
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

510 | P a g e

www.ijacsa.thesai.org

Sentiment Analysis of Pandemic Tweets with

COVID-19 as a Prototype

Mashail Almutiri, Mona Alghamdi, Hanan Elazhary

Information Systems and Technology Department, University of Jeddah, Jeddah, Saudi Arabia

Abstract—One of the most important applications of text

mining is sentiment analysis of pandemic tweets. For example, it

can make governments able to predict the onset of pandemics

and to put in place safe policies based on people's feelings. Many

research studies addressed this issue using various datasets and

models. Nevertheless, this is still an open area of research in

which many datasets and models are yet to be explored. This

paper is interested in the sentiment analysis of COVID-19 tweets

as a prototype. Our literature review revealed that as the dataset

size increases, the accuracy generally tends to decrease. This

suggests that using a small dataset might provide misleading

results that cannot be generalized. Hence, it is better to consider

large datasets and try to improve analysis performance on it.

Accordingly, in this paper we consider a huge dataset, namely

COVIDSenti, which is composed of three sub datasets

(COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C). These

datasets have been processed with a number of Machine

Learning (ML) models, Deep Learning (DL) models, and

transformers. In this paper, we examine other ML and DL

models aiming to find superior solutions. Specifically, we

consider Ridge Classifier (RC), Multinomial Naïve Bayes (MNB),

Stochastic Gradient Descent (SGD), Support Vector

Classification (SVC), Extreme Gradient Boosting (XGBoost), and

the DL Gated Recurrent Unit (GRU). Experimental results have

shown that unlike the models that we tested, and the state-of-the-

art models on the same dataset, SGD technique with count

vectorizer showed quite constantly high performance on all the

four datasets.

Keywords—COVID-19; deep learning; machine learning;

sentiment analysis; text mining; tweets

I. INTRODUCTION

Text Mining (TM) deals with the automatic extraction of
interesting information from text. It uses data mining
techniques to extract information that is hidden within huge
amounts of unstructured textual data. Such extracted
information is typically transformed into a structured format
that can be further processed, possibly using Natural Language
Processing (NLP) techniques. Sentiment Analysis (SA) is a
text mining approach that utilizes data science techniques
including Machine Learning (ML) and Deep Learning (DL) to
analyze text and identify subjective information. It is
concerned with assessing feelings and opinions, and classifying
them into polarities, which are typically either positive,
negative, or neutral. Social media are popular networks such as
Facebook and X (formerly, Twitter) that are used by users to
share their reviews about various topics and incidents.
Additionally, one of the main uses of the Internet is checking
reviews of others and expressing personal opinions. Since

social media posts are mainly about expressing feelings and
opinions, some researchers believe that Opinion Mining (OM)
refers to social media SA. SA and OM are often used
interchangeably. We adopt the term SA in this paper.

One of the most important and popular social media
platforms is X in which users express their opinions using
tweets. Since social media has a great influence on society,
tweets about pandemics would most probably stimulate fear
and agony. Tweets data mining can be very helpful in
generating important health-related facts. For example, many
research studies have shown that tweets can be exploited in the
prediction of the onset of pandemics or diseases. SA of tweets
is thus of special importance during pandemics. It is of great
benefit to people's lives as it makes governments able to put in
place safe policies based on inferred people's feelings.

A recent example of such pandemics is Coronavirus
Disease 2019 (COVID-19). On March 11th, 2020, the World
Health Organization (WHO) announced COVID-19 as a
pandemic. Since at that time, no known effective vaccines or
treatments existed, the governments and public health sectors
had to take some precautionary decisions to avoid the spread of
the infection, including isolation, quarantine, and emergency
lockdown. During this period, COVID-19 had a negative effect
on various aspects of people’s lives, and because the lockdown
gave them more free time, the subject of the greatest portion of
posts and tweets at that time was that pandemic. Many research
studies have been concerned with SA of COVID-19 tweets
using various datasets and various models (ML, DL, and
transformers) [1-9]. Nevertheless, SA of pandemic tweets in
general is still an open area of research in which many datasets
and numerous models are yet to be explored.

This paper is concerned with the SA of tweets during
pandemics and considers COVID-19 as a prototype. In other
words, the research problem is how to analyze tweets during
pandemics and decide whether their sentiment is positive,
negative, or neutral. Literature review has revealed that
accuracy generally tends to decrease with the increase of the
dataset size. This suggests that results based on relatively
small-sized datasets might be misleading. Hence, we decided
to work with large datasets and try to find better solutions for
analyzing them. Towards this goal, we manipulated a huge
dataset, namely COVIDSenti and its three sub-datasets
(COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C) [8].
These datasets have been processed with a number of ML
models, DL models, and transformers. In this paper, we
examine other ML and DL models aiming to find superior

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

511 | P a g e

www.ijacsa.thesai.org

solutions. The contributions of the paper can be summarized as
follows:

 Searching for better performing ML and DL model(s)
for SA of COVIDSenti tweets through a set of
experiments.

