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Abstract—The effective management of end-of-life products, 

whether through recycling or incineration for electricity 

generation, holds pivotal significance amidst escalating concerns 

over economic, environmental, and social ramifications. While 

the economic and environmental dimensions often receive 

primary focus, the social aspect remains comparatively neglected 

within sustainability discourse. This paper undertakes a 

comprehensive exploration of the positive social impacts 

engendered by medical waste recycling, with a specific focus on 

job creation and economic value enhancement. The principal aim 

of this research is to highlight the social benefits derived from 

medical waste recycling, elucidating its role in fostering 

employment opportunities, and augmenting economic prosperity. 

By employing a Genetic Artificial Bee Colony algorithm, this 

study addresses two mathematical problems pertinent to 

optimizing recycling processes, thereby contributing to the 

advancement of sustainable waste management practices. 

Additionally, the proposed algorithm exhibits superior 

performance, highlighting its potential in addressing 

sustainability challenges. Ultimately, integrating the social 

dimension into end-of-life product management discussions can 

lead to a more comprehensive approach to sustainability, 

balancing environmental preservation with socio-economic 

progress. 
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I. INTRODUCTION 

 The growth of the population and their increasing demand 
for consumable products necessitate a concerted effort to 
reduce the amount of waste generated by these products after 
use, the management of products extends far beyond their 
initial creation and use. The footprint left by this waste has 
become a critical concern, urging a transition from the 
traditional "cradle-to-grave" model, to the more encompassing 
and sustainable "cradle to cradle". The increase in waste in 
landfill sites becomes a crucial challenge for decision-makers, 
researchers, and consumers, considering the dangers effects 
that can be caused by the poor management of these wastes, 
whether at the economic, environmental, or social dimensions. 
Addressing these three challenges in the design of a closed-
loop supply chain (CLSC) forms the three pillars of 
sustainability [1]. The complexity of the intersection between 
environmental, economic, and social considerations finds its 
explanation in the model of designing a CLSC. This represents 

a systematic departure from the "cradle to grave" model, 
emphasizing a circular economy, environmental concerns, and 
social indicators. 

Recently, in the discourse on sustainable development, one 
of the sectors that attracts the attention of researchers and 
decision-makers is the healthcare sector. This sector is subject 
to increased scrutiny, especially after the Covid-19 pandemic, 
wars, and natural disasters that have generated substantial 
amount of medical waste in recent years. According to the 
World Health Organization report [2], the COVID-19 
pandemic generated tens of thousands of tons of medical 
waste between March 2020 and November 2021. These 
wastes are disposed of in landfill sites without any treatment. 
This situation highlights the importance of adopting a strategy 
to implement the principles of reverse logistics in traditional 
supply chain management and integrating environmental 
concerns and social indicators. 

It is evident that in recent times, the focus of decision-
makers and researchers has pivoted towards the environmental 
impact resulting from supply chain. While there is an 
increasing recognition of the importance of reducing the 
environmental footprint to attain the second dimension of a 
sustainable CLSC network, there remains a noticeable gap in 
the existing literature concerning the third dimension of 
sustainability, namely, social impacts[3]. This study aims to 
highlight the importance of integrating social indicators into 
sustainable CLSD. Recycling medical waste can have several 
positive social impacts contributing to the well-being of 
societies and individuals, including the community, workplace 
safety, education and awareness, and job creation. This study 
focuses on two social indicators: the first is job creation, 
which plays a significant role in reducing unemployment 
rates, and the second is balancing economic development. 

The rest of this article is outlined as follows: Section II 
provides a review of the literature. In Section III, we delve 
into a detailed description of the problem and the 
corresponding mathematical model. Section IV introduces the 
Genetic Artificial Bee Colony (GABC) algorithm proposed in 
this study. The practical implementation of GABC and a 
comparative analysis between the results obtained by GABC 
and the original ABC are presented in Section V. Finally, 
Section VI offers concluding remarks. 
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II. LITERATURE REVIEWS 

For decades, the main objective of supply chains has been 
the maximization of profit or the minimization of costs 
throughout the network. This goal has been the focus of many 
research works and studies [4], [5], [6], [7], [8]. The efforts 
made by researchers to increase the profit of the logistics 
chain undeniably contributed to enhancing its efficiency and 
profitability. 

In order to reduce total supply chain operating costs, A bi-
objective optimization approach is presented by [9], which 
aims to minimize total expenditures and decrease cycle time 
delay overall. They use a solution strategy that combines the 
dual simplex method, the constraint method, and scatter search 
when taking discrete facility capacity alternatives into 
consideration. A trade-off between the two goals is shown by 
computational analyses, which show that decreasing cycle 
time produces a decentralized network structure while 
optimizing for cost produces a centralized network structure. 
The author in [10] present a novel model for designing a 
reliable network in a closed-loop supply chain, minimizing 
total and post-failure transportation costs under uncertainty. 
Their solution approach, combining robust optimization, 
queuing theory, and fuzzy multi-objective programming, 
proves effective in addressing uncertainty and optimizing 
facility design. The author in [11] provide a mixed-integer 
linear programming model for a closed-loop supply chain 
network that uses stochastic programming to minimize overall 
costs and account for uncertainties. To solve the complex 
problem of creating cost-effective closed-loop supply chains, 
[12] provide a novel approach that uses a deterministic multi-
product, multi-echelon, multi-period model. The author in [13] 
proposes a novel Genetic Artificial Bee Colony (GABC) 
algorithm for optimizing closed-loop supply chain networks, 
addressing uncertainties in demand, and returned product 
quantities. Their GABC algorithm surpasses standard 
Artificial Bee Colony (ABC) and Genetic Algorithm (GA) 
methods in minimizing total network cost across diverse 
scenarios. The author in [14] uses an integer-programming 
approach to address a two-stage supply chain distribution-
allocation problem. They proposed heuristic, based on Ant 
Colony Optimization, exhibits computational efficiency, and 
produces solutions in a fair amount of time with an average 
deviation from optimal solutions of about 10%. The author in 
[15] propose a mobile Waste Heat Recovery (WHR) supply 
chain, minimizing distribution costs compared to traditional 
WHR. Their optimization model, integrating life cycle 
assessment, ensures energy supply stability and cost savings, 
presenting an efficient alternative to conventional WHR and 
fossil fuel heating, especially under stochastic demand 
conditions. The author in [16] explores the economic 
advantages of new product formulations, specifically through 
concentration, in formulated product supply chain networks. 
They reduce overall costs by optimizing facility locations, 
capacities, and production planning through the use of mixed-
integer linear programming, which has major advantages in a 
supply chain for fast-moving consumer goods. 

