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Abstract—One of the most important applications of text 

mining is sentiment analysis of pandemic tweets. For example, it 

can make governments able to predict the onset of pandemics 

and to put in place safe policies based on people's feelings. Many 

research studies addressed this issue using various datasets and 

models. Nevertheless, this is still an open area of research in 

which many datasets and models are yet to be explored. This 

paper is interested in the sentiment analysis of COVID-19 tweets 

as a prototype. Our literature review revealed that as the dataset 

size increases, the accuracy generally tends to decrease. This 

suggests that using a small dataset might provide misleading 

results that cannot be generalized. Hence, it is better to consider 

large datasets and try to improve analysis performance on it. 

Accordingly, in this paper we consider a huge dataset, namely 

COVIDSenti, which is composed of three sub datasets 

(COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C). These 

datasets have been processed with a number of Machine 

Learning (ML) models, Deep Learning (DL) models, and 

transformers. In this paper, we examine other ML and DL 

models aiming to find superior solutions. Specifically, we 

consider Ridge Classifier (RC), Multinomial Naïve Bayes (MNB), 

Stochastic Gradient Descent (SGD), Support Vector 

Classification (SVC), Extreme Gradient Boosting (XGBoost), and 

the DL Gated Recurrent Unit (GRU). Experimental results have 

shown that unlike the models that we tested, and the state-of-the-

art models on the same dataset, SGD technique with count 

vectorizer showed quite constantly high performance on all the 

four datasets. 

Keywords—COVID-19; deep learning; machine learning; 

sentiment analysis; text mining; tweets 

I. INTRODUCTION 

Text Mining (TM) deals with the automatic extraction of 
interesting information from text. It uses data mining 
techniques to extract information that is hidden within huge 
amounts of unstructured textual data. Such extracted 
information is typically transformed into a structured format 
that can be further processed, possibly using Natural Language 
Processing (NLP) techniques. Sentiment Analysis (SA) is a 
text mining approach that utilizes data science techniques 
including Machine Learning (ML) and Deep Learning (DL) to 
analyze text and identify subjective information. It is 
concerned with assessing feelings and opinions, and classifying 
them into polarities, which are typically either positive, 
negative, or neutral. Social media are popular networks such as 
Facebook and X (formerly, Twitter) that are used by users to 
share their reviews about various topics and incidents. 
Additionally, one of the main uses of the Internet is checking 
reviews of others and expressing personal opinions. Since 

social media posts are mainly about expressing feelings and 
opinions, some researchers believe that Opinion Mining (OM) 
refers to social media SA. SA and OM are often used 
interchangeably. We adopt the term SA in this paper. 

One of the most important and popular social media 
platforms is X in which users express their opinions using 
tweets. Since social media has a great influence on society, 
tweets about pandemics would most probably stimulate fear 
and agony. Tweets data mining can be very helpful in 
generating important health-related facts. For example, many 
research studies have shown that tweets can be exploited in the 
prediction of the onset of pandemics or diseases. SA of tweets 
is thus of special importance during pandemics. It is of great 
benefit to people's lives as it makes governments able to put in 
place safe policies based on inferred people's feelings. 

A recent example of such pandemics is Coronavirus 
Disease 2019 (COVID-19). On March 11th, 2020, the World 
Health Organization (WHO) announced COVID-19 as a 
pandemic. Since at that time, no known effective vaccines or 
treatments existed, the governments and public health sectors 
had to take some precautionary decisions to avoid the spread of 
the infection, including isolation, quarantine, and emergency 
lockdown. During this period, COVID-19 had a negative effect 
on various aspects of people’s lives, and because the lockdown 
gave them more free time, the subject of the greatest portion of 
posts and tweets at that time was that pandemic. Many research 
studies have been concerned with SA of COVID-19 tweets 
using various datasets and various models (ML, DL, and 
transformers) [1-9]. Nevertheless, SA of pandemic tweets in 
general is still an open area of research in which many datasets 
and numerous models are yet to be explored. 

