
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

461 | P a g e

www.ijacsa.thesai.org

A Genetic Algorithm-based Approach for

Design-level Class Decomposition

Bayu Priyambadha1, Nobuya Takahashi2, Tetsuro Katayama3

Faculty of Computer Science, Universitas Brawijaya, Malang, Jawa Timur, Indonesia1

Faculty of Engineering, University of Miyazaki, Miyazaki, Japan2,3

Abstract—Software is always changed to accommodate

environmental changes to preserve its existence. While changes

happen to the software, the internal structure tends to decline in

quality. The refactoring process is worth running to preserve the

internal structure of the software. The decomposition process is a

suitable refactoring process for Blob smell in class. It tried to

split up the class based on the context in order to arrange it

based on each responsibility. The previous approach has been

implemented but still leaves problems. The optimum

arrangement of class cannot be achieved using the previous

approach. The genetic algorithm provides the search mechanism

to find the optimum state based on the criterion stated at the

beginning of the process. This paper presents the use of genetic

algorithms to solve the design-level class decomposition problem.

The paper explained several points, including the conversion

from class to the chromosome construct, the fitness function

calculation, selection, crossover, and mutation. The results show

that the use of a genetic algorithm was able to solve the previous

problems. The genetic algorithm can solve the local optimum

problem from the previous approach. The increment of the

fitness function of the study case proves it.

Keywords—Genetic algorithm; refactoring; class

decomposition; blob smell; software internal quality

I. INTRODUCTION

Software will always be changed due to the changes in its
environment. This statement is also stated in Lehman's law
about software evolution [1], [2]. During the operation period,
the environment somehow changes. This environment
encompasses various components, including hardware,
operating systems, libraries, frameworks, databases, and
external services. These changes can significantly impact how
software functions and interacts with its surroundings.
Software environment changes are inevitable, and developers
need to proactively manage and adapt their applications to
ensure continued functionality, security, and compatibility as
qualified software in evolving environments.

It is essential to develop software that is flexible and
adaptable to changes to mitigate environmental changes. The
easiness of adaptation or changes in software, as feedback of
environment changes, is called software maintainability. Good
software maintainability can be achieved by maintaining the
software's internal structure quality. Adapting to environmental
changes without concern for the software's internal structure
quality will lead to difficulties in future changes. Compared to
poorly structured software, software with well-designed
structures will make it easier to adapt to changes.

The refactoring process alters the software's internal
structure without changing the external behavior [3].
Implementing this process is worthwhile to prevent software
from becoming obsolete. In Refactoring, the alteration of
software structure is done based on the existing problem or
declining area in terms of quality. Then, those areas are called
"smell."

In the previous research, we proposed a refactoring process
to solve the Blob smell in the class diagram [4]. Blob smell is
one anomaly condition that is expressed in class that showed in
class that monopolizes a lot of processes. The main problem
with this smell is that a lot of responsibility is allocated to a
single class. Based on the clean architecture theory [5], one
class must only have one responsibility (Single Responsibility
Principle). That is why blob smell can be solved by using class
decomposition to split the responsibility and allocate it to
several classes.

Knowing the blob smell and decomposing it at the class
diagram level has been proposed in previous publications [6],
[7]. The threshold-based hierarchical agglomerative clustering
was implemented to perform class decomposition to solve blob
smell in class at the level of the class diagram. This approach
looked promising due to the result showing the significance of
the impact of the decomposition process on software
maintainability [8].

The class decomposition mostly uses the clustering process.
To evaluate the result of decomposition mostly based on the
cluster quality produced by proposed approaches. In the
previous study, two variables were used to measure cluster
quality: silhouette coefficient and class usability. Class
usability is important because, in the case of class
decomposition, the usability of clustering results must be
considered. Based on the previous result, problems remain,
especially related to class usability. In some cases, the cluster
result is considered unable to be implemented as a class
because there is no class interface, or all elements are not
accessible except the class itself. It is making the class
instantiate selfish objects.