Recently, the challenge of implementing a sustainable 
CLSC that adheres to the three dimensions of sustainability 
has become a task facing the researchers and the decision-

makers. It is noted that several studies are beginning to 
incorporate environmental and / or social impacts as additional 
objectives in their multi-objective CLSC. The literature on the 
sustainable CLSC can be categorized into two primary groups: 
Economic and environmental dimensions in CLSC and 
sustainable CLSC. 

A. Economic and Environmental Dimensions in CLSC 

Over the past two decades, the challenge of environmental 
impacts generated by industries and end-of-life waste, leading 
to an increase in greenhouse gas (GHG) emissions and loss of 
natural resources, has become a major focus for researchers. 
The author in [17] introduce a conceptual framework for 
designing a sustainable food packaging and distribution 
network, comparing the environmental and economic impacts 
of reusable plastic containers (RPC) with traditional single-use 
options in the fresh food supply chain. Using life cycle 
assessment (LCA), the study evaluates the carbon footprint 
and explores sensitivity to key parameters, offering insights 
into the sustainability of packaging approaches in the food 
catering chain. The author in [18] presents a multi-objective 
model for the logistics of the gold industry that gives cost and 
CO2 emissions priority. Their work effectively addresses a 
case study of a 7-layer network using an ant colony 
optimization technique, demonstrating usefulness. The 
algorithm performs better when the parameters are set 
Taguchi-based, and the results highlight managerial insights 
for supply chain optimization. The author in [19] addresses 
environmental concerns by proposing a green supply chain 
model that optimizes transportation and waiting times for 
fleets in both forward and reverse logistics. The model aims to 
minimize environmental impacts and energy consumption 
through strategic determinations of loading, unloading, and 
production rates. The author in [20] explores how producing 
power from wood pellets might help achieve climate 
objectives. They focus on how supply chain costs can be 
reduced by using techno-economic analysis and a study of 
relevant research. The analysis highlights the impact of 
variables such as plant size on costs by revealing trade-offs in 
cost components across various supply chain configurations. 
[21]propose novel mathematical models for inventory 
management in reverse logistics systems, extending [22] 
model by considering different demands for newly produced 
and remanufactured products. The study also extends into 
sustainability, presenting a three-objective mathematical 
model and an algorithm to achieve Pareto solutions, 
addressing greenhouse gas emissions and energy consumption 
in production and remanufacturing processes. The author in 
[23] innovate a methodology for plastic footprint analysis at 
the enterprise and supply chain levels, focusing on a clothing 
industry case. Their study identifies key strategies, such as 
lightweight plastic promotion and increased use of recycled 
materials, offering practical solutions for substantial 
environmental benefits in reducing plastic impact. 

B. Social Dimension 

The concept of sustainability was introduced by [24] 
report, emphasizing the importance of integrating 
environmental and social concerns to ensure a viable future. 
Unfortunately, in the literature, the social dimension has rarely 
been addressed. The author in [25] aims to improve reverse 
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logistics decision-making by integrating economic, 
environmental, and social objectives. Using a recyclable waste 
collection system as a case study, they model the problem as a 
multi-objective, multi-depot periodic vehicle routing 
challenge, proposing a compromise solution for a sustainable 
reverse logistics plan that considers trade-offs and achieves 
balance. The author in [26] introduces a multi-objective 
possibilistic programming model for designing a sustainable 
medical supply chain network under uncertainty, addressing 
conflicting economic, environmental, and social objectives. 
The model employs effective social and environmental life 
cycle assessment methods, and an accelerated Benders 
decomposition algorithm is introduced to handle 
computational complexity, demonstrated through a medical 
industrial case study. The authors in [27] have introduced an 
innovative sustainable closed-loop location-routing-inventory 
model. This model considers economic, environmental, and 
social impacts, particularly in the context of mixed 
uncertainty. The author in [28] address the need for supply 
chain designs considering environmental, social, and 
economic objectives, specifically focusing on sustainable 
closed-loop supply chain networks for recycled tires. They 
develop a multi-objective mixed-integer linear programming 
model to optimize total cost, environmental impacts, and 
social factors. To efficiently handle large-scale networks, four 
new hybrid metaheuristic algorithms are introduced and 
demonstrated to be effective through extensive computational 
experiments and analyses. The author in [29] develops a 
multi-objective linear mathematical model to optimize a steel 
sustainable closed-loop supply chain, addressing uncertainties 
and applying fuzzy goal programming. Validated through a 
real case study in an active steel supply chain in Iran, the 
model aims to optimize total profit, energy and water 
consumption, CO2 emissions, job opportunities, and lost 
working days. Results highlight the significant environmental 
benefits achievable even with a minor profit decrease, 
providing essential managerial insights for industry leaders 
navigating the balance between profits and 
environmental/social considerations. The author in [30] 
highlights the impact of decisions related to facility locations 
and industrial activities on initial pollution levels and 
unemployment rates in various regions. Through numerical 
experiments, the research demonstrates that intentional 
objectives focused on reducing environmental and social 
inequities lead to a decrease in disparities among regions. The 
paper concludes by providing managerial insights and 
suggesting future research directions within the context of 
supply chain networks and sustainable development. 