This paper is concerned with the SA of tweets during 
pandemics and considers COVID-19 as a prototype. In other 
words, the research problem is how to analyze tweets during 
pandemics and decide whether their sentiment is positive, 
negative, or neutral. Literature review has revealed that 
accuracy generally tends to decrease with the increase of the 
dataset size. This suggests that results based on relatively 
small-sized datasets might be misleading. Hence, we decided 
to work with large datasets and try to find better solutions for 
analyzing them. Towards this goal, we manipulated a huge 
dataset, namely COVIDSenti and its three sub-datasets 
(COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C) [8]. 
These datasets have been processed with a number of ML 
models, DL models, and transformers. In this paper, we 
examine other ML and DL models aiming to find superior 
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solutions. The contributions of the paper can be summarized as 
follows: 

 Searching for better performing ML and DL model(s) 
for SA of COVIDSenti tweets through a set of 
experiments. 

 Comparison of the results of the various models with 
the state of the art to gain insights that can guide future 
research. 

The rest of this paper is organized as follows: Section II 
presents related work on COVID-19 tweet analysis. Section III 
explains the proposed methodology that this article follows. 
Section IV discusses the datasets and the data preprocessing 
techniques. Models and experimental settings are presented in 
Section V. In Section VI, we compare their performance with 
the state of the art. Finally, Section VII depicts conclusions and 
draws directions for future work for further improvements. 

II. RELATED WORK 

Several research studies studied sentiment analysis of 
COVID-19 tweets. We discuss a recent sample in the order of 
the dataset size. For example, Shofiya and Abidi [1] extracted 
629 Canadian tweets from an open-source publicly available 
IEEE website. They used SentiStrength tool to detect sentiment 
polarity in combination with Support Vector Machine (SVM) 
classifier. The highest achieved accuracy of 87% was achieved 
on 10% test data. They concluded that a large dataset is 
required to increase the performance of the algorithm. On the 
other hand, Chintalapudi et al. [2] considered Indian tweets and 
obtained from github.com a dataset consisting of 3,090 tweets 
extracted from the Indian Twitter platform. The tweets were 
classified into “afraid,” “sad,” “angry,” and “happy.” They 
compared Bidirectional Encoder Representations from 
Transformers (BERT), Logistic Regression (LR), SVM, and 
Long Short-Term Memory (LSTM). The accuracy has been 
used as a metric to evaluate the models. The results showed 
that the BERT model outperformed the other models with 89% 
accuracy. Gupta et al. [3] also considered Indian tweets and 
processed 7,284 tweets having the keyword India lockdown. 
They compared MNB, Bernoulli Naïve Bayes (NB), LR, linear 
SVC, AdaBoost, Ridge classifier, passive aggressive (PA) 
classifier, and a perceptron using accuracy, precision, recall, 
and F1-score. In their experiments, linear SVC with unigram 
showed best performance with 84.4% accuracy, 83.5% 
precision, 82.4% recall, and 82.5% F1-score. 

Ramya et al. [4] considered a slightly larger dataset 
consisting of 11,000 tweets (10,000 for training and 1000 
tweets for testing) and used NB and LR to process them 
combined with n-grams. They also used accuracy as their 
metric. Interestingly, in their experiment, NB showed accuracy 
of about 92.49% for short tweets (less than 70 characters) and 
much lower accuracy of only 60.56% in the case of longer 
tweets. 

Other researchers considered relatively larger datasets. For 
example, Goel and Sharma [5] collected a dataset comprised of 
42,468 tweets. They analyzed them using SVC, Random Forest 
(RF), a neural network (NN) which is a combination of 
convolutional NN (CNN) and LSTM, and BERT. To evaluate 

the performance, they used Area Under the Receiver Operating 
Characteristic Curve (AUC). In their experiment, the best 
model was RF with 96% AUC accuracy. Vernikou et al. [6] 
used another dataset consisting of 44, 955 tweets. Their goal 
was to classify tweets into negative, neutral or positive. They 
used seven different DL models based on LSTM, and a set of 
ML models (MNB, Decision Tree (DT), and RF). The models 
were evaluated using accuracy, precision, recall, and F1-score. 
In their experiment, one of the LSTM-based models, namely 
BERT Tokenizer LSTM showed the best performance with 
90% accuracy, precision, recall, and F1-score. Qi and Shabrina 
[7] extracted a total of 77,332 unique tweets and processed 
those using RF, MNB and SVC models. Performance was 
evaluated using precision, recall, F1-score, and accuracy. They 
also considered three different methods of feature 
representation, namely, bag of words (BoW), TF-IDF, and 
Word2Vec. In their experiments, the SVC using BoW or TF–
IDF showed the best performance with accuracy of 71%. 