 Comparison of the results of the various models with
the state of the art to gain insights that can guide future
research.

The rest of this paper is organized as follows: Section II
presents related work on COVID-19 tweet analysis. Section III
explains the proposed methodology that this article follows.
Section IV discusses the datasets and the data preprocessing
techniques. Models and experimental settings are presented in
Section V. In Section VI, we compare their performance with
the state of the art. Finally, Section VII depicts conclusions and
draws directions for future work for further improvements.

II. RELATED WORK

Several research studies studied sentiment analysis of
COVID-19 tweets. We discuss a recent sample in the order of
the dataset size. For example, Shofiya and Abidi [1] extracted
629 Canadian tweets from an open-source publicly available
IEEE website. They used SentiStrength tool to detect sentiment
polarity in combination with Support Vector Machine (SVM)
classifier. The highest achieved accuracy of 87% was achieved
on 10% test data. They concluded that a large dataset is
required to increase the performance of the algorithm. On the
other hand, Chintalapudi et al. [2] considered Indian tweets and
obtained from github.com a dataset consisting of 3,090 tweets
extracted from the Indian Twitter platform. The tweets were
classified into “afraid,” “sad,” “angry,” and “happy.” They
compared Bidirectional Encoder Representations from
Transformers (BERT), Logistic Regression (LR), SVM, and
Long Short-Term Memory (LSTM). The accuracy has been
used as a metric to evaluate the models. The results showed
that the BERT model outperformed the other models with 89%
accuracy. Gupta et al. [3] also considered Indian tweets and
processed 7,284 tweets having the keyword India lockdown.
They compared MNB, Bernoulli Naïve Bayes (NB), LR, linear
SVC, AdaBoost, Ridge classifier, passive aggressive (PA)
classifier, and a perceptron using accuracy, precision, recall,
and F1-score. In their experiments, linear SVC with unigram
showed best performance with 84.4% accuracy, 83.5%
precision, 82.4% recall, and 82.5% F1-score.

Ramya et al. [4] considered a slightly larger dataset
consisting of 11,000 tweets (10,000 for training and 1000
tweets for testing) and used NB and LR to process them
combined with n-grams. They also used accuracy as their
metric. Interestingly, in their experiment, NB showed accuracy
of about 92.49% for short tweets (less than 70 characters) and
much lower accuracy of only 60.56% in the case of longer
tweets.

Other researchers considered relatively larger datasets. For
example, Goel and Sharma [5] collected a dataset comprised of
42,468 tweets. They analyzed them using SVC, Random Forest
(RF), a neural network (NN) which is a combination of
convolutional NN (CNN) and LSTM, and BERT. To evaluate

the performance, they used Area Under the Receiver Operating
Characteristic Curve (AUC). In their experiment, the best
model was RF with 96% AUC accuracy. Vernikou et al. [6]
used another dataset consisting of 44, 955 tweets. Their goal
was to classify tweets into negative, neutral or positive. They
used seven different DL models based on LSTM, and a set of
ML models (MNB, Decision Tree (DT), and RF). The models
were evaluated using accuracy, precision, recall, and F1-score.
In their experiment, one of the LSTM-based models, namely
BERT Tokenizer LSTM showed the best performance with
90% accuracy, precision, recall, and F1-score. Qi and Shabrina
[7] extracted a total of 77,332 unique tweets and processed
those using RF, MNB and SVC models. Performance was
evaluated using precision, recall, F1-score, and accuracy. They
also considered three different methods of feature
representation, namely, bag of words (BoW), TF-IDF, and
Word2Vec. In their experiments, the SVC using BoW or TF–
IDF showed the best performance with accuracy of 71%.

Naseem et al. [8] prepared the largest dataset that we
encountered in our literature review. This is the COVID Senti
dataset which is composed of 90,000 unique tweets from
70,000 users. This dataset was divided into three subsets,
namely, COVID Senti_A, COVID Senti_B, and COVID
Senti_C. This dataset, that we adopt in this paper, is discussed
together with its subsets in more details in Section IV. The four
datasets were analyzed using SVM, NB, RF, and DT. In
addition to those ML models, they utilized CNN and Bi-
directional LSTM (Bi-LSTM). This is in addition to a set of
hybrid models and transformers that we do not consider in the
current research. Accuracy has been used as a metric to
evaluate performance. Experimental results have shown that
among the ML models considered, SVM and RF with FastText
embedding showed accuracy of 84.5% on COVIDSenti. On the
other hand, among the DL models considered, CNN with
Glove word embedding showed higher performance of 86.9%
on the same dataset.