This study used one clustering method to decompose class,
as in the previous experiment. The method is threshold-based
hierarchical agglomerative clustering by considering the
semantic and static similarity between class elements [6], [7].
The research results show that the approach increased the
quality measurement metrics called the Maintainability Index
(MI). The experiment compared the original and the class after
decomposing using the approach. On average, all data are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

462 | P a g e

www.ijacsa.thesai.org

increased by the MI. Overall, the results show that the
approach sounds promising in the future to prevent software's
internal structure quality [8]. But, there is a problem that needs
attention to be solved. Several classes still contain the problems
after the decomposition process. The issues that still exist in
the last result experiment are:

 The unusable (class with no method) class can still be
produced event by the evaluation process. This
condition makes the MI value low.

 It is a fact that the decompose candidate class only
consists of one public method, which makes it
challenging to find the optimum class usability after the
decomposition process.

Besides those problems, getting a higher evaluation value
for the problematics class is possible than the result of the
previous approach. This condition immerges the assumption
that the previous approach tends to trap the local optimum
result.

Based on the result, this research will study the problems in
the previous research. The optimum cluster composition is the
main purpose of the class decomposition research, which
considers several factors, including cluster compactness and
class usability.

Genetic algorithms (GA) are optimization algorithms
inspired by the process of natural selection and evolution. This
method is commonly used for solving optimization and search
problems by mimicking the principles of biological evolution.
In general, the GA consists of several processes: initialization,
selection, crossover (recombination), mutation, evaluation, and
termination. GA is well-suited for global optimization
problems, where the goal is to find the best solution from a
large and complex solution space. The ability of GA to explore
diverse solutions makes them effective in finding global
optima [9]. Therefore, this research will use GA to carry out
the class decomposition process to resolve the remaining
problems. GA will perform the clustering process and arrange
the optimum decomposed class to produce the best
composition.

The rest of this paper will be arranged as follows. Section
two will describe the implementation of the genetic algorithm
to do the clustering process and explain the proposed genetic
algorithm in the class decomposition process. Section three
explains the experiment scenario, dataset, and environment.
Section four describes the result of the experiment and
discussion as an interpretation of the result. Section five is
about the conclusion of this research experiment.

II. GENETIC ALGORITHM FOR CLASS DECOMPOSITION

A. Genetic Algorithm Research

GA can also be employed for clustering processes in this
research experiment. Genetic algorithms are versatile
optimization techniques that can be adapted for various
problem domains, and clustering is one such domain. The
application of genetic algorithms to clustering problems
involves representing clusters as solutions and optimizing the
clustering configuration based on certain criteria [10], [11].

In software engineering, genetic algorithms are used to
optimize the software engineering process. GA can be applied
to automate the generation of test cases, particularly for
complex software systems.

By evolving sets of test cases, GA can effectively explore
the behavior of the system under various conditions, helping to
uncover bugs and vulnerabilities [12], [13], [14].

GA can also be utilized to automate the process of
refactoring software components by representing different
refactoring transformations as genes within chromosomes.
Each chromosome represents a potential refactoring solution,
consisting of a sequence of refactoring to be applied to the
target codebase. The fitness of each solution is evaluated based
on predefined criteria such as improved code readability,
reduced complexity, enhanced modularity, and adherence to
design principles [11].

The other usage of GA in the refactoring process is
conducted in this research. GA will be used to do one of the
refactoring processes called class decomposition to solve the
blob smell. The following sections will describe the use of GA
in this research experiment.

B. Initialization and Chromosome Construction

The population in the genetic algorithm is the collection of
genes (solution) that will be randomly generated as an initial
process. The genes or solutions in the population are based on
the case that will be solved in this experiment. The gene or
chromosome representation in the case of class diagram
decomposition is described as follows. One gene or solution
represents all elements in the class and the cluster where each
element is assigned. The cluster number (second row of genes)
will automatically be generated at the beginning of the
initialization process. The number of genes or chromosomes in
one population depends on the initial definition. Fig. 1 show
the illustration of chromosomes in this case.

Fig. 1. Chromosome construction.

C. Fitness Function and Selection Process

In this approach, the parent candidates are selected by using
the linear ranking selection process. Linear ranking selection is
used in genetic algorithms to select an individual for
reproduction based on their relative fitness ranks rather than
their actual fitness values. This method aims to strike a balance
between favoring high-fitness individuals and maintaining
diversity in the population.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

463 | P a g e

www.ijacsa.thesai.org

All individuals in the population are ranked based on their
fitness values. The ranking is done in descending order
depending on the goal of this experiment. This experiment
aims to find the best class cluster construction based on the
cluster compactness and class usability, which are calculated as
eval value [6]. Higher eval values show better cluster
construction for the class. The eval value is calculated as
follows.