Naseem et al. [8] prepared the largest dataset that we 
encountered in our literature review. This is the COVID Senti 
dataset which is composed of 90,000 unique tweets from 
70,000 users. This dataset was divided into three subsets, 
namely, COVID Senti_A, COVID Senti_B, and COVID 
Senti_C. This dataset, that we adopt in this paper, is discussed 
together with its subsets in more details in Section IV. The four 
datasets were analyzed using SVM, NB, RF, and DT. In 
addition to those ML models, they utilized CNN and Bi-
directional LSTM (Bi-LSTM). This is in addition to a set of 
hybrid models and transformers that we do not consider in the 
current research. Accuracy has been used as a metric to 
evaluate performance. Experimental results have shown that 
among the ML models considered, SVM and RF with FastText 
embedding showed accuracy of 84.5% on COVIDSenti. On the 
other hand, among the DL models considered, CNN with 
Glove word embedding showed higher performance of 86.9% 
on the same dataset. 

Jalil et al. [9] used the same dataset in their experiments. 
They examined a set of different ML models, namely K-
Nearest Neighbors (KNN), LR, ensemble, XGBoost, SVM, 
NB, DT, and RF. They also examined a set of deep learning 
models based on CNN and BiLSTM. This is in addition to a set 
of hybrid models and transformers, which as previously noted, 
is not considered in this research study. They also used 
accuracy for performance evaluation. Among the ML models, 
XGBoost showed the best performance with 89.81% accuracy 
on COVIDSenti. On the other hand, among the DL models, a 
combination of CNN, LSTM and Glove word embedding 
showed the best performance with 87.06% accuracy on the 
same dataset. 

The related work is summarized in Table I. As shown in the 
table, researchers used different models and datasets for SA of 
COVID-19 tweets. We notice that as the dataset size increases, 
the accuracy generally tends to decrease. This suggests that 
using a small dataset might provide misleading results that 
cannot be generalized. Hence, it is better to consider large 
datasets and try to improve analysis performance on it. 
Accordingly, in this paper we consider the largest dataset that 
we encountered, namely, COVIDSenti and its three subsets. 
Also, we limit our research study to ML and DL models 
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aiming to find better solutions that would be used in case of 
any future pandemic. Towards this goal, we consider additional 

models in comparison to those used on the same dataset [8-9]. 

TABLE I.  SUMMARY OF RELATED WORK 

Ref No. Dataset Models Metrics Best Results 

[1] 
629 tweets extracted from an open-

source free IEEE website 
SVM 

confusion matrix, 

precision, recall, and 
F1-score 

87% accuracy on 90% training data 

[2] 
3,090 tweets from the Indian 

Twitter platform 
BERT, LR, SVM, LSTM accuracy BERT with 89% accuracy 

[3] 
7,284 tweets having the keyword 

India lockdown 

MNB, Bernoulli NB, LR, Linear 
SVC, AdaBoost, Ridge classifier, 

passive aggressive (PA) classifier, 

perceptron 

accuracy, precision, 

recall, F1-score 

Linear SVC with unigram with 84.4% accuracy, 

83.5% precision, 82.4% recall, and 82.5% F1-score 

[4] 
11,000 tweets (10,000 for training 
and 1000 tweets for testing) 

NB and LR accuracy NB with 91% accuracy on short tweets 

[5] 42,468 tweets SVC, RF, NN, BERT AUC RF with 96% AUC 

[6] 44, 955 tweets 
Seven LSTM-based models, MNB, 

DT, RF 

accuracy, precision, 

recall, F1-score 

Bert Tokenizer LSTM with 90% accuracy, 

precision, recall, and F1-score 

[7] 77,332 tweets RF, MNB, SVC 
precision, recall, F1-
score, and accuracy 

SVC using BoW or TF–IDF with 71% accuracy 

[8] 

COVIDSenti, composed of 90,000 

tweets and its three subsets 
(COVIDSenti_A, COVIDSenti_B, 

and COVIDSenti_C) 

ML (SVM, NB, DT, RF), DL 

(CNN, BiLSTM), and a set of 

hybrid models and transformers 

accuracy 

ML models: SVM and RF with FastText 

embedding with 84.5% accuracy on COVIDSenti 
DL models: CNN with Glove word embedding 

with 86.9% accuracy on COVIDSenti 

[9] 