Jalil et al. [9] used the same dataset in their experiments.
They examined a set of different ML models, namely K-
Nearest Neighbors (KNN), LR, ensemble, XGBoost, SVM,
NB, DT, and RF. They also examined a set of deep learning
models based on CNN and BiLSTM. This is in addition to a set
of hybrid models and transformers, which as previously noted,
is not considered in this research study. They also used
accuracy for performance evaluation. Among the ML models,
XGBoost showed the best performance with 89.81% accuracy
on COVIDSenti. On the other hand, among the DL models, a
combination of CNN, LSTM and Glove word embedding
showed the best performance with 87.06% accuracy on the
same dataset.

The related work is summarized in Table I. As shown in the
table, researchers used different models and datasets for SA of
COVID-19 tweets. We notice that as the dataset size increases,
the accuracy generally tends to decrease. This suggests that
using a small dataset might provide misleading results that
cannot be generalized. Hence, it is better to consider large
datasets and try to improve analysis performance on it.
Accordingly, in this paper we consider the largest dataset that
we encountered, namely, COVIDSenti and its three subsets.
Also, we limit our research study to ML and DL models

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

512 | P a g e

www.ijacsa.thesai.org

aiming to find better solutions that would be used in case of
any future pandemic. Towards this goal, we consider additional

models in comparison to those used on the same dataset [8-9].

TABLE I. SUMMARY OF RELATED WORK

Ref No. Dataset Models Metrics Best Results

[1]
629 tweets extracted from an open-

source free IEEE website
SVM

confusion matrix,

precision, recall, and
F1-score

87% accuracy on 90% training data

[2]
3,090 tweets from the Indian

Twitter platform
BERT, LR, SVM, LSTM accuracy BERT with 89% accuracy

[3]
7,284 tweets having the keyword

India lockdown

MNB, Bernoulli NB, LR, Linear
SVC, AdaBoost, Ridge classifier,

passive aggressive (PA) classifier,

perceptron

accuracy, precision,

recall, F1-score

Linear SVC with unigram with 84.4% accuracy,

83.5% precision, 82.4% recall, and 82.5% F1-score

[4]
11,000 tweets (10,000 for training
and 1000 tweets for testing)

NB and LR accuracy NB with 91% accuracy on short tweets

[5] 42,468 tweets SVC, RF, NN, BERT AUC RF with 96% AUC

[6] 44, 955 tweets
Seven LSTM-based models, MNB,

DT, RF

accuracy, precision,

recall, F1-score

Bert Tokenizer LSTM with 90% accuracy,

precision, recall, and F1-score

[7] 77,332 tweets RF, MNB, SVC
precision, recall, F1-
score, and accuracy

SVC using BoW or TF–IDF with 71% accuracy

[8]

COVIDSenti, composed of 90,000

tweets and its three subsets
(COVIDSenti_A, COVIDSenti_B,

and COVIDSenti_C)

ML (SVM, NB, DT, RF), DL

(CNN, BiLSTM), and a set of

hybrid models and transformers

accuracy

ML models: SVM and RF with FastText

embedding with 84.5% accuracy on COVIDSenti
DL models: CNN with Glove word embedding

with 86.9% accuracy on COVIDSenti

[9]

COVIDSenti, composed of 90,000

tweets and its three subsets
(COVIDSenti_A, COVIDSenti_B,

and COVIDSenti_C)

ML (KNN, LR, Ensemble,

XGBoost, SVM, NB, DT, RF), DL
(CNN, BiLSTM), and a set of

hybrid models and transformers

accuracy

ML models: XGBoost with 89.81% accuracy on

COVIDSenti DL models: a combination of CNN,
LSTM and Glove word embedding with 87.06%

accuracy on COVIDSenti

III. METHODOLOGY

The methodology pipeline shown in Fig. 1 follows a typical
data analytics lifecycle. As shown in the figure, COVID-19
tweets are first pre-processed, and features are extracted from
them. Then two experiments are conducted. The first considers
a set of ML models preceded by data vectorization (represented
as numeric vectors). The second, on the other hand, involves

the Gated Recurrent Unit (GRU) DL model. This involves a
different data representation technique. This is followed by
discussing and comparing the results of both experiments.
Finally, we compare our results with those of the state-of-the-
art surveyed research.