Due to the diverse nature of social responsibility aspects, 
integrating all of them into the design of a sustainable closed-
loop supply chain would lead to a non-optimal network. Our 
primary objective in this paper is to maximize positive social 
indicators in recycling three types of medical waste: glass, 
plastic, and steel. To achieve this, we propose a programming 
model with two objective functions that aims to maximize job 
creation and balance economic development. The study 
introduces a Genetic Artificial Bee Colony (GABC) 
algorithm, and its performance is compared with the original 
Artificial Bee Colony algorithm. This work builds upon our 
previous research [31], which focuses on minimizing the total 

cost of reverse logistics and reducing CO2 emissions in the 
network. 

III. PROBLEM MODELING 

This model aims to develop a programming model for two 
objective functions to maximize job opportunities creation and 
balance economic value within a reverse supply chain 
network. The network encompasses hospitals, collecting 
centers, recyclers, and disposal centers. Fig. 1 illustrates the 
network schematic, emphasizing the reverse logistics aspect. 
The medical waste generated by the hospitals is shipped to 
collecting centers where the waste is disinfected and sorted. In 
this study, three types of waste are addressed: plastic 
(Polyethylene (PET), Polypropylene (PP)), glass (clear or 
white glass and brown glass), and stainless steel. The non-
recyclable waste is transported to disposal centers, while the 
remaining medical waste is directed to recycling centers where 
it is processed and recycled to be used as new products. The 
unrecovered waste is shipped to the disposal center for safe 
landfill. 

 

Fig. 1. Medical product for forward / reverse logistics network. 

A. Assumptions 

To formulate our model, we have based our analysis on the 
following assumptions and simplifications: 

 There are no exchanges of products among facilities at 
the same level. 

 The locations for the opening of recyclers and 
collecting centers are predetermined. 

 The capability of each facility is constrained. 

 The quality of recycled products and manufactured 
products is the same. 

 The unrecovered waste is transported to a disposal 
center for safe landfilling. 

B. Notation 

 Indices 

𝑙 : Index of hospitals, 𝑙 ∈  {1, … , 𝐿}. 
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𝑛 : Index of collecting centers, 𝑛 ∈  {1, … , 𝑁}. 

𝑚 : Index of recyclers, 𝑚 ∈  {1, … , 𝑀}. 

𝑜 : Index of disposal centers, 𝑜 ∈  {1, … , 𝑂}. 

𝑘 : Index of plastic waste, 𝑘 ∈  {1, … , 𝐾}. 

𝑟 : Index of glass waste, 𝑟 ∈  {1, … , 𝑅}. 

𝑣 : Index of plastic waste, 𝑣 ∈  {1, … , 𝑉}. 

 Parameters 

𝐷𝐽𝑘𝑚 : Number of fixed job opportunities created by 
establishing plastic recycler m. 

𝐷𝐽𝑟𝑚 : Number of fixed job opportunities created by 
establishing glass recycler m. 

𝐷𝐽𝑣𝑚 : Number of fixed job opportunities created by 
establishing steel recycler m. 

𝐷𝐽𝑛  : Number of fixed job opportunities created by 
establishing collecting center n. 

𝐼𝐷𝐽𝑛 : Number of variable job opportunities created at 
collecting center c (depends on amount of waste and capacity 
of collecting center). 

𝐼𝐷𝐽𝑘𝑚 : Number of variable job opportunities created at 
plastic recycler m. 

𝐼𝐷𝐽𝑟𝑚 : Number of variable job opportunities created at 
glass recycler m. 

𝐼𝐷𝐽𝑣𝑚 : Number of variable job opportunities created at 
steel recycler m. 

𝜇𝑛 : Unemployment rate at collecting center n. 

𝜇𝑘𝑚 : Unemployment rate at plastic recycling center m. 

𝜇𝑟𝑚 : Unemployment rate at glass recycling center m. 

𝜇𝑣𝑚 : Unemployment rate at steel recycling center m. 

𝑉𝑘𝑚  : Economic Value of recycling waste at plastic 
recycler m. 

𝑉𝑟𝑚 : Economic Value of recycling waste at glass recycler 
m. 

𝑉𝑣𝑚 : Economic Value of recycling waste at steel recycler 
m. 

𝑉𝑛 : Economic Value at collecting center n. 

𝑟𝑑𝑘𝑚 : Regional development at plastic recycler m. 

𝑟𝑑𝑟𝑚 : Regional development at glass recycler m. 

𝑟𝑑𝑣𝑚 : Regional development at steel recycler m. 

𝑟𝑑𝑛 : Regional development at collecting center n. 

𝛿𝑘 : The percentage of non-recyclable plastic waste being 
transported from the collection center to the disposal center. 

𝛿𝑟  : The percentage of non-recyclable glass waste being 
transported from the collection center to the disposal center. 

𝛿𝑣  : The percentage of non-recyclable steel waste being 
transported from the collection center to the disposal center. 

𝛽𝑘  : The percentage of unrecovered plastic waste being 
transported from the recycler to the disposal center. 

𝛽𝑟  : The percentage of unrecovered glass waste being 
transported from the recycler to the disposal center. 

𝛽𝑣  : The percentage of unrecovered steel waste being 
transported from the recycler to the disposal center. 

 Capacities 

𝐹𝑙  : Quantity of medical waste generated by hospital l. 

𝑀𝑐𝑎𝑝𝑛 : Capacity of collecting center n. 

𝑀𝑃𝑊𝑚 : Capacity of plastic recycler m. 

𝑀𝐺𝑊𝑚 : Capacity of glass recycler m. 

𝑀𝑆𝑊𝑚 : Capacity of steel recycler m. 