COVIDSenti, composed of 90,000 

tweets and its three subsets 
(COVIDSenti_A, COVIDSenti_B, 

and COVIDSenti_C) 

ML (KNN, LR, Ensemble, 

XGBoost, SVM, NB, DT, RF), DL 
(CNN, BiLSTM), and a set of 

hybrid models and transformers 

accuracy 

ML models: XGBoost with 89.81% accuracy on 

COVIDSenti DL models: a combination of CNN, 
LSTM and Glove word embedding with 87.06% 

accuracy on COVIDSenti 

III. METHODOLOGY 

The methodology pipeline shown in Fig. 1 follows a typical 
data analytics lifecycle. As shown in the figure, COVID-19 
tweets are first pre-processed, and features are extracted from 
them. Then two experiments are conducted. The first considers 
a set of ML models preceded by data vectorization (represented 
as numeric vectors). The second, on the other hand, involves 

the Gated Recurrent Unit (GRU) DL model. This involves a 
different data representation technique. This is followed by 
discussing and comparing the results of both experiments. 
Finally, we compare our results with those of the state-of-the-
art surveyed research. 

 

Fig. 1. Overview of the proposed approach. 
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IV. DATASETS AND DATA PREPROCESSING 

In this section, we discuss the details of the datasets utilized 
in the experiments and how we pre-processed them before 
building our models. 

A. Datasets Details 

As previously noted, in this research study, we consider the 
COVIDSenti dataset. This dataset is sourced from the open-
source hosting site GitHub and consists of 90,000 unique 
tweets from 70,000 users about COVID-19 from February 
2020 to March 2020. Naseem et al. [8] divided the 
COVIDSenti dataset into three subsets for evaluation and 
generalization purposes: COVIDSenti_A, COVIDSenti_B, and 
COVIDSenti_C. They treated them as four different datasets 
and we adopt the same approach. Each of the four datasets, for 
classification purposes, has three sentiments: positive, 
negative, and neutral. Table II provides an overview of these 
datasets. As shown in the table, overall, the neutral sentiments 
form the highest percentage of COVIDSenti and its subsets. 

B. Data Preprocessing 

Tweets generally form a huge, noisy dataset that requires 
numerous pre-processing steps. The tweets in our datasets were 
processed using Python libraries namely Natural Language 
Toolkit (NLTK), NeatText, and Regular Expression (RE). The 
following techniques were applied in the following order: 

 Any hashtag in the dataset conveys important 
information. The topic of almost every social media site 
is represented using a hashtag such as #COVID19, 
#CoronavirusOutbreak, #COVID, and #Coronavirus. 
As a result, we simply eliminated the "#" symbol. 

 To avoid considering words with uppercase letters 
different from the same words with lowercase letters, 
all words are converted to lowercase. 

 Stop words are the common frequently occurring 
words, which should be ignored because they do not 
provide any meaningful information. Removing these 
stop words is especially useful when building text 
classification models to reduce the amount of data. 

 The fourth step is to remove hyperlinks, @ mentions, 
multiple white spaces, emojis, and punctuation, as well 
as special characters. This is because all these do not 
affect the understanding of the sentences of the tweets 
and do not help in detecting sentiment. 

 We used a lemmatization technique to reduce inflected 
words to their basic forms, e.g., “Mostly” to “Most” or 
“viruses” to “virus.” 

V. MODELS AND EXPERIMENTAL SETTING 

In this section, we discuss the details of the ML and DL 
models used in our experiments. We also discuss the details of 
the experiments including the experimental setting and 
hyperparameters. 

A. ML Models 

The Python library Scikit-learn has many ML classifiers. 
We employed five ML classification models as follows: 

Multinomial Naïve Bayes (MNB) - This idea of this model 
is based Naïve Bayes Theorem, which calculates the 
probability of each of a set of classes, and the class with the 
highest probability is considered the winning class for 
classification. It is thus suitable for text classification with 
multiple classes [6]. 

Linear Support Vector Classification (Linear SVC) – This 
model treats each data item as a vector and searches for a linear 
separator of the classes in their vector space. In higher-
dimensional spaces, a hyperplane is computed. Features 
extracted from the input data are classified based on this plane. 
To obtain the optimal hyperplane, a margin between the classes 
is maximized based on the distance between the nearest vectors 
of the classes, which are called support vectors [3]. 