𝐸𝑣𝑎𝑙 = 𝑎. 𝑠(𝑖) + 𝑏. 𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1)

where 𝑠(𝑖) is the silhouette coefficient value, and
𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the class usability value. 𝑎 and 𝑏 are the weights
for each considered variable. 𝑠(𝑖) measures the similarity of
one class element to the other element in the same cluster
compared to the other cluster's elements. The silhouette
coefficient is computed as follows [10]:

𝑠(𝑖) =
∑

𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖);𝑏(𝑖)}
𝑛
𝑖=1

𝑛
 (2)

where 𝑎(𝑖) is the average dissimilarity of the current
element 𝑖 to all elements in the same cluster, and 𝑏(𝑖) is the
minimum of the average dissimilarity of the current element 𝑖,
to all elements of the other clusters.

𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 shows how a cluster (will be a class) usability
by looking at the number of public methods. One cluster with
one public method is considered useful because it has an
interface method to collaborate with the other class or object
[6]. 𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is calculated using following formula:

𝐶𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = {
0 ,𝑚𝑝𝑢𝑏 = 0
1 ,𝑚𝑝𝑢𝑏 ≥ 1

 (3)

where 𝑚𝑝𝑢𝑏 is the number of public methods in the class
candidate (in the cluster).

Once individuals are ranked, the process continues to
calculate selection probabilities based on the individual's ranks.
Linear ranking typically uses a linear function to assign these
probabilities. The probability 𝑃𝑖 of selecting the individual with
rank 𝑖 is calculated using the following formula [15]:

𝑃𝑖 =
𝑚𝑎𝑥𝑃𝑟𝑜𝑏−𝑚𝑖𝑛𝑃𝑟𝑜𝑏

𝑁−1
× (𝑠 − 𝑖) + 𝑚𝑖𝑛𝑃𝑟𝑜𝑏 (4)

where:

 𝑁 is the population size,

 𝑠 is a selection pressure parameter,

 𝑚𝑎𝑥𝑃𝑟𝑜𝑏 and 𝑚𝑖𝑛𝑃𝑟𝑜𝑏 are the maximum and
minimum selection probabilities, respectively. These
values are set such that 𝑚𝑎𝑥𝑃𝑟𝑜𝑏 + 𝑚𝑖𝑛𝑃𝑟𝑜𝑏 = 1.

The selection of individuals is done by defining the
threshold 𝑟 (between 0 and 1). The individual is in descending
order of rank until cumulative probability (𝑃𝑖) surpasses 𝑟. The
individual corresponding to the point where this threshold is
crossed is selected. The process repeated until two individuals
were selected for crossover and mutation.

D. Crossover Process

The two parents that are taken from the selection process
are used in the crossover process. The crossover process used

the single-point crossover, which is commonly used in the
genetics algorithm.

This process aims to combine the genetic information from
two parent chromosomes to create offspring or children's
chromosomes.

In single-point crossover, a single crossover point is
selected randomly along the length of the parent chromosomes.
Genetic material beyond this point is exchanged between the
parent chromosomes to create offspring chromosomes. This
process divides each parent chromosome into two segments:
one segment up to the crossover point and another segment
beyond the crossover point. Offspring chromosomes are
created by combining the segments from both parents at the
crossover point.

Let's denote two parents as 𝑃1 and 𝑃2 with numeric
representation as follows:

𝑃1 = 𝑝11𝑝12…𝑝1𝑛

𝑃2 = 𝑝21𝑝22…𝑝2𝑛
where:

 𝑛 is the length of the chromosomes,

 𝑝1𝑖 and 𝑝2𝑖 represent the numeric alleles at position 𝑖 in
𝑃1 and 𝑃2 respectively.

The crossover point will be selected based on the crossover
rate such that 1 ≤ 𝑐 ≤ 𝑛 − 1 . The offspring or children's
chromosomes 𝑂1 and 𝑂2 are created as follows:

𝑂1 = 𝑝11𝑝12…𝑝1𝑐𝑝2𝑐+1𝑝2𝑐+2…𝑝2𝑛

𝑂2 = 𝑝21𝑝22…𝑝2𝑐𝑝1𝑐+1𝑝1𝑐+2…𝑝1𝑛
The position of 𝑐 in the genes is based on the crossover rate

of gene length. As a clearer explanation, Fig. 2 depicts the
crossover process according to the formulation that has been
explained.