Fig. 1. Overview of the proposed approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

513 | P a g e

www.ijacsa.thesai.org

IV. DATASETS AND DATA PREPROCESSING

In this section, we discuss the details of the datasets utilized
in the experiments and how we pre-processed them before
building our models.

A. Datasets Details

As previously noted, in this research study, we consider the
COVIDSenti dataset. This dataset is sourced from the open-
source hosting site GitHub and consists of 90,000 unique
tweets from 70,000 users about COVID-19 from February
2020 to March 2020. Naseem et al. [8] divided the
COVIDSenti dataset into three subsets for evaluation and
generalization purposes: COVIDSenti_A, COVIDSenti_B, and
COVIDSenti_C. They treated them as four different datasets
and we adopt the same approach. Each of the four datasets, for
classification purposes, has three sentiments: positive,
negative, and neutral. Table II provides an overview of these
datasets. As shown in the table, overall, the neutral sentiments
form the highest percentage of COVIDSenti and its subsets.

B. Data Preprocessing

Tweets generally form a huge, noisy dataset that requires
numerous pre-processing steps. The tweets in our datasets were
processed using Python libraries namely Natural Language
Toolkit (NLTK), NeatText, and Regular Expression (RE). The
following techniques were applied in the following order:

 Any hashtag in the dataset conveys important
information. The topic of almost every social media site
is represented using a hashtag such as #COVID19,
#CoronavirusOutbreak, #COVID, and #Coronavirus.
As a result, we simply eliminated the "#" symbol.

 To avoid considering words with uppercase letters
different from the same words with lowercase letters,
all words are converted to lowercase.

 Stop words are the common frequently occurring
words, which should be ignored because they do not
provide any meaningful information. Removing these
stop words is especially useful when building text
classification models to reduce the amount of data.

 The fourth step is to remove hyperlinks, @ mentions,
multiple white spaces, emojis, and punctuation, as well
as special characters. This is because all these do not
affect the understanding of the sentences of the tweets
and do not help in detecting sentiment.

 We used a lemmatization technique to reduce inflected
words to their basic forms, e.g., “Mostly” to “Most” or
“viruses” to “virus.”

V. MODELS AND EXPERIMENTAL SETTING

In this section, we discuss the details of the ML and DL
models used in our experiments. We also discuss the details of
the experiments including the experimental setting and
hyperparameters.

A. ML Models

The Python library Scikit-learn has many ML classifiers.
We employed five ML classification models as follows:

Multinomial Naïve Bayes (MNB) - This idea of this model
is based Naïve Bayes Theorem, which calculates the
probability of each of a set of classes, and the class with the
highest probability is considered the winning class for
classification. It is thus suitable for text classification with
multiple classes [6].

Linear Support Vector Classification (Linear SVC) – This
model treats each data item as a vector and searches for a linear
separator of the classes in their vector space. In higher-
dimensional spaces, a hyperplane is computed. Features
extracted from the input data are classified based on this plane.
To obtain the optimal hyperplane, a margin between the classes
is maximized based on the distance between the nearest vectors
of the classes, which are called support vectors [3].

Extreme Gradient Boosting (XGBOOST) – This model is
based on the decision tree classifier. An ensemble of such trees
is usually employed, e.g., gradient boosting machines.
XGBoost is an extension to this model for speedup and
improved performance, with minimal resources [10].

Ridge Classifier (RC) – This is a variation of Ridge
Regression. This linear classifier is suitable when the number
of features is high and exceeds the number of observations
regardless of whether the problem is binary or multi-class [11].

Stochastic Gradient Descent (SGD) – The idea of gradient
descent is to use data to compute the gradient of an objective
function to reach its minima. One of the three variants of
gradient descent is SGD, which frequently updates the model's
parameters with high variance, causing significant variations.
This gives it the capability to find new and hopefully, superior
local minima in comparison to its counterparts [12] [13].

TABLE II. OVERVIEW OF THE DATASETS

Dataset Positive Negative Neutral Total

 count % count % count % count %

COVIDSenti_A 1,968 6.6 5,083 16.9 22,949 76.5 30,000 100

COVIDSenti_B 2,033 6.8 5,471 18.2 22,496 75.0 30,000 100

COVIDSenti_C 2,279 7.6 5,781 19.3 21,940 73.1 30,000 100

COVIDSenti 6,280 7.0 16,335 18.2 67,835 74.9 90,000 100

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

514 | P a g e

www.ijacsa.thesai.org

TABLE III. DEFAULT HYPERPARAMETERS

RC Multinomial NB SGD Linear SVC XGBoost

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

alpha 1.0 alpha 1.0 loss hinge random_state None penalty 12 max_depth 3 colsample_bytree 1

