LBOUND and UBOUND. 

Based on the results shown in Fig. 6, the optimal 
combinations for Phase 2’s images are MED128, MOD128, 
and AVG128, with average label prediction precision of 
74.6%. Evidently, setting a strict threshold value to reject non-
zero cells with weak intensity is the best approach for Phase 
2’s images. A hue-saturation combination is retained only if it 
has a high occurrence inside the image. 

Phase 3 returns a higher top precision value, i.e., 95.2%. 
This is expected since contamination (or none) will become 
more apparent in a latter phase. The high precision value 
validates our method of basing the label prediction on non-zero 
cell count (i.e., entropy measure). Unlike Phase 2, a relaxed 
threshold value returns the best result. The optimal 
combination is MOD0. 

2) Rhizomorph mycelium contamination recognition 

growth analysis measurement: We measure the growth of the 

cultivation by phase prediction using the same test set, but 

only on the NON-CONTAMINATED specimens. The results 

are shown in Fig. 7. The highest average precision of 50.5% is 

obtained using MOD0. The lowest average precision of 34.9% 

is obtained using MOD128. The precision of random 

classification by chance is 33.3% (i.e., 1/3). The low precision 

is due to the specimens each exhibiting a different growth rate, 

especially from Phase 2 onwards. Table II shows the average 

precision achieved using MOD0, for different phases. 

 
Fig. 7. Average precision for phase prediction on test images. We used 

different metrics (i.e., Median, Mod and Average) on the training set to 
determine LBOUND and UBOUND. 

TABLE II. AVERAGE PRECISION ACHIEVED USING MOD0 FOR PHASE 1, 
PHASE 2 AND PHASE 3 

PHASE Number of Images Average Precision 

PHASE 1 47 87.2% 

PHASE 2 31 32.3% 

PHASE 3 31 32.3% 

Average: 50.5% 

Fig. 8 shows the training and testing loss for both 
MConNet and MNet models. While the disparity may not be 
readily apparent, it is evident that MConNet exhibits lower loss 
compared to the MNet model. Fig. 9 shows the training and 
testing accuracy for both MConNet and MNet models. Based 
on these graphs, even though the difference is not that obvious, 
MConNet has a higher accuracy performance compared to the 
MNet model. 

0.7140.7140.7460.7140.7140.7460.7300.7140.746

0.000

0.200

0.400

0.600

0.800

1.000

0.905 0.937 0.825 0.952 0.937 0.825 0.857 0.825 0.825

0.000
0.200
0.400
0.600
0.800
1.000

0.495 0.459 0.431
0.505 0.459

0.349
0.468 0.440 0.394

0.000

0.200

0.400

0.600

0.800

1.000



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

524 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 8. Loss graph for MConNet and MNet. 

 
Fig. 9. Accuracy graph for MConNet and MNet. 

B. Classification using CNN-based Method 

1) Rhizomorph mycelium contamination recognition: 

Table III shows the accuracy percentage for contamination 

recognition. According to the mushroom experts’ opinion, 

strain B has several contaminated Petri dishes. The method 

that has been used managed to recognize the contaminated 

samples from strain B which is 100%. Overall, the average 

accuracy for good and contaminated Petri dishes is more than 

96%. 

TABLE III. CONTAMINATION RECOGNITION 

 Good Contaminated 

Strain A 95.66% 92.62% 

Strain B 97.74% 100% 

Average 96.64% 98.97 

2) Growth analysis measurement: Tables IV and V shows 

the mycelium phase recognition for two different strains. The 

average recognition for strain A is 98.3% while 86% for strain 

B. The accuracy for mycelium phase recognition for strain A 

is much higher compared to strain B since the petri dish with 

strain B has more contaminated mycelium. The recognition of 

the phase for strain B is much harder, especially when at phase 

2. This is because mycelium has become more like 

contaminated ones during phase 2. 

TABLE IV. MYCELIUM PHASE RECOGNITION FOR STRAIN A 

Samples/ Phases Day 1 - Day 5 Day 6 - Day 9 Day 10 - Day 14 

Day 1 - Day 5 100% 1%  

Day 6 - Day 9  99% 4% 

Day 10 - Day 14   96% 

TABLE V. MYCELIUM PHASE RECOGNITION FOR STRAIN B 

Samples/ Phases Day 1 - Day 5 Day 6 - Day 9 Day 10 - Day 14 

Day 1 - Day 5 93%   

Day 6 - Day 9 4% 65%  

Day 10 - Day 14 3% 35% 100% 

VI. CONCLUSION 

This paper aims to introduce a machine learning approach 
for detecting rhizomorph mycelium growth and distinguishing 
between healthy and contaminated mycelium based on 
captured images. The results demonstrate that the employed 
method exhibits a notable accuracy in identifying healthy and 
contaminated mycelium. However, the study's scope is 
constrained by reduced precision beyond the initial five days, 
stemming from differing growth rates. 

For our future work, we would like to explore the 
possibility of predicting rhizomorph growth from the area that 
it covered in a petri dish. Based on the area covered by the 
mycelium, we can predict the growth of such mycelium. In 
addition, we plan to use another type of mushroom in the 
experiment. We would like to see whether the growth can be 
measured easily compared to oyster mushroom. 
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