Fig. 2. Crossover process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

464 | P a g e

www.ijacsa.thesai.org

E. Mutation Process

Swap mutation is a mutation operator commonly used in
the genetic algorithm to introduce population diversity by
randomly swapping gene positions within chromosomes. This
mutation helps explore new regions of the search space and can
prevent premature convergence by maintaining genetic
diversity. Let's consider a chromosome 𝐶 with the numeric
representation:

𝐶 = 𝑐1𝑐2…𝑐𝑖 …𝑐𝑗 …𝑐𝑛

where:

 𝑛 is the length of the chromosomes,

 𝑐𝑖 and 𝑐𝑗 represent the numeric alleles at position 𝑖 and

𝑗, respectively.

The positions 𝑖 and 𝑗 will selected randomly within the
chromosome such that 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and 𝑖 ≠ 𝑗 . The swap
mutation is performed by swapping the alleles at position 𝑖 and
𝑗, resulting in a mutated chromosome 𝐶′.

𝐶′ = 𝑐1𝑐2…𝑐𝑗 …𝑐𝑖 …𝑐𝑛

After mutation, the mutated chromosome 𝐶′ can replace the
original chromosome in the population. Fig. 3 shows in detail
the implementation of swap mutation in this research. Not all
individuals will be mutated. The mutation process only runs
when the mutation probability is under the mutation rate. The
mutation rate is denoted as 𝑝𝑚 represents the probability that a
mutation will occur in an individual's genes. The mutation rate
notated as 0 ≤ 𝑝𝑚 ≤ 1.

Fig. 3. Mutation process.

F. Termination Condition

Termination conditions are typically based on criteria that
indicate when the genetic algorithm has reached a satisfactory
solution or when further iterations are unlikely to yield
significant improvements. There are many options to define the
termination conditions, including reaching the maximum
number of generations, achieving a desired fitness level,
reaching a stagnation point, or exhausting computational
resources. In this experiment, the stagnation termination is
chosen to terminate the regeneration process in the algorithm.

Stagnation termination is one of the termination conditions
options that checks if the algorithm has reached a point where
there is no significant improvement in the population's fitness

over several generations. In this experiment, 𝑆𝑚𝑎𝑥 represents
the maximum number of generations without improvement.

The termination condition can be expressed as:

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑠𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ≥ 𝑆𝑚𝑎𝑥

where 𝑙𝑎𝑠𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is the generation index when
the last significant improvement occurred.

III. EXPERIMENT SCENARIOS

The implementation of GA to do class decomposition on
the design level using a class diagram was conducted based on
the problems that were found in the previous research. There is
a class that still has problems related to optimal decomposition.
The class is PerspectiveConfigurator from ArgoUML
applications. The PerspectiveConfigurator class has been
decomposed using the previous approach, but we still have not
found the optimal composition due to only one public method
in the class and the possibility of being trapped in a local
optimum.

The scenario of this research is as follows. The first, the
genetic algorithm concept that is described in section two, will
be implemented in the prototype application to make the
experiment run efficiently. The next step is class profile
extraction. This process aims to collect all class information as
a basic knowledge to do decomposition [7], [16]. After the
class profile was collected, the process continued to
decomposition. The decomposition will be done in two
processes: the first decomposition using the previous approach
[3] and the second using the proposed approach. For the final
process, the result of the decomposition will be analyzed and
compared to get the comparison results. Fig. 4 shows how this
experiment will be held.

Fig. 4. Experiment scenario.

The use of genetic algorithms is justified by its advantages
in overcoming local optimum problems. This research assumes
that the decomposition of class at the level of design using
genetic algorithms will produce better results in class
composition. Before running the scenarios that are explained in
Fig. 4, the preliminary experiment will be run to find the best
configuration in the case of this research. The genetic
algorithm might generate a different solution based on the
references in each run [17]. Therefore, every experiment
attempt will run ten times to find the best solution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

465 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENT RESULT AND DISCUSSION

Several factors can influence the performance of GA, but
one of the most crucial factors is the selection of appropriate
parameters. The factors are as follows [18].

