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Abstract—Software is always changed to accommodate 

environmental changes to preserve its existence. While changes 

happen to the software, the internal structure tends to decline in 

quality. The refactoring process is worth running to preserve the 

internal structure of the software. The decomposition process is a 

suitable refactoring process for Blob smell in class. It tried to 

split up the class based on the context in order to arrange it 

based on each responsibility. The previous approach has been 

implemented but still leaves problems. The optimum 

arrangement of class cannot be achieved using the previous 

approach. The genetic algorithm provides the search mechanism 

to find the optimum state based on the criterion stated at the 

beginning of the process. This paper presents the use of genetic 

algorithms to solve the design-level class decomposition problem. 

The paper explained several points, including the conversion 

from class to the chromosome construct, the fitness function 

calculation, selection, crossover, and mutation. The results show 

that the use of a genetic algorithm was able to solve the previous 

problems. The genetic algorithm can solve the local optimum 

problem from the previous approach. The increment of the 

fitness function of the study case proves it. 

Keywords—Genetic algorithm; refactoring; class 
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I. INTRODUCTION 

Software will always be changed due to the changes in its 
environment. This statement is also stated in Lehman's law 
about software evolution [1], [2]. During the operation period, 
the environment somehow changes. This environment 
encompasses various components, including hardware, 
operating systems, libraries, frameworks, databases, and 
external services. These changes can significantly impact how 
software functions and interacts with its surroundings. 
Software environment changes are inevitable, and developers 
need to proactively manage and adapt their applications to 
ensure continued functionality, security, and compatibility as 
qualified software in evolving environments. 

It is essential to develop software that is flexible and 
adaptable to changes to mitigate environmental changes. The 
easiness of adaptation or changes in software, as feedback of 
environment changes, is called software maintainability. Good 
software maintainability can be achieved by maintaining the 
software's internal structure quality. Adapting to environmental 
changes without concern for the software's internal structure 
quality will lead to difficulties in future changes. Compared to 
poorly structured software, software with well-designed 
structures will make it easier to adapt to changes. 

The refactoring process alters the software's internal 
structure without changing the external behavior [3]. 
Implementing this process is worthwhile to prevent software 
from becoming obsolete. In Refactoring, the alteration of 
software structure is done based on the existing problem or 
declining area in terms of quality. Then, those areas are called 
"smell." 

In the previous research, we proposed a refactoring process 
to solve the Blob smell in the class diagram [4]. Blob smell is 
one anomaly condition that is expressed in class that showed in 
class that monopolizes a lot of processes. The main problem 
with this smell is that a lot of responsibility is allocated to a 
single class. Based on the clean architecture theory [5], one 
class must only have one responsibility (Single Responsibility 
Principle). That is why blob smell can be solved by using class 
decomposition to split the responsibility and allocate it to 
several classes. 

Knowing the blob smell and decomposing it at the class 
diagram level has been proposed in previous publications [6], 
[7]. The threshold-based hierarchical agglomerative clustering 
was implemented to perform class decomposition to solve blob 
smell in class at the level of the class diagram. This approach 
looked promising due to the result showing the significance of 
the impact of the decomposition process on software 
maintainability [8]. 

The class decomposition mostly uses the clustering process. 
To evaluate the result of decomposition mostly based on the 
cluster quality produced by proposed approaches. In the 
previous study, two variables were used to measure cluster 
quality: silhouette coefficient and class usability. Class 
usability is important because, in the case of class 
decomposition, the usability of clustering results must be 
considered. Based on the previous result, problems remain, 
especially related to class usability. In some cases, the cluster 
result is considered unable to be implemented as a class 
because there is no class interface, or all elements are not 
accessible except the class itself. It is making the class 
instantiate selfish objects. 

This study used one clustering method to decompose class, 
as in the previous experiment. The method is threshold-based 
hierarchical agglomerative clustering by considering the 
semantic and static similarity between class elements [6], [7]. 
The research results show that the approach increased the 
quality measurement metrics called the Maintainability Index 
(MI). The experiment compared the original and the class after 
decomposing using the approach. On average, all data are 
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increased by the MI. Overall, the results show that the 
approach sounds promising in the future to prevent software's 
internal structure quality [8]. But, there is a problem that needs 
attention to be solved. Several classes still contain the problems 
after the decomposition process. The issues that still exist in 
the last result experiment are: 

 The unusable (class with no method) class can still be 
produced event by the evaluation process. This 
condition makes the MI value low. 