fit_intercept True force_alpha warn penalty 12 learning_rate optimal loss squared_hinge learning_rate 0.1 colsample_bylevel 1

copy_X True fit_prior True alpha 0.0001 eta0 0.0 dual True n_estimators 100 reg_alpha 0

max_iter None class_prior None l1_ratio 0.15 power_t 0.5 tol 0.0001 silent True reg_lambda 1

tol 0.0001 fit_intercept True early_stopping False C 1.0 objective multi:softprob scale_pos_weight 1

class_weight None max_iter 1000 validation_fraction 0.1 multi_class ovr booster Gbtree base_score 0.5

solver auto tol 0.001 n_iter_no_change 5 fit_intercept True n_jobs 1 random_state 0

positive False shuffle True class_weight None intercept_scaling 1 nthread None seed None

random_state None verbose 0 warm_start False class_weight None gamma 0 missing None

 epsilon 0.1 average False verbose 0 min_child_weight 1

 n_jobs None random_state None max_delta_step 0

 random_state None max_iter 1000 subsample 1

B. DL Model

The basic idea of any DL architecture is to emulate how the
human brain works. Such architecture is typically layered, and
each layer provides the input to the next. The network learns as
each training dataset item is fed to it and saves what it has
learnt in the form of weights. As an output is generated, it is
compared to the correct desired one and in the case of a
mismatch, the weights are updated. This continues until the
global error is minimized. The network then becomes ready for
its task.

One of the most popular DL architectures is Recurrent
Neural Network (RNN). The typical structure of an RNN cell
is shown in Fig. 2. As shown in the figure, over time, the
network is visualized as a set of similar sequential feedforward
cells. This gives it the ability to memorize data with long-term
dependencies such as language models. Nevertheless, as the
length of such a sequence increases, the problem of vanishing
gradient affects the ability of the model to continue learning.
Accordingly, other variants have been proposed.

LSTMs are the most common types of RNNs intended to
address the vanishing gradient problem of a typical RNN cell.
A typical LSTM cell is shown in Fig. 3. As shown in the
figure, its success stems from the existence of a cell state that
acts as a memory and three gates, namely input, output and
forget, to decide how much information to input, output, or
forget respectively. This provides a LSTM cell with a
relatively long memory in comparison to the short memory of a
basic RNN cell. This gives it the name ‘Long Short Term
Memory.’

GRU [15] is a simplified variant of LSTM. A typical GRU
cell is depicted in Fig. 4. As shown in the figure, the GRU cell
has no cell state like LSTM cells. Instead, it uses an invisible
state. It also has two gates only, a reset gate and an update gate,
that incorporate the functions of the input and forget gates of
LSTM. The update gate acts like a long-term memory while
the reset gate acts as a short-term memory. This makes GRU

easier and faster to train and run. Nevertheless, GRU cells
might not be as capable as LSTM cells when it comes to
memorizing long-term dependencies as is the case with
language models. Thus, this tradeoff needs to be taken into
consideration to benefit from their efficiency while avoiding
their drawback.

Fig. 2. Schematic diagram of RNN cell [14].

Fig. 3. Schematic diagram of LSTM cell [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

515 | P a g e

www.ijacsa.thesai.org

Fig. 4. Schematic diagram of GRU cell [14].

C. Experimental Setting of the ML Models

The problem with text is that it is generally considered
unstructured. To be able to process it, it needs to be
preprocessed and converted into numeric data. This is enabled
through NLP feature extraction techniques. In this paper, we
used two different feature extraction techniques, namely count
vectorizer and TF-IDF. In count vectorizer approach, text in a
given document or tweet is vectorized based on its count. This
is computed for each word that appears in the entire corpus. On
the other hand, TF-IDF also takes into consideration the
uniqueness and thus the importance of each term in the whole
corpus [16]. In addition to vectorizing text, each ML model
that we employed has its own set of hyperparameters. For each
ML model, we utilized the default values as shown in Table III.

1) K-Fold Cross-Validation (KCV) is a commonly used

approach for evaluating the performance of ML models while

reducing the chance of overfitting. In KCV, the dataset is first

partitioned into a set of K equal-sized folds. Each fold is used

once as the test data, while using the rest of the data for

training. After exhausting the folds (through K-iterations, the

average of a given performance metric is computed [17].

Stratified K-Fold Cross-Validation (SKCV) is an extension of

KCV, where class distribution in the original data is taken into

consideration when sampling [18]. Accordingly, SKCV is

preferred over KCV in the case of unbalanced class

distributions [19]. In our experiments, we used SKCV,

specifically 10-fold cross validation, to split the data into

training and testing, while computing the average accuracy of

the different folds.