1) Population Size: The size of the population impacts the

diversity of solutions explored by the algorithm.

2) Crossover Rate: The probability of crossover

determines the extent to which genetic material is exchanged

between individuals in the population. A higher crossover rate

encourages exploration by promoting the recombination of

genetic material, while a lower rate may lead to slower

convergence.

3) Mutation Rate: The mutation rate controls the

probability of introducing random changes in individuals'

genomes. A higher mutation rate can help maintain genetic

diversity and prevent premature convergence, while a lower

rate may lead to stagnation in the search process.

Furthermore, the performance analysis is done by running
several scenarios based on the three factors. This analysis aims
to know how the best configuration of GA is to be
implemented in the class decomposition process (using
PerspectiveConfigurator class as an object of study).

B. Population Size

The first scenario was done with the population size. The
GA will run five times with different population sizes, starting
from 10 increments by ten until 50. The result of the
experiment is shown in Table I. Table I shows the data in every
run based on the population size. The data collected are
average fitness, average time, number of generations, and
standard deviation. Based on the comparison of collected data
in Table I, the population size 10 is the best solution among the
other populations. The average fitness value is 0.449, and the
average time is 1575.7 milliseconds, which is the smallest
generation number. However, the standard deviation is the
highest compared to the others. The high standard deviation
indicates that each individual's fitness value is spread and is not
close to the average fitness. Sometimes, the GA finds very low
fitness and sometimes very high. However, even so, in a
population of 10, it can find the best solution more frequently.
The standard deviation shows the performance of GA in the
case of exploration and exploitation. The standard deviation
value is assumed to correlate with the ability to perform
randomization to produce diversity. The high value assumes
that the randomization leads to a fast convergence result.
Sometimes, it leads to the right way, but sometimes, it will get
lost in the wider search space. It is worrying that with a high
standard deviation value, there are areas that are not explored
in the search space. That is why this approach is more effective
in small populations.

TABLE I. DECOMPOSITION OF EACH POPULATION SIZE

No

.

Populati

on

Average

Fitness

Average Time

(ms)
Generation

Standard

Deviation

1 10 0.449 1575.7 714 0.425

2 20 -0.485 6853.9 1494 0.050

3 30 -0.530 35180.1 4858.6 0.023

4 40 -0.542 212647.6
21621.

4
0.0227

5 50 -0.557 1912107.1
135802

.5
0.0400

Fig. 5 shows the comparison of average fitness in different
population sizes. With this result, running GA in the small
population size in this research proves that ten individuals are
an effective number to find the solution. The solution
exploration is limited to a small area near the most optimum
solution in a small population.

Fig. 5. Average fitness on different population size.

The higher population size produces more diverse solutions
in the solution space and lowers the probability of finding the
best solution. This is confirmed by the population size 20 to 50
data, which shows that the average fitness is in the range of -
0.4 and below and has a low standard deviation. The next
experiment scenario will use ten as the population size.

In Fig. 5, the population from ten to 20 seems to decrease
significantly. For more detail, it runs more decomposition
processes using population size detail between ten to 20 with
the increment of two. Fig. 6 shows the result of the
decomposition process. The trend of average fitness between
populations ten to 20 is decreasing slightly with every
increment of population size. The standard deviation
sometimes increases due to the discovery of the best solution
among decomposition experiments using GA.

Fig. 6. Population size between 10 and 20.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

10 20 30 40 50

Population Size

Population Size

Average Fitness Standard Deviation

-1

-0.5

0

0.5

1

10 12 14 16 18 20

Population Size

Population Size Range 10 - 20

Average Fitness Standard Deviation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

466 | P a g e

www.ijacsa.thesai.org

C. Crossover Rate

GA is a random-based solution finder. The random process
seems to be the core of finding the best solution. The crossover
rate is the percentage of crossover that will be done in every
regeneration process. This rate will determine how many genes
will be exchanged between two parents to produce offspring or
children. This experiment will be run at several crossover rates
starting from 0.1 with increments of 0.1 until 0.9. Every
crossover rate runs ten times. Table II shows the result of the
experiment using different crossover rates.