 It is a fact that the decompose candidate class only 
consists of one public method, which makes it 
challenging to find the optimum class usability after the 
decomposition process. 

Besides those problems, getting a higher evaluation value 
for the problematics class is possible than the result of the 
previous approach. This condition immerges the assumption 
that the previous approach tends to trap the local optimum 
result. 

Based on the result, this research will study the problems in 
the previous research. The optimum cluster composition is the 
main purpose of the class decomposition research, which 
considers several factors, including cluster compactness and 
class usability. 

Genetic algorithms (GA) are optimization algorithms 
inspired by the process of natural selection and evolution. This 
method is commonly used for solving optimization and search 
problems by mimicking the principles of biological evolution. 
In general, the GA consists of several processes: initialization, 
selection, crossover (recombination), mutation, evaluation, and 
termination. GA is well-suited for global optimization 
problems, where the goal is to find the best solution from a 
large and complex solution space. The ability of GA to explore 
diverse solutions makes them effective in finding global 
optima [9]. Therefore, this research will use GA to carry out 
the class decomposition process to resolve the remaining 
problems. GA will perform the clustering process and arrange 
the optimum decomposed class to produce the best 
composition. 

The rest of this paper will be arranged as follows. Section 
two will describe the implementation of the genetic algorithm 
to do the clustering process and explain the proposed genetic 
algorithm in the class decomposition process. Section three 
explains the experiment scenario, dataset, and environment. 
Section four describes the result of the experiment and 
discussion as an interpretation of the result. Section five is 
about the conclusion of this research experiment. 

II. GENETIC ALGORITHM FOR CLASS DECOMPOSITION 

A. Genetic Algorithm Research 

GA can also be employed for clustering processes in this 
research experiment. Genetic algorithms are versatile 
optimization techniques that can be adapted for various 
problem domains, and clustering is one such domain. The 
application of genetic algorithms to clustering problems 
involves representing clusters as solutions and optimizing the 
clustering configuration based on certain criteria [10], [11]. 

In software engineering, genetic algorithms are used to 
optimize the software engineering process. GA can be applied 
to automate the generation of test cases, particularly for 
complex software systems. 

By evolving sets of test cases, GA can effectively explore 
the behavior of the system under various conditions, helping to 
uncover bugs and vulnerabilities [12], [13], [14]. 

GA can also be utilized to automate the process of 
refactoring software components by representing different 
refactoring transformations as genes within chromosomes. 
Each chromosome represents a potential refactoring solution, 
consisting of a sequence of refactoring to be applied to the 
target codebase. The fitness of each solution is evaluated based 
on predefined criteria such as improved code readability, 
reduced complexity, enhanced modularity, and adherence to 
design principles [11]. 

The other usage of GA in the refactoring process is 
conducted in this research. GA will be used to do one of the 
refactoring processes called class decomposition to solve the 
blob smell. The following sections will describe the use of GA 
in this research experiment.  

B. Initialization and Chromosome Construction 

The population in the genetic algorithm is the collection of 
genes (solution) that will be randomly generated as an initial 
process. The genes or solutions in the population are based on 
the case that will be solved in this experiment. The gene or 
chromosome representation in the case of class diagram 
decomposition is described as follows. One gene or solution 
represents all elements in the class and the cluster where each 
element is assigned. The cluster number (second row of genes) 
will automatically be generated at the beginning of the 
initialization process. The number of genes or chromosomes in 
one population depends on the initial definition. Fig. 1 show 
the illustration of chromosomes in this case. 

 

 

Fig. 1. Chromosome construction. 

C. Fitness Function and Selection Process 

In this approach, the parent candidates are selected by using 
the linear ranking selection process. Linear ranking selection is 
used in genetic algorithms to select an individual for 
reproduction based on their relative fitness ranks rather than 
their actual fitness values. This method aims to strike a balance 
between favoring high-fitness individuals and maintaining 
diversity in the population. 
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All individuals in the population are ranked based on their 
fitness values. The ranking is done in descending order 
depending on the goal of this experiment. This experiment 
aims to find the best class cluster construction based on the 
cluster compactness and class usability, which are calculated as 
eval value [6]. Higher eval values show better cluster 
construction for the class. The eval value is calculated as 
follows. 