Extreme Gradient Boosting (XGBOOST) – This model is 
based on the decision tree classifier. An ensemble of such trees 
is usually employed, e.g., gradient boosting machines. 
XGBoost is an extension to this model for speedup and 
improved performance, with minimal resources [10]. 

Ridge Classifier (RC) – This is a variation of Ridge 
Regression. This linear classifier is suitable when the number 
of features is high and exceeds the number of observations 
regardless of whether the problem is binary or multi-class [11]. 

Stochastic Gradient Descent (SGD) – The idea of gradient 
descent is to use data to compute the gradient of an objective 
function to reach its minima. One of the three variants of 
gradient descent is SGD, which frequently updates the model's 
parameters with high variance, causing significant variations. 
This gives it the capability to find new and hopefully, superior 
local minima in comparison to its counterparts [12] [13]. 

TABLE II.  OVERVIEW OF THE DATASETS 

Dataset Positive Negative Neutral Total 

 count % count % count % count % 

COVIDSenti_A 1,968 6.6 5,083 16.9 22,949 76.5 30,000 100 

COVIDSenti_B 2,033 6.8 5,471 18.2 22,496 75.0 30,000 100 

COVIDSenti_C 2,279 7.6 5,781 19.3 21,940 73.1 30,000 100 

COVIDSenti 6,280 7.0 16,335 18.2 67,835 74.9 90,000 100 
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TABLE III.  DEFAULT HYPERPARAMETERS 

RC Multinomial NB SGD Linear SVC XGBoost 

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value 

alpha 1.0 alpha 1.0 loss hinge random_state None penalty 12 max_depth 3 colsample_bytree 1 

fit_intercept True force_alpha warn penalty 12 learning_rate optimal loss squared_hinge learning_rate 0.1 colsample_bylevel 1 

copy_X True fit_prior True alpha 0.0001 eta0 0.0 dual True n_estimators 100 reg_alpha 0 

max_iter None class_prior None l1_ratio 0.15 power_t 0.5 tol 0.0001 silent True reg_lambda 1 

tol 0.0001   fit_intercept True early_stopping False C 1.0 objective multi:softprob scale_pos_weight 1 

class_weight None   max_iter 1000 validation_fraction 0.1 multi_class ovr booster Gbtree base_score 0.5 

solver auto   tol 0.001 n_iter_no_change 5 fit_intercept True n_jobs 1 random_state 0 

positive False   shuffle True class_weight None intercept_scaling 1 nthread None seed None 

random_state None   verbose 0 warm_start False class_weight None gamma 0 missing None 

    epsilon 0.1 average False verbose 0 min_child_weight 1   

    n_jobs None   random_state None max_delta_step 0   

    random_state None   max_iter 1000 subsample 1   
 

B. DL Model 

The basic idea of any DL architecture is to emulate how the 
human brain works. Such architecture is typically layered, and 
each layer provides the input to the next. The network learns as 
each training dataset item is fed to it and saves what it has 
learnt in the form of weights. As an output is generated, it is 
compared to the correct desired one and in the case of a 
mismatch, the weights are updated. This continues until the 
global error is minimized. The network then becomes ready for 
its task. 

One of the most popular DL architectures is Recurrent 
Neural Network (RNN). The typical structure of an RNN cell 
is shown in Fig. 2. As shown in the figure, over time, the 
network is visualized as a set of similar sequential feedforward 
cells. This gives it the ability to memorize data with long-term 
dependencies such as language models. Nevertheless, as the 
length of such a sequence increases, the problem of vanishing 
gradient affects the ability of the model to continue learning. 
Accordingly, other variants have been proposed. 

LSTMs are the most common types of RNNs intended to 
address the vanishing gradient problem of a typical RNN cell. 
A typical LSTM cell is shown in Fig. 3. As shown in the 
figure, its success stems from the existence of a cell state that 
acts as a memory and three gates, namely input, output and 
forget, to decide how much information to input, output, or 
forget respectively. This provides a LSTM cell with a 
relatively long memory in comparison to the short memory of a 
basic RNN cell. This gives it the name ‘Long Short Term 
Memory.’ 