TABLE II. CROSSOVER RATE (POPULATION SIZE = 10)

No.
Crossover

Rate

Average

Fitness

Average

Time (ms)
Generation

Standard

Deviation

1 0.1 -0.324 3670.5 1632.4 0.348

2 0.2 0.009 3017.6 1331.6 0.563

3 0.3 -0.118 2065.8 883.1 0.539

4 0.4 0.010 1860 797.5 0.562

5 0.5 0.228 2167 938.7 0.560

6 0.6 0.115 1917.1 838.2 0.577

7 0.7 0.223 2324.8 1001.6 0.566

8 0.8 0.222 2879.8 1078 0.568

9 0.9 -0.218 7240.9 2660.4 0.464

Based on the result in Table II, the crossover rate of 0.5 is
the best solution, with an average fitness of 0.228. The
standard deviation is relatively high, with the same pattern as
the crossover rate of 0.2 to 0.8. A high standard deviation value
indicates that at the specific crossover rate, there is a possibility
of finding a solution with high fitness. The crossover rates of
0.1 and 0.9 have lower standard deviations, which means a
lower possibility of finding the best solution. The high average
fitness is on the crossover rate between 0.5 to 0.8. Based on
this result, genes' best exchange and shuffling portion start
from 50% to 80%. Fig. 7 shows the average fitness on different
crossover rates, with the best rate of 0.5. The next scenario will
use 0.5 to do the next scenario.

Fig. 7. Average fitness on different crossover rates.

D. Mutation Rate

The next scenario is to run GA for class decomposition in
different mutation rates. The mutation is the gene shuffle in the
individual. The mutation rate is the possibility that the mutation
process will be implemented in the individual during every
regeneration process. The experiment will run using several
mutation rates starting from 0.1 until 1 with an increment of
0.1. The result of the experiment is shown in Table III.

TABLE III. MUTATION RATE (POPULATION SIZE = 10)

No.
Mutation

Rate

Average

Fitness

Average Time

(ms)
Generation

Standard

Deviation

1 0.1 -0.577 84.6 22.1 0.026

2 0.2 -0.575 120.8 41.4 0.026

3 0.3 -0.588 424 172.4 0.024

4 0.4 -0.565 844.1 353.2 0.048

5 0.5 -0.491 2001.8 834.9 0.039

6 0.6 -0.339 2406.7 977.2 0.353

7 0.7 -0.236 2649.4 1061.8 0.474

8 0.8 -0.110 2422.2 952.7 0.534

9 0.9 -0.095 1953.7 819.5 0.523

10 1.0 0.327 1706.2 730.3 0.539

Based on the result shown in Table III, the best result is
mutation rate 1. This means that the best solution can be found
when mutated genes are in every regeneration more frequently
than the other's mutation rate. The mutation rate of 1.0
produces an average fitness of 0.327, but the standard deviation
is relatively high. It has the same pattern as the other
experiment scenarios. Fig. 8 shows the average fitness in every
mutation rate. The average fitness is climbing, starting from a
mutation rate of 0.1 to 1. The standard deviation starts to climb
higher on the mutation rate of 0.6 simultaneously with the
increase of standard deviation. This means that starting from
0.6, the possibility of finding the best solution increases until
the mutation rate is 1.

Fig. 8. Average fitness on different mutation rates.

E. Comparing to the Previous Experiment Result

Based on the previous experiment, the
PerspectiveConfigurator class is one of the problematics

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Crossover Rate

Crossover Rate between 01 - 0.9

Average Fitness Standard Deviation

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation Rate

Mutation Rate between 0.1 - 1.0

Average Fitness Standard Deviation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

467 | P a g e

www.ijacsa.thesai.org

classes [8]. There is only one public method in this class,
which is also indicated as Blob class. The clustering process
using the previous method (Agglomerative Hierarchical
Clustering/AHC + Evaluation) indicates that there was still a
problem with the result.

In this research, one attempt of the experiment was re-run
using AHC, and the evaluation process used the weight of
Silhouette and CUsability, which are 0.5 and 0.5, respectively.

The results show that (Table IV) this approach produces
two clusters, and one of those clusters cannot be implemented
due to the nonexistence of a public method. The cluster without
a public method will be implemented as a class without a
public method. For the instantiation, it will produce the selfish
object that cannot collaborate with the other objects. Table IV
shows the output of the clustering process by prototype
application.