𝐸𝑣𝑎𝑙 = 𝑎. 𝑠(𝑖) + 𝑏. 𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦  (1) 

where 𝑠(𝑖)  is the silhouette coefficient value, and 
𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the class usability value. 𝑎 and 𝑏 are the weights 
for each considered variable. 𝑠(𝑖) measures the similarity of 
one class element to the other element in the same cluster 
compared to the other cluster's elements. The silhouette 
coefficient is computed as follows [10]: 

𝑠(𝑖) =
∑

𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖);𝑏(𝑖)}
𝑛
𝑖=1

𝑛
       (2) 

where 𝑎(𝑖)  is the average dissimilarity of the current 
element 𝑖 to all elements in the same cluster, and 𝑏(𝑖) is the 
minimum of the average dissimilarity of the current element 𝑖, 
to all elements of the other clusters. 

𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 shows how a cluster (will be a class) usability 
by looking at the number of public methods. One cluster with 
one public method is considered useful because it has an 
interface method to collaborate with the other class or object 
[6]. 𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is calculated using following formula: 

𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  {
0 ,𝑚𝑝𝑢𝑏 = 0
1 ,𝑚𝑝𝑢𝑏 ≥ 1

   (3) 

where 𝑚𝑝𝑢𝑏 is the number of public methods in the class 
candidate (in the cluster). 

Once individuals are ranked, the process continues to 
calculate selection probabilities based on the individual's ranks. 
Linear ranking typically uses a linear function to assign these 
probabilities. The probability 𝑃𝑖  of selecting the individual with 
rank 𝑖 is calculated using the following formula [15]: 

𝑃𝑖 =
𝑚𝑎𝑥𝑃𝑟𝑜𝑏−𝑚𝑖𝑛𝑃𝑟𝑜𝑏

𝑁−1
× (𝑠 − 𝑖) + 𝑚𝑖𝑛𝑃𝑟𝑜𝑏  (4) 

where: 

 𝑁 is the population size, 

 𝑠 is a selection pressure parameter, 

 𝑚𝑎𝑥𝑃𝑟𝑜𝑏  and 𝑚𝑖𝑛𝑃𝑟𝑜𝑏  are the maximum and 
minimum selection probabilities, respectively. These 
values are set such that 𝑚𝑎𝑥𝑃𝑟𝑜𝑏 + 𝑚𝑖𝑛𝑃𝑟𝑜𝑏 = 1. 

The selection of individuals is done by defining the 
threshold 𝑟 (between 0 and 1). The individual is in descending 
order of rank until cumulative probability (𝑃𝑖) surpasses 𝑟. The 
individual corresponding to the point where this threshold is 
crossed is selected. The process repeated until two individuals 
were selected for crossover and mutation.  

D. Crossover Process 

The two parents that are taken from the selection process 
are used in the crossover process. The crossover process used 

the single-point crossover, which is commonly used in the 
genetics algorithm. 

This process aims to combine the genetic information from 
two parent chromosomes to create offspring or children's 
chromosomes. 

In single-point crossover, a single crossover point is 
selected randomly along the length of the parent chromosomes. 
Genetic material beyond this point is exchanged between the 
parent chromosomes to create offspring chromosomes. This 
process divides each parent chromosome into two segments: 
one segment up to the crossover point and another segment 
beyond the crossover point. Offspring chromosomes are 
created by combining the segments from both parents at the 
crossover point. 

Let's denote two parents as 𝑃1 and 𝑃2 with numeric 
representation as follows: 

𝑃1 = 𝑝11𝑝12…𝑝1𝑛 

𝑃2 = 𝑝21𝑝22…𝑝2𝑛 
where: 

 𝑛 is the length of the chromosomes, 

 𝑝1𝑖  and 𝑝2𝑖 represent the numeric alleles at position 𝑖 in 
𝑃1 and 𝑃2 respectively. 

The crossover point will be selected based on the crossover 
rate such that 1 ≤ 𝑐 ≤ 𝑛 − 1 . The offspring or children's 
chromosomes 𝑂1 and 𝑂2 are created as follows: 

𝑂1 = 𝑝11𝑝12…𝑝1𝑐𝑝2𝑐+1𝑝2𝑐+2…𝑝2𝑛  

𝑂2 = 𝑝21𝑝22…𝑝2𝑐𝑝1𝑐+1𝑝1𝑐+2…𝑝1𝑛  
The position of 𝑐 in the genes is based on the crossover rate 

of gene length. As a clearer explanation, Fig. 2 depicts the 
crossover process according to the formulation that has been 
explained. 