D. Experimental Setting of the DL Model

In our experiments, we decided to use the efficient GRU
model. The model layers include, in addition to the basic
components, one embedding layer, two dropout layers, and a
dense layer. The embedding layer is used for preprocessing and
vectorizing a vocabulary of size 10,000. It is followed by a
dropout layer, with dropout rate of 0.2 to help reduce the
complexity of the model and the probability of the model
overfitting. GRU layer follows the drop out layer with 128
units followed again by another dropout layer with a rate of
0.2. At the end, a dense layer with 3 neurons and a Softmax
activation function is used to get the probabilities of the
possible classes. In the experiments, we used Global Vectors
(GloVe)-based word representation to learn word embeddings
from text documents. A pre-trained word embedding GloVe
with two billion tweets, 27 billion tokens, and 1.2 million
vocabularies was used to generate a 100-dimensional vector
from text.

Finally, we divided the dataset into training data and testing
data subsets. 80% of tweets were used for training purposes
and the remaining 20% were used for testing. Training tweets
help identify the data patterns and thus reduce error rates of the
test data subset used for the assessment of the model
performance. We also used Adam optimizer to minimize the
cross-entropy loss with a batch size of 36 and 10 epochs. This
is in addition to using Softmax activation for multi-classes
probabilities, and early stopping to reduce overfitting on a
Google Colab GPU.

TABLE IV. ML CLASSIFIERS WITH DIFFERENT EVALUATION METRICS USING COUNT VECTORIZER

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti

 Proposed model/Metric (Accuracy – Precision – Recall – F1-Score)

Accur

acy

Precisi

on

Rec

all

F1-

Sco

re

Accur

acy

Precisi

on

Rec

all

F1-

Sco

re

Accur

acy

Precisi

on

Rec

all

F1-

Sco

re

Accur

acy

Precisi

on

Rec

all

F1-

Sco

re

Count

Vectori

zer

RC
84.84

%
84% 85%

84

%

84.12

%
83% 84%

83

%

82.78

%
82% 83%

82

%

84.79

%
84% 85%

84

%

MNB
78.51

%
75% 79%

76

%

78.03

%
75% 78%

76

%

76.97

%
74% 77%

75

%

78.81

%
76% 79%

77

%

SGD
86.75

%
86%

87

%

86

%

86.07

%
85%

86

%

85

%

85.05

%
84%

85

%

84

%

86.19

%
85%

86

%

85

%

Linear

SVC

84.73

%
84% 85%

84

%

84.27

%
84% 84%

84

%

82.76

%
82% 83%

82

%

85.60

%
85% 86%

85

%

XGBo

ost

84.99

%
84% 85%

83

%

84.11

%
84% 84%

82

%

82.43

%
82% 82%

81

%

84.10

%
84% 84%

82

%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

516 | P a g e

www.ijacsa.thesai.org

VI. RESULTS AND DISCUSSION

In this section, we provide the results and discussion of the
ML models and the DL model. We then compare both results
to each other and to the results of the surveyed research.

A. Results of the ML Models

Table IV shows comparison between the five ML models
that used count vectorizer embeddinhg in terms of accuracy,
precision, recall, and F1-score. The results of the experiment
show that the SGD model performed better than all the other
models that used count vectorizer on COVIDSenti_A,
COVIDSenti_B, COVIDSenti_C, and COVIDSenti with
86.75%, 86.07%, 85.05%, and 86.19% accuracy respectively.
Moreover, RC, Linear SVC, and XGBoost showed almost
similar performance with average accuracy of 84.85%,
84.17%, 82.66%, and 84.83% on the four datasets respectively.
Finally, MNB showed the worst performance with accuracies
of 78.51%, 78.03%, 76.97%, and 78.81% respectively. The
same is also true about the other performance metrics except
that when considering the whole dataset, namely COVIDSenti,
linear SVC was almost as good performing as SGD. Thus, it
may be considered to be the second best. What is interesting
about SGD is that it is the only model to show almost the same
performance on all datasets with little variability.

Table V presents the results of comparing the five ML
models on COVIDSent_A, COVIDSenti_B, COVIDSenti_C,
and COVIDSenti in the case of the TF-IDF feature extraction
technique. Unlike the case of count vectorizer, linear SVC
outperformed SGD, RC, XGBoost and MNB and showed the
best performance with 85.50%, 85.10%, 83.65% and 85.59%
accuracy on COVIDSenti_A, COVIDSenti_B, COVIDSenti_C
and COVIDSenti respectively. In this table, we compare our
models with the best models in the surveyed literature using
the same datasets, and with embeddings other than count
vectorizer. Looking at the table, it is clear that linear SVC was
also able to outperform these models across all datasets.
Nevertheless, its performance is still lower than that of SGD
with count vectorizer. Additionally, its performance is not as
uniform as that of the latter. Again, MNB showed the worst
performance among its counterparts.