𝑀𝑐𝑎𝑝𝑜 : Capacity of disposal center o. 

𝑈𝑃𝑛  : The upper limit for establishing collecting center n. 

𝑈𝑃𝑘𝑚 : The upper limit for establishing plastic recycler m. 

𝑈𝑃𝑟𝑚 : The upper limit for establishing glass recycler m. 

𝑈𝑃𝑣𝑚 : The upper limit for establishing steel recycler m. 

 Decision variables 

𝐴𝑀𝑙𝑛  : The quantity of waste transported from hospital l to 
collection center n. 

𝐴𝑀𝑛𝑘𝑚 : The quantity of plastic waste transported from 
collection center n to recycler m. 

𝐴𝑀𝑛𝑟𝑚 : The quantity of glass waste transported from 
collection center n to recycler m. 

𝐴𝑀𝑛𝑣𝑚 : The quantity of steel waste transported from 
collection center n to recycler m. 

𝑌𝑛  : 1 if the collecting center n is opened, 0 otherwise. 

𝑌𝑘𝑚  : 1 if the plastic recycler center m is opened, 0 
otherwise. 

𝑌𝑟𝑚  : 1 if the glass recycler center m is opened, 0 
otherwise. 

𝑌𝑣𝑚  : 1 if the steel recycler center m is opened, 0 
otherwise. 

C. Social Objective Functions 

 Job Creation Opportunities 

Employment is a key driver of social sustainability, 
significantly influencing the well-being and socio-economic 
status of individuals [32]. A study by the [33] projects a 
potential net job creation of up to 700,000 jobs in the EU. 
Specifically, employment in waste management is anticipated 
to witness a substantial increase, with a potential addition of 
660,000 jobs. This increase is attributed to the labor-intensive 
nature of recycling, which is replacing less labor-intensive 
landfilling practices. 
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𝑴𝒂𝒙 𝑱𝒐𝒃 𝑪𝒓𝒆𝒂𝒕𝒊𝒐𝒏 = 𝐹𝑖𝑥𝑒𝑑 𝑗𝑜𝑏 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝐹𝐽𝐶) +
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐽𝑜𝑏 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛 (𝑉𝐽𝐶) (1) 

𝑭𝑱𝑪 = ∑ 𝐷𝐽𝑛 × 𝑌𝑛

𝑁

𝑛=1

× 𝜇𝑛 + ∑ ∑ 𝐷𝐽𝑘𝑚 × 𝑌𝑘𝑚

𝐾

𝑘=1

× 𝜇𝑘𝑚

𝑀

𝑚=1

+ ∑ ∑ 𝐷𝐽𝑟𝑚 × 𝑌𝑟𝑚

𝑀

𝑚=1

× 𝜇𝑟𝑚

𝑅

𝑟=1

 

+ ∑ ∑ 𝐷𝐽𝑣𝑚 × 𝑌𝑣𝑚

𝑀

𝑚=1

× 𝜇𝑣𝑚

𝑉

𝑣=1

 

 (1-1) 

𝑽𝑱𝑪 = ∑ ∑ 𝐼𝐷𝐽𝑛 ×
𝐴𝑀𝑙𝑛

𝑀𝑐𝑎𝑝𝑛

𝑁

𝑛=1

× 𝜇𝑛

𝐿

𝑙=1

+ ∑ ∑ ∑ 𝐼𝐷𝐽𝑘𝑚 ×
𝐴𝑀𝑛𝑘𝑚

𝑀𝑃𝑊𝑘𝑚

𝑀

𝑚=1

× 𝜇𝑘𝑚

𝐾

𝑘=1

𝑁

𝑛=1

+ ∑ ∑ ∑ 𝐼𝐷𝐽𝑟𝑚 ×
𝐴𝑀𝑛𝑟𝑚

𝑀𝐺𝑊𝑚

𝑀

𝑚=1

× 𝜇𝑟𝑚

𝑅

𝑟=1

𝑁

𝑛=1

+ ∑ ∑ ∑ 𝐼𝐷𝐽𝑣𝑚 ×
𝐴𝑀𝑛𝑣𝑚

𝑀𝑆𝑊𝑚

𝑀

𝑚=1

× 𝜇𝑣𝑚

𝑉

𝑣=1

𝑁

𝑛=1

 

 (1-2) 

The objective function (1) is designed to maximize both 
fixed and variable job creation opportunities within the 
network. Eq. (1-1) specifically represents the fixed job 
creation in the collecting and recycling centers. The inclusion 
of unemployment rates 𝜇𝑛 , 𝜇𝑘𝑚 , 𝜇𝑟𝑚 , 𝜇𝑣𝑚  in the objective 
function allows the model to adapt its assessment of job 
creation based on the prevailing employment conditions, 
making the optimization more realistic and reflective of the 
socio-economic context. When the unemployment rate is high, 
indicating a substantial pool of unemployed individuals in the 
considered region or sector, the model recognizes that the 
potential for job creation through the recycling process could 
have a more substantial positive impact on the local 
workforce. Conversely, in the case of a low unemployment 
rate, signifying a smaller proportion of unemployed 
individuals, the model exerts less influence, as the 
employment market is presumed to be more saturated. 
Equation (1-2) defines the variable job creation in the 
collecting and recycling centers. The utilization of the ratios, 

including 
𝐴𝑀𝑙𝑛

𝑀𝑐𝑎𝑝𝑛
 , 

𝐴𝑀𝑛𝑘𝑚

𝑀𝑃𝑊𝑚
 , 

𝐴𝑀𝑛𝑟𝑚

𝑀𝐺𝑊𝑚
 , 

𝐴𝑀𝑛𝑣𝑚

𝑀𝑆𝑊𝑚
 serves as a measure of 

how much of the capacity of collecting center n and recycler 
center m is being utilized. A ratio close to 1 indicates that 
there is potential for additional job opportunities. 