 
Fig. 2. Crossover process. 
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E. Mutation Process 

Swap mutation is a mutation operator commonly used in 
the genetic algorithm to introduce population diversity by 
randomly swapping gene positions within chromosomes. This 
mutation helps explore new regions of the search space and can 
prevent premature convergence by maintaining genetic 
diversity. Let's consider a chromosome 𝐶  with the numeric 
representation: 

𝐶 = 𝑐1𝑐2…𝑐𝑖 …𝑐𝑗 …𝑐𝑛 

where: 

 𝑛 is the length of the chromosomes, 

 𝑐𝑖 and 𝑐𝑗 represent the numeric alleles at position 𝑖 and 

𝑗, respectively. 

The positions 𝑖  and 𝑗  will selected randomly within the 
chromosome such that 1 ≤ 𝑖, 𝑗 ≤ 𝑛,  and 𝑖 ≠ 𝑗 . The swap 
mutation is performed by swapping the alleles at position 𝑖 and 
𝑗, resulting in a mutated chromosome 𝐶′. 

𝐶′ = 𝑐1𝑐2…𝑐𝑗 …𝑐𝑖 …𝑐𝑛 

After mutation, the mutated chromosome 𝐶′ can replace the 
original chromosome in the population. Fig. 3 shows in detail 
the implementation of swap mutation in this research. Not all 
individuals will be mutated. The mutation process only runs 
when the mutation probability is under the mutation rate. The 
mutation rate is denoted as 𝑝𝑚 represents the probability that a 
mutation will occur in an individual's genes. The mutation rate 
notated as 0 ≤ 𝑝𝑚 ≤ 1. 

 

Fig. 3. Mutation process. 

F. Termination Condition 

Termination conditions are typically based on criteria that 
indicate when the genetic algorithm has reached a satisfactory 
solution or when further iterations are unlikely to yield 
significant improvements. There are many options to define the 
termination conditions, including reaching the maximum 
number of generations, achieving a desired fitness level, 
reaching a stagnation point, or exhausting computational 
resources. In this experiment, the stagnation termination is 
chosen to terminate the regeneration process in the algorithm.  

Stagnation termination is one of the termination conditions 
options that checks if the algorithm has reached a point where 
there is no significant improvement in the population's fitness 

over several generations. In this experiment, 𝑆𝑚𝑎𝑥  represents 
the maximum number of generations without improvement.  

The termination condition can be expressed as: 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑠𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ≥ 𝑆𝑚𝑎𝑥  

where 𝑙𝑎𝑠𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  is the generation index when 
the last significant improvement occurred. 

III. EXPERIMENT SCENARIOS 

The implementation of GA to do class decomposition on 
the design level using a class diagram was conducted based on 
the problems that were found in the previous research. There is 
a class that still has problems related to optimal decomposition. 
The class is PerspectiveConfigurator from ArgoUML 
applications. The PerspectiveConfigurator class has been 
decomposed using the previous approach, but we still have not 
found the optimal composition due to only one public method 
in the class and the possibility of being trapped in a local 
optimum. 

The scenario of this research is as follows. The first, the 
genetic algorithm concept that is described in section two, will 
be implemented in the prototype application to make the 
experiment run efficiently. The next step is class profile 
extraction. This process aims to collect all class information as 
a basic knowledge to do decomposition [7], [16]. After the 
class profile was collected, the process continued to 
decomposition. The decomposition will be done in two 
processes: the first decomposition using the previous approach 
[3] and the second using the proposed approach. For the final 
process, the result of the decomposition will be analyzed and 
compared to get the comparison results. Fig. 4 shows how this 
experiment will be held. 

 
Fig. 4. Experiment scenario. 

The use of genetic algorithms is justified by its advantages 
in overcoming local optimum problems. This research assumes 
that the decomposition of class at the level of design using 
genetic algorithms will produce better results in class 
composition. Before running the scenarios that are explained in 
Fig. 4, the preliminary experiment will be run to find the best 
configuration in the case of this research. The genetic 
algorithm might generate a different solution based on the 
references in each run [17]. Therefore, every experiment 
attempt will run ten times to find the best solution. 
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IV. EXPERIMENT RESULT AND DISCUSSION 

Several factors can influence the performance of GA, but 
one of the most crucial factors is the selection of appropriate 
parameters. The factors are as follows [18]. 