B. Results of the DL Model

Fig. 5 and Table VI show the learning accuracy and loss
curves and the classification reports of the GRU-based DL

model that we employed. As shown in the figure, learning
proceeded successfully until different epochs for each dataset,
after which though training accuracy continued increasing and
training loss continued decreasing. Similarly, validation
accuracy started decreasing and its loss started increasing
suggesting overfitting. Hence, we had to use early stopping that
was different from the different datasets. Additionally, as
shown in Table VI, the neutral class had the best performance
among its other two counterparts.

In Table VII, we compare the results of our proposed DL
model with those of the best performing models in the research
studies using the same datasets. As shown in the table, our
model was not able to outperform the other models.
Nevertheless, none of the model was the best across all datasets
and none showed uniform performance among them either. For
example, though DCNN-(GloVe+CNN) was the best on
COVIDSenti_C and COVIDSenti, Conv1D-LSTM + Glove
was the best on COVIDSenti_A and COVIDSenti_B.
Additionally, both had variable performance among the four
datasets.

C. Discussion of Results

Based on the experiments and the related studies on the
same datasets, among the ML models [8, 9], the proposed SGD
model with count vectorizer showed the best performance, and
linear SVC with TF-IDF showed the second best. On the other
hand, among the DL models [8, 9], none was the best in all
cases. DCNN- (GloVe+ CNN) showed the best performance in
the case of COVIDSenti and COVIDSenti_C, while Conv1D-
LSTM + Glove showed the best performance in the case of
COVIDSenti_A and COVIDSenti_B. These models had
slightly higher performance in comparison to SGD with count
vectorizer. Nevertheless, the latter was the only model that
showed almost uniform performance among the four datasets.
This implies that the proposed SGD model with count
vectorizer is the most reliable among its counterparts.

Another important observation in our experiments is that
the highest performances encountered, whether using ML
models or DL models, were all lower than 90%. This suggests
that the capabilities of the various ML and DL models might be
limited to this performance level. This is the main challenge
and limitation of our work, which indicates that it’s worth
exploring large language transformers. This is the topic of our
future work.

TABLE V. ML CLASSIFIERS WITH DIFFERENT EVALUATION METRICS USING TF-IDF OR FASTTEXT

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti

Existing model/Accuracy [8, 9]

TF-IDF SVM 83.9% 83.0% 82.8% 84.5%

FastText RF 82.3% 84.1% 80.2% 84.5%

Proposed model/Accuracy

TF-IDF

RC 84.67% 84.1% 82.76% 84.82%

MNB 77.31% 76.03% 74.49% 76.28%

SGD 83.31% 82.52% 80.86% 81.16%

Linear SVC 85.50% 85.10% 83.65% 85.59%

XGBoost 84.54% 83.6% 82.18% 83.95%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

517 | P a g e

www.ijacsa.thesai.org

Fig. 5. GRU model accuracy and loss for each dataset.

TABLE VI. DL CLASSIFICATION REPORT USING GLOVE

Sentiment
COVIDSenti COVIDSenti_A COVIDSenti_B COVIDSenti_C

Precision Recall
F1-

Score
Precision Recall

F1-

Score
Precision Recall

F1-

Score
Precision Recall

F1-

Score

Neutral 88.8% 94.5% 91.5% 86.0% 95.1% 90.3% 84.9% 95.9% 90.0% 83.5% 96.3% 89.5%

Negative 80.8% 68.1% 73.9% 75.3% 54.4% 63.2% 80.1% 53.7% 64.3% 83.3% 53.5% 65.1%

Positive 73.2% 86.8% 84.3% 84.0% 83.3% 86.8% 84.3% 84.0% 83.3% 86.8% 84.3% 46.6%

Accuracy 86.8% 84.3% 84.0% 83.3%

TABLE VII. COMPARISON OF PROPOSED DL CLASSIFIER ACCURACY WITH BASELINE

Model dataset COVIDSenti_A COVIDSenti_B COVIDSenti_C COVIDSenti

Existing model/Accuracy [8, 9]