 Balanced Economic Development 

Balanced economic development serves as a positive 
social indicator, emphasizing a fair and inclusive distribution 
of economic benefits. This approach aims to mitigate income 
inequality by creating job opportunities across diverse sectors 
and regions, ultimately elevating overall living standards. The 
ripple effect of this strategy extends to an enhanced quality of 
life, fostering social cohesion, and empowering communities. 
In essence, a commitment to balanced economic development 
reflects a dedication to creating a more equitable and thriving 
society. 

𝑀𝑎𝑥 𝐸𝐷 = ∑ 𝑉𝑛 × 𝑌𝑛
𝑁
𝑛=1 × (1 − 𝑟𝑑𝑛)  + ∑ ∑ 𝑉𝑘𝑚 × 𝑌𝑘𝑚

𝑘
𝑘=1 ×𝑀

𝑚=1

(1 − 𝑟𝑑𝑘𝑚)  + ∑ ∑ 𝑉𝑟𝑚 × 𝑌𝑟𝑚  × (1 − 𝑟𝑑𝑟𝑚)𝑅
𝑟=1

𝑀
𝑚=1  +

 ∑ ∑  𝑉𝑣𝑚 ×  𝑌𝑣𝑚  ×  (1𝑀
𝑚=1

 𝑉
𝑣=1  − 𝑟𝑑𝑣𝑚)         (2) 

The objective function (2) represents the economic 
development associated with each collection center and 
recycling center. The terms 𝑟𝑑𝑛  , 𝑟𝑑𝑘𝑚 , 𝑟𝑑𝑟𝑚  , 𝑟𝑑𝑣𝑚  in the 
objective function serve as adjusters, strategically considering 
the impact of regional development on the economic value 
associated with the proposed model. These adjusters play a 
crucial role in accounting for the varying degrees of regional 
development and tailor the objective function to reflect the 
nuanced economic landscape, ensuring a more accurate 
representation of the model's objectives in the context of 
different regions. 

D. Constraints 

 Supply Constraints 

 ∑ 𝐴𝑀𝑙𝑛
𝐿
𝑙 =1 ≤ 𝐹𝑙  Ɐ𝑛                             (3) 

This constraint guarantees that the amount of waste 
collected from each hospital is limited to the quantity of waste 
generated by that specific hospital. 

 Flow Balance Constraints 

 ∑ 𝐴𝑀𝑛𝑘𝑚
𝑁
𝑙 =1 = ∑ 𝐴𝑀𝑙𝑛 (1 − 𝛿𝑘)𝑁

𝑙=1  Ɐ l, m, k  (4) 

∑ 𝐴𝑀𝑛𝑟𝑚
𝑁
𝑙 =1 = ∑ 𝐴𝑀𝑙𝑛 (1 − 𝛿𝑟)𝑁

𝑙=1  Ɐ l, m, r  (5) 

∑ 𝐴𝑀𝑛𝑣𝑚
𝑁
𝑙 =1 = ∑ 𝐴𝑀𝑙𝑛 (1 − 𝛿𝑣)𝑁

𝑙=1  Ɐ l, m, v  (6) 

Eq. (4), (5) and (6) Ensure that the total waste received at 
collection centers is equivalent to the total waste forwarded to 
recycling centers, considering potential damage. 

 Capacity Constraints 

Maximum capacity can be allocated to collecting center n. 

∑ 𝐴𝑀𝑙𝑛 ≤ 𝑀𝑐𝑎𝑝𝑛
𝑁
𝑛=1 ×  𝑌𝑛 Ɐl               (7) 

Maximum capacity can be allocated to recycling center r. 

∑ 𝐴𝑀𝑛𝑘𝑚 ≤𝑀
𝑚=1 𝑀𝑃𝑊𝑚 ×  𝑌𝑚𝑘 Ɐ n, k               (8) 

∑ 𝐴𝑀𝑛𝑟𝑚 ≤𝑀
𝑚=1 𝑀𝐺𝑊𝑚 ×  𝑌𝑚𝑟  Ɐ n, r              (9) 

∑ 𝐴𝑀𝑛𝑣𝑚 ≤𝑀
𝑚=1 𝑀𝑆𝑊𝑚 ×  𝑌𝑚𝑣 Ɐ n, v             (9) 

Constraints (11), (12), (13), and (14) determine the upper 
limit on the number of collecting centers and recycling centers 
that can be opened. 

∑ 𝑌𝑛  ≤  𝑈𝑃𝑛 𝑁
𝑛=1                (11) 

∑ 𝑌𝑚𝑘  ≤  𝑈𝑃𝑚𝑘  𝑀
𝑚=1  Ɐ k                    (12) 

∑ 𝑌𝑚𝑟  ≤  𝑈𝑃𝑚𝑟
𝑀
𝑚=1  Ɐ r                   (13) 

∑ 𝑌𝑚𝑣  ≤  𝑈𝑃𝑚𝑣
𝑀
𝑚=1  Ɐ v                   (14) 

Finally, Constraint (15) and (16) enforce the binary and no 
negativity restrictions on corresponding decision variables. 