1) Population Size: The size of the population impacts the 

diversity of solutions explored by the algorithm. 

2) Crossover Rate: The probability of crossover 

determines the extent to which genetic material is exchanged 

between individuals in the population. A higher crossover rate 

encourages exploration by promoting the recombination of 

genetic material, while a lower rate may lead to slower 

convergence. 

3) Mutation Rate: The mutation rate controls the 

probability of introducing random changes in individuals' 

genomes. A higher mutation rate can help maintain genetic 

diversity and prevent premature convergence, while a lower 

rate may lead to stagnation in the search process. 

Furthermore, the performance analysis is done by running 
several scenarios based on the three factors. This analysis aims 
to know how the best configuration of GA is to be 
implemented in the class decomposition process (using 
PerspectiveConfigurator class as an object of study).  

B. Population Size 

The first scenario was done with the population size. The 
GA will run five times with different population sizes, starting 
from 10 increments by ten until 50. The result of the 
experiment is shown in Table I. Table I shows the data in every 
run based on the population size. The data collected are 
average fitness, average time, number of generations, and 
standard deviation. Based on the comparison of collected data 
in Table I, the population size 10 is the best solution among the 
other populations. The average fitness value is 0.449, and the 
average time is 1575.7 milliseconds, which is the smallest 
generation number. However, the standard deviation is the 
highest compared to the others. The high standard deviation 
indicates that each individual's fitness value is spread and is not 
close to the average fitness. Sometimes, the GA finds very low 
fitness and sometimes very high. However, even so, in a 
population of 10, it can find the best solution more frequently. 
The standard deviation shows the performance of GA in the 
case of exploration and exploitation. The standard deviation 
value is assumed to correlate with the ability to perform 
randomization to produce diversity. The high value assumes 
that the randomization leads to a fast convergence result. 
Sometimes, it leads to the right way, but sometimes, it will get 
lost in the wider search space. It is worrying that with a high 
standard deviation value, there are areas that are not explored 
in the search space. That is why this approach is more effective 
in small populations. 

TABLE I. DECOMPOSITION OF EACH POPULATION SIZE 

No

. 

Populati

on 

Average 

Fitness 

Average Time 

(ms) 
Generation 

Standard 

Deviation 

1 10 0.449 1575.7 714 0.425 

2 20 -0.485 6853.9 1494 0.050 

3 30 -0.530 35180.1 4858.6 0.023 

4 40 -0.542 212647.6 
21621.

4 
0.0227 

5 50 -0.557 1912107.1 
135802

.5 
0.0400 

Fig. 5 shows the comparison of average fitness in different 
population sizes. With this result, running GA in the small 
population size in this research proves that ten individuals are 
an effective number to find the solution. The solution 
exploration is limited to a small area near the most optimum 
solution in a small population. 

 

Fig. 5. Average fitness on different population size. 

The higher population size produces more diverse solutions 
in the solution space and lowers the probability of finding the 
best solution. This is confirmed by the population size 20 to 50 
data, which shows that the average fitness is in the range of -
0.4 and below and has a low standard deviation. The next 
experiment scenario will use ten as the population size. 

In Fig. 5, the population from ten to 20 seems to decrease 
significantly. For more detail, it runs more decomposition 
processes using population size detail between ten to 20 with 
the increment of two. Fig. 6 shows the result of the 
decomposition process. The trend of average fitness between 
populations ten to 20 is decreasing slightly with every 
increment of population size. The standard deviation 
sometimes increases due to the discovery of the best solution 
among decomposition experiments using GA. 

 
Fig. 6. Population size between 10 and 20. 
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C. Crossover Rate 

GA is a random-based solution finder. The random process 
seems to be the core of finding the best solution. The crossover 
rate is the percentage of crossover that will be done in every 
regeneration process. This rate will determine how many genes 
will be exchanged between two parents to produce offspring or 
children. This experiment will be run at several crossover rates 
starting from 0.1 with increments of 0.1 until 0.9. Every 
crossover rate runs ten times. Table II shows the result of the 
experiment using different crossover rates. 