GRU [15] is a simplified variant of LSTM. A typical GRU 
cell is depicted in Fig. 4. As shown in the figure, the GRU cell 
has no cell state like LSTM cells. Instead, it uses an invisible 
state. It also has two gates only, a reset gate and an update gate, 
that incorporate the functions of the input and forget gates of 
LSTM. The update gate acts like a long-term memory while 
the reset gate acts as a short-term memory. This makes GRU 

easier and faster to train and run. Nevertheless, GRU cells 
might not be as capable as LSTM cells when it comes to 
memorizing long-term dependencies as is the case with 
language models. Thus, this tradeoff needs to be taken into 
consideration to benefit from their efficiency while avoiding 
their drawback. 

 
Fig. 2. Schematic diagram of RNN cell [14]. 

 
Fig. 3. Schematic diagram of LSTM cell [14]. 
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Fig. 4. Schematic diagram of GRU cell [14]. 

C. Experimental Setting of the ML Models 

The problem with text is that it is generally considered 
unstructured. To be able to process it, it needs to be 
preprocessed and converted into numeric data. This is enabled 
through NLP feature extraction techniques. In this paper, we 
used two different feature extraction techniques, namely count 
vectorizer and TF-IDF. In count vectorizer approach, text in a 
given document or tweet is vectorized based on its count. This 
is computed for each word that appears in the entire corpus. On 
the other hand, TF-IDF also takes into consideration the 
uniqueness and thus the importance of each term in the whole 
corpus [16]. In addition to vectorizing text, each ML model 
that we employed has its own set of hyperparameters. For each 
ML model, we utilized the default values as shown in Table III. 

1) K-Fold Cross-Validation (KCV) is a commonly used 

approach for evaluating the performance of ML models while 

reducing the chance of overfitting. In KCV, the dataset is first 

partitioned into a set of K equal-sized folds. Each fold is used 

once as the test data, while using the rest of the data for 

training. After exhausting the folds (through K-iterations, the 

average of a given performance metric is computed [17]. 

Stratified K-Fold Cross-Validation (SKCV) is an extension of 

KCV, where class distribution in the original data is taken into 

consideration when sampling [18]. Accordingly, SKCV is 

preferred over KCV in the case of unbalanced class 

distributions [19]. In our experiments, we used SKCV, 

specifically 10-fold cross validation, to split the data into 

training and testing, while computing the  average accuracy of 

the different folds. 

D. Experimental Setting of the DL Model 

In our experiments, we decided to use the efficient GRU 
model. The model layers include, in addition to the basic 
components, one embedding layer, two dropout layers, and a 
dense layer. The embedding layer is used for preprocessing and 
vectorizing a vocabulary of size 10,000. It is followed by a 
dropout layer, with dropout rate of 0.2 to help reduce the 
complexity of the model and the probability of the model 
overfitting. GRU layer follows the drop out layer with 128 
units followed again by another dropout layer with a rate of 
0.2. At the end, a dense layer with 3 neurons and a Softmax 
activation function is used to get the probabilities of the 
possible classes. In the experiments, we used Global Vectors 
(GloVe)-based word representation to learn word embeddings 
from text documents. A pre-trained word embedding GloVe 
with two billion tweets, 27 billion tokens, and 1.2 million 
vocabularies was used to generate a 100-dimensional vector 
from text. 

Finally, we divided the dataset into training data and testing 
data subsets. 80% of tweets were used for training purposes 
and the remaining 20% were used for testing. Training tweets 
help identify the data patterns and thus reduce error rates of the 
test data subset used for the assessment of the model 
performance. We also used Adam optimizer to minimize the 
cross-entropy loss with a batch size of 36 and 10 epochs. This 
is in addition to using Softmax activation for multi-classes 
probabilities, and early stopping to reduce overfitting on a 
Google Colab GPU. 

TABLE IV.  ML CLASSIFIERS WITH DIFFERENT EVALUATION METRICS USING COUNT VECTORIZER 

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti 

 Proposed model/Metric (Accuracy – Precision – Recall – F1-Score) 