𝑌𝑛, 𝑌𝑚𝑘 , 𝑌𝑚𝑟 , 𝑌𝑚𝑣 ∈ {0,1}                (15) 

𝐴𝑀𝑙𝑛 , 𝐴𝑀𝑛𝑘𝑚 , 𝐴𝑀𝑛𝑟𝑚 , 𝐴𝑀𝑛𝑣𝑚 ≥ 0           (16) 
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IV. SOLUTION APPROACH 

A. Artificial bee Colony Algorithm 

The optimization algorithms based on swarm intelligence 
have come to be considered as one of the best methods for 
handling difficult real-world problems. The Artificial bee 
colony (ABC) is one of such optimization algorithms based on 
swarm intelligence, The ABC algorithm, introduced by [34], 
is an optimization algorithm inspired by the foraging behavior 
of honeybees. This algorithm is specifically designed to 
systematically explore and exploit potential solutions in the 
context of optimization problems. The ABC algorithm 
comprises as shown in Fig. 2, three distinct categories of bees: 
employees, onlookers, and scouts. First, employee bees are 
dispatched to diverse food sources, each with a designated 
location. These employees assess the nectar quantity 
associated with their designated food sources. At the same 
time, onlooker bees stay within the hive, systematically 
collecting crucial information about food sources with 
superior nectar levels, as communicated by the employee bees. 
Subsequently, onlooker bees influence the directional shifts 
for employee bees to explore further, based on the observed 
nectar quantity of each food source. Employee bees 
encountering stagnation in nectar accumulation may transform 
into scout bees, responsible for the stochastic discovery of 
new food sources. This dynamic interplay between exploration 
and exploitation is a core aspect of the ABC algorithm, 
reflecting the collaborative and adaptive dynamics inherent in 
natural honeybee colonies. 

 

Fig. 2. Flowchart of artificial bee colony. 

B. Genetic Artificial bee Colony Algorithmthe 

In order to improve the exploration and exploitation 
capabilities of the ABC algorithm, a genetic algorithm is 
incorporated. This integration, specifically introduced into the 
employed phase of an Artificial Bee Colony (ABC), brings 
forth genetic operations like crossover and mutation. These 
genetic operations play a pivotal role in broadening the 
exploration of the solution space. The refined solutions 
produced by employed bees, through the application of 
genetic operations, contribute to a more thorough exploration, 
ultimately improving the overall performance of the 
algorithm. A comprehensive explanation of the hybridization 
process is presented below. 

1) Initialization of prameters: In this initialization phase 

of the algorithm, critical parameters are defined to shape its 

behavior. The population size (PS) is determined, outlining the 

number of individuals constituting the population. 

Simultaneously, the number of food sources is established, 

each representing a potential solution within the optimization 

problem. The symmetry between employed and onlooker bees 

is emphasized, ensuring an equal distribution of roles in the 

algorithm. The maximum number of iterations is specified, 

delineating the extent of the algorithm's exploration and 

refinement cycles. A cycle limit is also set. Finally, the 

algorithm's initial population is initialized with bees, each 

carrying random solutions that signify quantities of waste 

transported between facilities. These defined parameters and 

the initial population collectively lay the foundation for 

subsequent algorithmic phases, guiding its systematic 

approach to solution exploration and optimization. 

2) Employed bee phase: In the Artificial Bee Colony 

Algorithm, employed bees actively explore their surroundings 

in search of alternative food sources that offer higher nectar 

content than their current location. 

 Exploring neighboring solutions: Employed bees 
explore neighboring solutions, conducting a systematic 
search for alternative options that reside in close 
proximity within the solution space. 

 The fitness: To compute the fitness value for the current 
solution based on the objective function. The fitness is 
determined through the following Eq. (18): 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  
1

1+𝐺𝑖
                   (18) 

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is the fitness of the associated solution. 𝐺𝑗 
represents the objective function for the 𝑗𝑡ℎ Solution. 

 Solution Update: When the newly explored solution 
surpasses the previous one in terms of both job creation 
and economic development, the employed bee proceeds 
to update its solution. 

3) Genetic operators phase: In this part the algorithm 

executes genetic operators, such as crossover and mutation, to 

introduce genetic variation and improve the solutions. 

To choose a pair of parents from the solutions acquired 
through employed bees, it is essential to establish an encoding 
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scheme for this problem. As shown in Fig. 3 and Fig. 4, this 
model employs a hybrid encoding, integrating both binary and 
floating encodings to represent the chromosome. For example, 
considering five hospitals, two collecting centers, three plastic 
recyclers, two glass recyclers, and two steel recyclers, each 
chromosome can be represented by 
(2+3+2+2+5*2+2*3+2*2+2*2+3*2+2*2+2*2) array. The 
initial (2+3+2+2) genes denote whether the two collecting 
centers are open (1) or closed (0). The same logic applies to 
plastic recyclers, glass recyclers, and steel recyclers. 
Following this, the next set of genes (5*2) represents the 
quantity of waste generated by the five hospitals and 
transported to the collecting centers. Subsequently, the 
sequences (2*3), (2*2), and (2*2) signify the amounts of 
waste transported from collecting centers to plastic recyclers, 
glass recyclers, and steel recyclers, respectively. Finally, the 
last set of genes (3*2), (2*2), and (2*2) represent the 
unrecovered waste transported from plastic recyclers, glass 
recyclers, and steel recyclers. 

As illustrated in Fig. 3, the first row comprises two 
elements representing the collecting centers, followed by three 
elements for plastic recyclers, two for glass recyclers, and the 
last two elements for steel recyclers. Meanwhile, the second 
row defines an example of the binary encoding scheme. 

In Fig. 4 an example of the floating encoding scheme is 
defined, the first table represents the Amount 𝑁𝑖𝑗 of waste 

generated by the hospital i and shipped to the collecting center 
j. The subsequent table defines the quantity 𝑀𝑖𝑗𝑘  of plastic 

waste k transported from the collecting center i to plastic 
recycler j. The following table represent defines the quantity 
𝑃𝑖𝑗𝑘  of glass waste k transported from the collecting center i to 

glass recycler j. The last table represents the quantity 𝑅𝑖𝑗  of 

steel waste transported from the collecting center i to steel 
recycler j. 

 
Fig. 3. Example of the binary representation. 

 

Fig. 4. Example of floating encoding scheme of solution. 