DCNN- (GloVe+ CNN) 83.4% 83.2% 86.4% 86.9%

Conv1D-LSTM + Glove 87.0% 86.1% 84.4% 86.9%

Proposed model/Accuracy

GRU+GloVe pretrain 86.8% 84.3% 84.0% 83.3%

VII. CONCLUSION AND FUTURE WORK

This paper is concerned with sentiment analysis of tweets
during pandemics with COVID-19 as a prototype. Our related
work review showed that as the dataset size increases, the
accuracy generally tends to decrease. This suggests that using a
small dataset might provide misleading results that cannot be
generalized. Hence, it is better to consider large datasets and
try to improve analysis performance on it. Accordingly, in this
paper we considered a huge dataset namely COVIDSenti and
its three sub-datasets. We experimented with a set of machine
learning techniques (MNB, SVC, XGBoost, RC, and SGD) and
a customized deep-learning GRU model. The experiments
showed that unlike the models that we tested, and the state-of-
the-art models on the same dataset, SGD technique with count
vectorizer showed quite constantly high performance on all the
four datasets. As future work, we intend to use grid search with
the ML models to figure out whether we could obtain even

better results. We will also examine additional ML and DL
models aiming at achieving higher performance. This is in
addition to possibly other datasets. Finally, since all results of
ML and DL models were less than 90%, we intend to start
working with large language model transformers to figure out
whether superior results could be achieved.

REFERENCES

[1] C. Shofiya and S. Abidi, "Sentiment analysis on COVID-19-related
social distancing in Canada using Twitter data," International Journal of
Environment Research and Public Health, vol. 18, 2021.

[2] N. Chintalapudi, G. Battineni and F. Amenta, "Sentimental analysis of
COVID-19 tweets using deep learning models," Infecteoud Disease
Reports, vol. 13, 2021.

[3] P. Gupta, S. Kumar, R. Suman and V. Kumar, "Sentiment analysis of
lockdown in India during COVID-19: A case study on Twitter," IEEE
Transactions on Computational Social Systems, vol. 8, 2021.

[4] B. Ramya, S. Shetty, A. Amaresh and R. Rakshitha, "Smart Simon bot
with public sentiment analysis for novel COVID 19 tweets stratifcation,"
SN Computer Science, vol. 2., 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

518 | P a g e

www.ijacsa.thesai.org

[5] R. Goel and R. Sharma, "Studying leaders & their concerns using online
social media during the times of crisis: A COVID case study," Social
Network Analysis and Mining, vol. 11, 2021.

[6] S. Vernikou, A. Lyras and A. Kanavos, "Multiclass sentiment analysis
on COVID-19-related tweets using deep learning models," Neural
Comuting and Applications, vol. 34, 2022.

[7] Y. Qi and Z. Shabrina, "Sentiment analysis using Twitter data: a
comparative application of lexicon- and machine-learning-based
approach," Social Network Analysis and Mining, vol. 13, 2023.

[8] U. Naseem, I. Razzak, M. Khushi, P. W. Eklund and J. Kim,
"COVIDSenti: A large-scale benchmark Twitter data set for COVID-19
sentiment analysis," IEEE Transactions on Computational Social
Systems, vol. 8, 2021.

[9] Z. Jalil et al., "COVID-19 related sentiment analysis using state-of-the-
art machine learning and deep learning techniques," Frontiers in Public
Health, vol. 9, 2022.

[10] T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system,"
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785-794.

[11] I. Sarker, "Machine learning: Algorithms, real world applications and
research directions," SN Computer Science, vol. 2, 2021.

[12] S. Ruder, "An overview of gradient descent optimization algorithms,"
Clinical Orthopaedics and Related Research, 2016.

[13] M. Alagözlü, "Stochastic Gradient Descent Variants and Applications,"
Università della Svizzera Italiana, 2022.

[14] H. Zhao, Z. Chen, H. Jiang, W. Jing, L. Sun and M. Feng, "Evaluation
of three deep learning models for early crop classification using
Sentinel-1A imagery time series—A case study in Zhanjiang, China,"
Remote Sensing, vol, 11, no. 22, 2019.

[15] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of
gated recurrent neural networks on sequence modeling," presented in
Deep Learning and Representation Learning Workshop, 2014.

[16] Y. Fu and Y. Yu, "Research on text representation method based on
improved TF-IDF," Journal of Physics, 2020.

[17] M. Wayahdi, D. Syahputra and S. Ginting, "Evaluation of the K-Nearest
neighbor model with K-fold cross validation classification," Data
Mining, Image Processing, Artificial Intelligence, Networking, vol. 9,
2020.

[18] S. Prusty, S. Patnaik and S. Dash, "SKCV: Stratified K-fold cross-
validation on ML classifiers for predicting cervical cancer," Frontiers in
Nanotechnology, 2022.

[19] S. Widodo, H. Brawijaya and S. Samudi, "Stratified K-fold cross
validation optimation on machine learning for prediction," Sinkron,
vol.7, no. 4, 2022.