  
Accur

acy 

Precisi

on 

Rec

all 

F1-

Sco

re 

Accur

acy 

Precisi

on 

Rec

all 

F1-

Sco

re 

Accur

acy 

Precisi

on 

Rec

all 

F1-

Sco

re 

Accur

acy 

Precisi

on 

Rec

all 

F1-

Sco

re 

Count 

Vectori

zer 

RC 
84.84

% 
84% 85% 

84

% 

84.12

% 
83% 84% 

83

% 

82.78

% 
82% 83% 

82

% 

84.79

% 
84% 85% 

84

% 

MNB 
78.51

% 
75% 79% 

76

% 

78.03

% 
75% 78% 

76

% 

76.97

% 
74% 77% 

75

% 

78.81

% 
76% 79% 

77

% 

SGD 
86.75

% 
86% 

87

% 

86

% 

86.07

% 
85% 

86

% 

85

% 

85.05

% 
84% 

85

% 

84

% 

86.19

% 
85% 

86

% 

85

% 

Linear 

SVC 

84.73

% 
84% 85% 

84

% 

84.27

% 
84% 84% 

84

% 

82.76

% 
82% 83% 

82

% 

85.60

% 
85% 86% 

85

% 

XGBo

ost 

84.99

% 
84% 85% 

83

% 

84.11

% 
84% 84% 

82

% 

82.43

% 
82% 82% 

81

% 

84.10

% 
84% 84% 

82

% 
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VI. RESULTS AND DISCUSSION 

In this section, we provide the results and discussion of the 
ML models and the DL model. We then compare both results 
to each other and to the results of the surveyed research. 

A. Results of the ML Models 

Table IV shows comparison between the five ML models 
that used count vectorizer embeddinhg in terms of accuracy, 
precision, recall, and F1-score. The results of the experiment 
show that the SGD model performed better than all the other 
models that used count vectorizer on COVIDSenti_A, 
COVIDSenti_B, COVIDSenti_C, and COVIDSenti with 
86.75%, 86.07%, 85.05%, and 86.19% accuracy respectively. 
Moreover, RC, Linear SVC, and XGBoost showed almost 
similar performance with average accuracy of 84.85%, 
84.17%, 82.66%, and 84.83% on the four datasets respectively. 
Finally, MNB showed the worst performance with accuracies 
of 78.51%, 78.03%, 76.97%, and 78.81% respectively. The 
same is also true about the other performance metrics except 
that when considering the whole dataset, namely COVIDSenti, 
linear SVC was almost as good performing as SGD. Thus, it 
may be considered to be the second best. What is interesting 
about SGD is that it is the only model to show almost the same 
performance on all datasets with little variability. 

Table V presents the results of comparing the five ML 
models on COVIDSent_A, COVIDSenti_B, COVIDSenti_C, 
and COVIDSenti in the case of the TF-IDF feature extraction 
technique. Unlike the case of count vectorizer, linear SVC 
outperformed SGD, RC, XGBoost and MNB and showed the 
best performance with 85.50%, 85.10%, 83.65% and 85.59% 
accuracy on COVIDSenti_A, COVIDSenti_B, COVIDSenti_C 
and COVIDSenti respectively. In this table, we compare our 
models with the best models in the surveyed literature using 
the same datasets, and with embeddings other than count 
vectorizer. Looking at the table, it is clear that linear SVC was 
also able to outperform these models across all datasets. 
Nevertheless, its performance is still lower than that of SGD 
with count vectorizer. Additionally, its performance is not as 
uniform as that of the latter. Again, MNB showed the worst 
performance among its counterparts. 

B. Results of the DL Model 

Fig. 5 and Table VI show the learning accuracy and loss 
curves and the classification reports of the GRU-based DL 

model that we employed. As shown in the figure, learning 
proceeded successfully until different epochs for each dataset, 
after which though training accuracy continued increasing and 
training loss continued decreasing. Similarly, validation 
accuracy started decreasing and its loss started increasing 
suggesting overfitting. Hence, we had to use early stopping that 
was different from the different datasets. Additionally, as 
shown in Table VI, the neutral class had the best performance 
among its other two counterparts. 

In Table VII, we compare the results of our proposed DL 
model with those of the best performing models in the research 
studies using the same datasets. As shown in the table, our 
model was not able to outperform the other models. 
Nevertheless, none of the model was the best across all datasets 
and none showed uniform performance among them either. For 
example, though DCNN-(GloVe+CNN) was the best on 
COVIDSenti_C and COVIDSenti, Conv1D-LSTM + Glove 
was the best on COVIDSenti_A and COVIDSenti_B. 
Additionally, both had variable performance among the four 
datasets. 