 Select Parent food source 

Before testing the performance of integrating the genetic 
algorithm into the ABC algorithm by applying genetic 
operators, we need to select two of the best parents obtained 
by the employed bees solutions using the Tournament 
selection. These parents contribute to the creation of offspring 
through crossover and mutation operations. 

 The Crossover Operator 

After selecting the two best solutions obtained from 
employed bees as parents, the crossover is applied. Crossover 
is a genetic operator that combines the genetic material of the 

two selected parents to generate two new offspring.There are 
various types types of mutation exist, such as bit-flip 
mutation, of cross over one-point crossover, multi-point 
crossover, and uniform crossover in this study we use one-
point crossover. A one-point crossover point is randomly 
chosen along the length of the parent chromosomes, this 
procedure involves cutting a chromosome at a specific 
position and switching the ends between the two parents. 

 The mutation Operator 

After the crossover operation, we apply the mutation 
operator to the two new offspring obtained. The mutation 
operator is another genetic operator that involves introducing 
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small changes to one or more genes in chromosomes. 
Differents random mutation, inversion mutation, displacement 
mutation, and swap mutation. In this paper, we apply the swap 
mutation, where two positions within the permutation are 
randomly chosen, and the elements at those positions are 
swapped.This operation helps to improve the exploration of 
new solotions. 

 The new solution update 

In this step, we substitute the worst solution acquired from 
the employed bees with the new offspring. The updated 
solutions with the information about the quality and location 
of their food sources are then communicated to the onlooker 
bees. 

4) Onlooker bee phase 

 The Probability 

In this phase, onlookers utilize the information shared by 
the employed bees to determine whether the food source 
should be further explored in search of better solutions or if 
the food source should be sent to scout bees. The probability 
of selecting a specific food source for exploration is presented 
in Eq. (19), where the higher fitness has a higher probability to 
be chosen. 

     𝑃𝑖 =  (
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

) 
(19) 

The onlooker bees use the probability 𝑃𝑖  to guide the 
employed bees toward the higher quality areas of solution 
space. 

 Produce new solutions 

Following the exploration of solution spaces, we assess the 
newfound fitness in comparison to the previous fitness. If the 
new solution provides better fitness, we substitute the previous 
solution; otherwise, we maintain the previous solution. This 
iterative process continues until the maximum number of 
iterations is achieved. 

5) Scout bee phase: The bees that fail to demonstrate 

improvement in their associated food source transition into 

scout bees. This is because employed bees repeatedly 

exploring the same food source are no longer discovering 

useful information. 

V. COMPUTATIONAL RESULTS 

A. GABC Algorithm Parameters 

 To assess the effectiveness of the proposed GABC 
algorithm, we applied the Taguchi method [35]. This method 
is used to determine the optimal combination of GABC 
algorithm parameters by identifying the factors that influence 
the performance and effectiveness of GABC algorithm. In this 
paper, we considered three factors Table I: population size, 
iteration number, and limit cycle which represents the 
maximum number of times an employed bee can revisit the 
same food sources without improvement. Each factor was 
explored at three levels: 1 for low, 2 for medium, and 3 for 
high. The next step is to apply the Taguchi orthogonal array 

(OA) to design a set of experiments covering all combinations 
of the selected factors. In the proposed model, Table II shows 
that each parameter is tested across three levels, with three 
experiments for each level, resulting in a total of 9 tests. 

TABLE I.  PRESENTATION OF DIFFERENT FACTORS AND LEVELS 

Levels Population Size Iterations Limit cycles 

1 60 100 15 

2 120 200 20 

3 180 300 25 

The experiments presented in Table II, using the 
orthogonal array (OA), generate a series of combinations that 
aid in identifying the best combination providing the optimal 
performance for the proposed model among all the obtained 
combinations. 

TABLE II.  THE TAGUCHI ORTHOGONAL ARRAY 

Experiment 
Levels 

Population Size Iterations Limit cycles 

1 1 2 2 

2 1 3 3 

3 1 1 1 

4 2 1 2 

5 2 2 1 

6 2 3 3 

7 3 3 3 

8 3 2 2 

9 3 1 1 

After using orthogonal arrays and conducting experiments 
at different factor levels, The Signal-to-Noise (S/N) is 
calculated for each experimental using Eq. (20). 

𝑆
𝑁⁄ = 10 log (

(𝑚𝑒𝑎𝑛)2

(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)2)                         (20) 

Where the meanor signal represents the average 
performance of the objective function, Variance measures the 
extent to which each individual number in a set deviate from 
the mean, or average, of those numbers. In the following 
section, we will present the best combination obtained by 
utilizing the orthogonal array (OA) and Signal-to-Noise (S/N) 
ratio. 

B. Numerical Result 

The provided problem was implemented in python and 
executed in an Intel (R) Core (TM) i5-6300U Processor 
2.67GHz with 8 GB of RAM. 

To proceed with the numerical testing and confirm the 
efficacy and validity of the proposed model, we are addressing 
both small and large problems. To account for the 
uncertainties in the proposed model, we take into 
consideration different scenarios for each size. As mentioned 
earlier, studies conducted in the field of medical waste are 
limited, and most countries prefer not to disclose the actual 
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situation of generated medical waste. This makes obtaining 
data somewhat challenging. As mentioned earlier, studies 
conducted in the field of medical waste are limited, and most 
countries prefer not to disclose the actual situation of 
generated medical waste. This makes obtaining data somewhat 
challenging. To address this challenge, we have reviewed 
various existing studies in the literature and non-government 
reports that address the problem of medical waste to collect 
data. Specifically, we are concentrating on these two studies 
[36], [37] to gain an idea of the average amount of waste 
generated by hospitals. In this paper, as illustrated in Table III, 
we address three types, and for each type, we focus on a 
specific product. 