TABLE IV. CLUSTERS RESULT OF AHC APPROACH

Cluster 1 Cluster 2

perspectiveConfigurator
perspectiveRulesList

sortJListModelMethod

doRemoveRuleMethod
doAddRuleMethod

updateRuleLabelMethod
updatePersLabelMethod

updateLibLabelMethod

renameTextField
splitPane

perspectiveListModel

perspectiveRulesListModel
ruleLibraryListModel

configPanelNorth

configPanelSouth
INSET_PX

LOG

loadLibraryMethod
loadPerspectivesMethod

ruleLibLabel

makeListsMethod
rulesLabel

persLabel

makeButtonsMethod
makeLayoutMethod

makeListenersMethod

moveUpButton
newPerspectiveButton

ruleLibraryList

perspectiveList
resetToDefaultButton

moveDownButton

removeRuleButton

duplicatePerspectiveButton

addRuleButton

removePerspectiveButton

For comparison, the clustering process is done using the
genetic algorithm with the same specification (weight 0.5 for
each Silhouette and CUsability). The results show that the
genetic algorithm produces only one cluster. In other words,
the most optimum cluster composition for
PerspectiveConfigurator is not to be decomposed because of
the constraint of class usability.

Decomposition results that cannot be used are something to
be avoided because they are useless. With only one cluster
produced by the GA, it will be instantiated to be one object that
still has the ability to collaborate with other objects.

The AHC and GA approaches produce the highest Eval
values of 0.42 and 0.661, respectively. The following figure
shows the comparison. Fig. 9 shows the iteration log of the
decomposition process using AHC, which shows the growth of
the Eval value. Fig. 10 shows the generation log using GA,
which shows the average fitness value (Eval value). It shows
the growth of fitness value from generation one until
generation 499. At the end of the regeneration process, to find
the best solution, there are significant fitness fluctuations. The
random process from GA (crossover and mutation) seems to
produce significant movement to find the best solution. The
results shown in Fig. 9 and Fig. 10 prove that GA, with its
random mechanism, is able to find a higher fitness value (Eval
value) than AHC, which is assumed to pass the local optimum.

Fig. 9. Perspective configurator using previous approach's log.

Fig. 10. Perspective configurator using GA's log.

V. CONCLUSION

Class decomposition is one of the interesting fields in
refactoring research, especially when refactoring is done at the
design level. This paper has proposed an approach to class
decomposition utilizing GA and demonstrated its superiority
over the traditional agglomeration hierarchical clustering
method (previous approach). Through rigorous
experimentation and analysis, it has been evidenced that the
GA-based approach outperforms the hierarchical clustering

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Evaluation Iteration

PerspectiveConfigurator's
Evaluation Iteration Log

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3
1

6
1

9
1

1
2

1

1
5

1

1
8

1

2
1

1

2
4

1

2
7

1

3
0

1

3
3

1

3
6

1

3
9

1

4
2

1

4
5

1

4
8

1

Fi
n

te
ss

 V
al

u
e

Generation

PerspectiveConfigurator's
Regeneration Log

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

468 | P a g e

www.ijacsa.thesai.org

method in terms of result quality. Based on the problems that
are a focus of this research, the PerspectiveConfigurator class's
problem can be solved by utilizing GA. The fitness value
comparison (Eval value in the previous approach) shows that
there is an increment in the utilization of GA in this research.
The fitness values of AHC and GA are 0.42 and 0.661,
respectively. On the fitness value 0.661, the clustering result
produced by GA results in only one cluster, but it matches the
quality criterion (considering the silhouette and CUsability).

The rationalization behind the effectiveness of the GA lies
in its ability to explore through the search space and efficiently
navigate through various combinations of class
decompositions. Unlike hierarchical clustering, which tends to
produce suboptimal solutions due to its greedy nature and
dependence on initial conditions, the genetic algorithm
employs a population-based evolutionary strategy to converge
towards globally optimal solutions while avoiding local
optima. An increase in the fitness value of GA proves this.

The standard deviation typically plays a role in guiding the
exploration and exploitation phases of the optimization
process. Specifically, the standard deviation is often associated
with randomization operators within the GA. Finding a high
standard deviation value raises the desire to conduct a deeper
exploration regarding this matter in the future. For the future
plan, adjusting the standard deviation by adjusting the
randomization operators (mutation and crossover mechanism)
is assumed to fine-tune the balance between exploration and
exploitation, thereby influencing the GA's ability to efficiently
search for more optimal solutions.