TABLE II. CROSSOVER RATE (POPULATION SIZE = 10) 

No. 
Crossover 

Rate 

Average 

Fitness 

Average 

Time (ms) 
Generation 

Standard 

Deviation 

1 0.1 -0.324 3670.5 1632.4 0.348 

2 0.2 0.009 3017.6 1331.6 0.563 

3 0.3 -0.118 2065.8 883.1 0.539 

4 0.4 0.010 1860 797.5 0.562 

5 0.5 0.228 2167 938.7 0.560 

6 0.6 0.115 1917.1 838.2 0.577 

7 0.7 0.223 2324.8 1001.6 0.566 

8 0.8 0.222 2879.8 1078 0.568 

9 0.9 -0.218 7240.9 2660.4 0.464 

Based on the result in Table II, the crossover rate of 0.5 is 
the best solution, with an average fitness of 0.228. The 
standard deviation is relatively high, with the same pattern as 
the crossover rate of 0.2 to 0.8. A high standard deviation value 
indicates that at the specific crossover rate, there is a possibility 
of finding a solution with high fitness. The crossover rates of 
0.1 and 0.9 have lower standard deviations, which means a 
lower possibility of finding the best solution. The high average 
fitness is on the crossover rate between 0.5 to 0.8. Based on 
this result, genes' best exchange and shuffling portion start 
from 50% to 80%. Fig. 7 shows the average fitness on different 
crossover rates, with the best rate of 0.5. The next scenario will 
use 0.5 to do the next scenario. 

 
Fig. 7. Average fitness on different crossover rates. 

D. Mutation Rate 

The next scenario is to run GA for class decomposition in 
different mutation rates. The mutation is the gene shuffle in the 
individual. The mutation rate is the possibility that the mutation 
process will be implemented in the individual during every 
regeneration process. The experiment will run using several 
mutation rates starting from 0.1 until 1 with an increment of 
0.1. The result of the experiment is shown in Table III. 

TABLE III. MUTATION RATE (POPULATION SIZE = 10) 

No. 
Mutation 

Rate 

Average 

Fitness 

Average Time 

(ms) 
Generation 

Standard 

Deviation 

1 0.1 -0.577 84.6 22.1 0.026 

2 0.2 -0.575 120.8 41.4 0.026 

3 0.3 -0.588 424 172.4 0.024 

4 0.4 -0.565 844.1 353.2 0.048 

5 0.5 -0.491 2001.8 834.9 0.039 

6 0.6 -0.339 2406.7 977.2 0.353 

7 0.7 -0.236 2649.4 1061.8 0.474 

8 0.8 -0.110 2422.2 952.7 0.534 

9 0.9 -0.095 1953.7 819.5 0.523 

10 1.0 0.327 1706.2 730.3 0.539 

Based on the result shown in Table III, the best result is 
mutation rate 1. This means that the best solution can be found 
when mutated genes are in every regeneration more frequently 
than the other's mutation rate. The mutation rate of 1.0 
produces an average fitness of 0.327, but the standard deviation 
is relatively high. It has the same pattern as the other 
experiment scenarios. Fig. 8 shows the average fitness in every 
mutation rate. The average fitness is climbing, starting from a 
mutation rate of 0.1 to 1. The standard deviation starts to climb 
higher on the mutation rate of 0.6 simultaneously with the 
increase of standard deviation. This means that starting from 
0.6, the possibility of finding the best solution increases until 
the mutation rate is 1. 

 

Fig. 8. Average fitness on different mutation rates. 

E. Comparing to the Previous Experiment Result 

Based on the previous experiment, the 
PerspectiveConfigurator class is one of the problematics 
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classes [8]. There is only one public method in this class, 
which is also indicated as Blob class. The clustering process 
using the previous method (Agglomerative Hierarchical 
Clustering/AHC + Evaluation) indicates that there was still a 
problem with the result. 

In this research, one attempt of the experiment was re-run 
using AHC, and the evaluation process used the weight of 
Silhouette and CUsability, which are 0.5 and 0.5, respectively. 

The results show that (Table IV) this approach produces 
two clusters, and one of those clusters cannot be implemented 
due to the nonexistence of a public method. The cluster without 
a public method will be implemented as a class without a 
public method. For the instantiation, it will produce the selfish 
object that cannot collaborate with the other objects. Table IV 
shows the output of the clustering process by prototype 
application. 