C. Discussion of Results 

Based on the experiments and the related studies on the 
same datasets, among the ML models [8, 9], the proposed SGD 
model with count vectorizer showed the best performance, and 
linear SVC with TF-IDF showed the second best. On the other 
hand, among the DL models [8, 9], none was the best in all 
cases. DCNN- (GloVe+ CNN) showed the best performance in 
the case of COVIDSenti and COVIDSenti_C, while Conv1D-
LSTM + Glove showed the best performance in the case of 
COVIDSenti_A and COVIDSenti_B. These models had 
slightly higher performance in comparison to SGD with count 
vectorizer. Nevertheless, the latter was the only model that 
showed almost uniform performance among the four datasets. 
This implies that the proposed SGD model with count 
vectorizer is the most reliable among its counterparts. 

Another important observation in our experiments is that 
the highest performances encountered, whether using ML 
models or DL models, were all lower than 90%. This suggests 
that the capabilities of the various ML and DL models might be 
limited to this performance level. This is the main challenge 
and limitation of our work, which indicates that it’s worth 
exploring large language transformers. This is the topic of our 
future work. 

TABLE V.  ML CLASSIFIERS WITH DIFFERENT EVALUATION METRICS USING TF-IDF OR FASTTEXT 

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti 

Existing model/Accuracy [8, 9] 

TF-IDF SVM 83.9% 83.0% 82.8% 84.5% 

FastText RF 82.3% 84.1% 80.2% 84.5% 

Proposed model/Accuracy 

TF-IDF 

RC 84.67% 84.1% 82.76% 84.82% 

MNB 77.31% 76.03% 74.49% 76.28% 

SGD 83.31% 82.52% 80.86% 81.16% 

Linear SVC 85.50% 85.10% 83.65% 85.59% 

XGBoost 84.54% 83.6% 82.18% 83.95% 
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Fig. 5. GRU model accuracy and loss for each dataset. 

TABLE VI.  DL CLASSIFICATION REPORT USING GLOVE 

Sentiment 
COVIDSenti COVIDSenti_A COVIDSenti_B COVIDSenti_C 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 
Precision Recall 

F1-

Score 
Precision Recall 

F1-

Score 

Neutral 88.8% 94.5% 91.5% 86.0% 95.1% 90.3% 84.9% 95.9% 90.0% 83.5% 96.3% 89.5% 

Negative 80.8% 68.1% 73.9% 75.3% 54.4% 63.2% 80.1% 53.7% 64.3% 83.3% 53.5% 65.1% 

Positive 73.2% 86.8% 84.3% 84.0% 83.3% 86.8% 84.3% 84.0% 83.3% 86.8% 84.3% 46.6% 

Accuracy 86.8% 84.3% 84.0% 83.3% 

TABLE VII.  COMPARISON OF PROPOSED DL CLASSIFIER ACCURACY WITH BASELINE 

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti 

Existing model/Accuracy [8, 9] 

DCNN- (GloVe+ CNN) 83.4% 83.2% 86.4% 86.9% 

Conv1D-LSTM + Glove 87.0% 86.1% 84.4% 86.9% 

Proposed model/Accuracy 

GRU+GloVe pretrain 86.8% 84.3% 84.0% 83.3% 

VII. CONCLUSION AND FUTURE WORK 

This paper is concerned with sentiment analysis of tweets 
during pandemics with COVID-19 as a prototype. Our related 
work review showed that as the dataset size increases, the 
accuracy generally tends to decrease. This suggests that using a 
small dataset might provide misleading results that cannot be 
generalized. Hence, it is better to consider large datasets and 
try to improve analysis performance on it. Accordingly, in this 
paper we considered a huge dataset namely COVIDSenti and 
its three sub-datasets. We experimented with a set of machine 
learning techniques (MNB, SVC, XGBoost, RC, and SGD) and 
a customized deep-learning GRU model. The experiments 
showed that unlike the models that we tested, and the state-of-
the-art models on the same dataset, SGD technique with count 
vectorizer showed quite constantly high performance on all the 
four datasets. As future work, we intend to use grid search with 
the ML models to figure out whether we could obtain even 

better results. We will also examine additional ML and DL 
models aiming at achieving higher performance. This is in 
addition to possibly other datasets. Finally, since all results of 
ML and DL models were less than 90%, we intend to start 
working with large language model transformers to figure out 
whether superior results could be achieved. 
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