REFERENCES

[1] Sommerville, Software Engineering, 9th ed. Harlow, England: Addison-
Wesley Professional, 2010.

[2] R. Pressman, Software Engineering : A Practitioner’s Approach, 7th ed.
USA: McGraw-Hill, Inc., 2009.

[3] M. Fowler et al., Refactoring Improving the Design of Existing Code
Second Edition, Second Ed. United State of America: Pearson Education
- Wesley, 2019.

[4] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, “The Seven Information Features of Class for Blob and Feature
Envy Smell Detection in a Class Diagram,” The 2021 International
Conference on Artificial Life and Robotics (ICAROB2021), pp. 348–351,
2021.

[5] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. in Robert C. Martin Series. Boston, MA: Prentice
Hall, 2017.

[6] B. Priyambadha and T. Katayama, “Enhancement of Design Level Class
Decomposition using Evaluation Process,” International Journal of
Advanced Computer Science and Applications, vol. 13, no. 8, pp. 130–
139, 2022, doi: 10.14569/IJACSA.2022.0130816.

[7] B. Priyambadha and T. Katayama, “Design Level Class Decomposition
using the Threshold-based Hierarchical Agglomerative Clustering,”
International Journal of Advanced Computer Science and Applications,
vol. 13, no. 3, pp. 57–64, 2022, doi: 10.14569/IJACSA.2022.0130310.

[8] B. Priyambadha and T. Katayama, “The Impact of Design-level Class
Decomposition on the Software Maintainability,” International Journal of
Advanced Computer Science and Applications, vol. 14, no. 4, pp. 405–
413, 2023, doi: 10.14569/IJACSA.2023.0140445.

[9] X.S. Yang, Nature-inspired metaheuristic algorithms. Luniver Press,
2010.

[10] H. Nguyen, S. J. Louis, and T. Nguyen, “MGKA: A genetic algorithm-
based clustering technique for genomic data,” 2019 IEEE Congress on
Evolutionary Computation, CEC 2019 - Proceedings, pp. 103–110, Jun.
2019, doi: 10.1109/CEC.2019.8790225.

[11] S. Kebir, I. Borne, and D. Meslati, “A genetic algorithm-based approach
for automated refactoring of component-based software,” Inf Softw
Technol, vol. 88, pp. 17–36, Aug. 2017, doi:
10.1016/j.infsof.2017.03.009.

[12] L. Gang, “Genetic Algorithm and Its Application in Software Test Data
Generation,” in 2023 International Conference on Applied Intelligence
and Sustainable Computing (ICAISC), 2023, pp. 1–6. doi:
10.1109/ICAISC58445.2023.10200303.

[13] Y. Dong and J. Peng, “Automatic generation of software test cases based
on improved genetic algorithm,” in 2011 International Conference on
Multimedia Technology, 2011, pp. 227–230. doi:
10.1109/ICMT.2011.6002999.

[14] S. I. Ayon, “Neural Network based Software Defect Prediction using
Genetic Algorithm and Particle Swarm Optimization,” in 2019 1st
International Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT), IEEE, May 2019, pp. 1–4. doi:
10.1109/ICASERT.2019.8934642.

[15] A. E. Eiben and J. E. Smith, Natural Computing Series Introduction to
Evolutionary Computing, Second Edition. Springer Publishing Company,
Incorporated, 2015.

[16] B. Priyambadha and T. Katayama, “Tree-based keyword search algorithm
over the visual paradigm’s class diagram xml to abstracting class
information,” 2020 IEEE 9th Global Conference on Consumer
Electronics, GCCE 2020, pp. 280–284, 2020, doi:
10.1109/GCCE50665.2020.9291865.

[17] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, “Real Coded
Genetic Algorithms for Solving Flexible Job-Shop Scheduling Problem -
Part II: Optimization,” in Key Engineering Materials III, in Advanced
Materials Research, vol. 701. Trans Tech Publications Ltd, Mar. 2013,
pp. 364–369. doi: 10.4028/www.scientific.net/AMR.701.364.

[18] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. doi: 10.1007/978-
3-662-44874-8.