TABLE IV. CLUSTERS RESULT OF AHC APPROACH 

Cluster 1 Cluster 2 

perspectiveConfigurator 
perspectiveRulesList 

sortJListModelMethod 

doRemoveRuleMethod 
doAddRuleMethod 

updateRuleLabelMethod 
updatePersLabelMethod 

updateLibLabelMethod 

renameTextField 
splitPane 

perspectiveListModel 

perspectiveRulesListModel 
ruleLibraryListModel 

configPanelNorth 

configPanelSouth 
INSET_PX 

LOG 

loadLibraryMethod 
loadPerspectivesMethod 

ruleLibLabel 

makeListsMethod 
rulesLabel 

persLabel 

makeButtonsMethod 
makeLayoutMethod 

makeListenersMethod 

moveUpButton 
newPerspectiveButton 

ruleLibraryList 

perspectiveList 
resetToDefaultButton 

moveDownButton 

removeRuleButton 

duplicatePerspectiveButton 

addRuleButton 

removePerspectiveButton 

 

For comparison, the clustering process is done using the 
genetic algorithm with the same specification (weight 0.5 for 
each Silhouette and CUsability). The results show that the 
genetic algorithm produces only one cluster. In other words, 
the most optimum cluster composition for 
PerspectiveConfigurator is not to be decomposed because of 
the constraint of class usability. 

Decomposition results that cannot be used are something to 
be avoided because they are useless. With only one cluster 
produced by the GA, it will be instantiated to be one object that 
still has the ability to collaborate with other objects. 

The AHC and GA approaches produce the highest Eval 
values of 0.42 and 0.661, respectively. The following figure 
shows the comparison. Fig. 9 shows the iteration log of the 
decomposition process using AHC, which shows the growth of 
the Eval value. Fig. 10 shows the generation log using GA, 
which shows the average fitness value (Eval value). It shows 
the growth of fitness value from generation one until 
generation 499. At the end of the regeneration process, to find 
the best solution, there are significant fitness fluctuations. The 
random process from GA (crossover and mutation) seems to 
produce significant movement to find the best solution. The 
results shown in Fig. 9 and Fig. 10 prove that GA, with its 
random mechanism, is able to find a higher fitness value (Eval 
value) than AHC, which is assumed to pass the local optimum. 

 
Fig. 9. Perspective configurator using previous approach's log. 

 
Fig. 10. Perspective configurator using GA's log. 

V. CONCLUSION 

Class decomposition is one of the interesting fields in 
refactoring research, especially when refactoring is done at the 
design level. This paper has proposed an approach to class 
decomposition utilizing GA and demonstrated its superiority 
over the traditional agglomeration hierarchical clustering 
method (previous approach). Through rigorous 
experimentation and analysis, it has been evidenced that the 
GA-based approach outperforms the hierarchical clustering 
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method in terms of result quality. Based on the problems that 
are a focus of this research, the PerspectiveConfigurator class's 
problem can be solved by utilizing GA. The fitness value 
comparison (Eval value in the previous approach) shows that 
there is an increment in the utilization of GA in this research. 
The fitness values of AHC and GA are 0.42 and 0.661, 
respectively. On the fitness value 0.661, the clustering result 
produced by GA results in only one cluster, but it matches the 
quality criterion (considering the silhouette and CUsability). 

The rationalization behind the effectiveness of the GA lies 
in its ability to explore through the search space and efficiently 
navigate through various combinations of class 
decompositions. Unlike hierarchical clustering, which tends to 
produce suboptimal solutions due to its greedy nature and 
dependence on initial conditions, the genetic algorithm 
employs a population-based evolutionary strategy to converge 
towards globally optimal solutions while avoiding local 
optima. An increase in the fitness value of GA proves this. 

The standard deviation typically plays a role in guiding the 
exploration and exploitation phases of the optimization 
process. Specifically, the standard deviation is often associated 
with randomization operators within the GA. Finding a high 
standard deviation value raises the desire to conduct a deeper 
exploration regarding this matter in the future. For the future 
plan, adjusting the standard deviation by adjusting the 
randomization operators (mutation and crossover mechanism) 
is assumed to fine-tune the balance between exploration and 
exploitation, thereby influencing the GA's ability to efficiently 
search for more optimal solutions. 
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