1) Small problem: For a small problem size, we examined 

a network comprising 10 nodes. These nodes include four 

hospitals, two collecting centers (with a requirement for one 

collecting center to be opened), two plastic, one glass recycler, 

and one steel recycler, as shown in Table III. To tackle the 

uncertainties of the waste generated by the hospitals, we 

considered six scenarios, as illustrated in Table IV. The best 

combination for the different levels of the Taguchi method 

presented in the last section for the small size plus the genetic 

parameters are presented in Table V. 

2) Large problem: In this part of the problem, we 

considered a network with 17 nodes, including 8 hospitals, 3 

collecting centers (with one required to be opened), 3 plastic 

recyclers (with one plastic recycler required to be opened), 2 

glass recyclers (one of which is required to be opened), and a 

steel recycler, as shown in Table VII. We considered six 

scenarios for the quantities of waste generated by hospitals in 

Table VIII. The Table IX presents the optimal combination for 

the proposed model using the Taguchi method. 

TABLE III.  TYPES OF MEDICAL WASTES 

Waste types Characteristic 

Plastic 
 Polyethylene (PET) 

 Polypropylene (PP) 

- Some medical containers, 

- Syringes, medical vials, and other medical 
containers. 

Glass 

 White glass 

 Brown glass 
- 

- 

Steel  Stainless Steel - 

TABLE IV.  THE VALUE OF THE PROPOSED MODEL 

Set Value 

Hospitals 
Collection centers 

Plastic recyclers 

Glass recyclers 

Steel recyclers 

𝛅𝐤 

𝛅𝐫 

𝛅𝐯 

𝛃𝐤 

𝛃𝐫 

𝛃𝐯 

𝐌𝐜𝐚𝐩𝐧 

𝐌𝐏𝐖𝐦 

𝐌𝐆𝐖𝐦 

𝐌𝐒𝐖𝐦 

4 
2 

2 

1 
1 

5% 

7,5% 

9% 

15% 

20% 

24% 
Uniform (0,32000) 
Uniform (0,20000) 

Uniform (0,15000) 

Uniform (0,15000) 

TABLE V.  THE WASTE GENERATED IN EACH HOSPITAL 

 
H1 H2 H3 H4 

Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel 

1 

2 

3 

4 

5 

6 

1754 

1968 
2265 

2536 

2705 
3087 

382 

424 
653 

750 

811 
854 

133 

165 
189 

223 

345 
409 

2043 

2300 
2310 

2740 

3098 
3176 

548 

722 
863 

950 

1124 
1326 

184 

210 
263 

350 

431 
504 

2554 

2765 
3200 

3505 

3920 
4205 

845 

975 
1056 

1130 

1321 
1530 

285 

276 
332 

376 

409 
532 

3264 

3678 
4003 

4284 

4763 
5123 

1253 

1578 
1893 

2193 

2367 
2431 

876 

1045 
1357 

1543 

1713 
1923 

TABLE VI.  THE OPTIMAL TAGUCHI METHOD COMBINATION FOR SMALL PROBLEM 

 GABC GA 

 Population size Number of iterations Limit number of cycles Crossover rate Mutation rate 

Small problem 120 100 15 0.9 0.1 
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TABLE VII.  THE VALUE OF THE PROPOSED MODEL 

Set Value 

Hospitals H 
Collection centers C 

Plastic Recyclers 

Glass Recyclers 
Steel Recyclers 

𝜹𝒌 

𝜹𝒓 

𝜹𝒗 

𝜷𝒌 

𝜷𝒓 

𝜷𝒗 

𝑴𝒄𝒂𝒑𝒏 

𝑴𝑷𝑾𝒎 

𝑴𝑮𝑾𝒎 

𝑴𝑺𝑾𝒎 

8 
3 

3 

2 
1 

5% 

7,5% 

9% 

15% 

20% 

24% 
Uniform (0,32000) 

Uniform (0,20000) 
Uniform (0,15000) 

Uniform (0,15000) 

TABLE VIII.  THE WASTE GENERATED IN EACH HOSPITAL 

 H1 H2 H3 H4 H5 

 

 Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel 

1 1754 382 133 2043 548 184 2554 845 285 3264 1253 876 1251 353 124 

2 1968 424 165 2300 722 210 2765 975 376 3678 1578 1045 2967 401 213 

3 2265 653 189 2710 863 263 3200 1056 400 4003 1893 1357 3088 687 357 

4 2536 750 223 2940 950 350 3505 1130 576 4284 2139 1543 3591 825 539 

5 2705 811 345 3298 1124 431 4920 1321 680 5763 2767 1713 3980 1054 761 

6 3087 950 409 3376 1326 504 5605 2530 960 6123 3071 1923 4126 1329 933 
 

 

H6 H7 H8  

Plastic Glass Steel Plastic Glass Steel Plastic Glass Steel 

8634 2557 809 2224 733 458 5604 1339 576 

9687 2971 1480 2518 1270 598 6078 1874 643 

10964 3893 1661 5623 1690 787 7003 2465 787 

14583 4191 1855 6734 1998 961 8284 3475 833 

17654 6367 2013 7698 3246 1123 9763 4361 913 

19872 7031 2319 8763 3434 1456 10123 4783 1076 

TABLE IX.  THE OPTIMAL TAGUCHI METHOD COMBINATION FOR LARGE PROBLEM 

 GABC GA 

 Population size Number of iterations Limit number of cycles Crossover rate Mutation rate 

Large problem 120 200 20 0.9 0.1 

C. Results 

In this section, we compare the results obtained by the 
proposed GABC algorithm and the Artificial Bee Colony 
algorithm using optimal parameters derived through the 
application of the Taguchi method. Table VI shows optimal 
Taguchi method. The primary objective is to maximize 
positive social indicators in the proposed model, emphasizing 
the creation of job opportunities while maintaining a balance 
in economic development. We employed a weighted sum 
formulation approach, assigning equal weights (0.5, 0.5) to 
two objective functions, signifying an equal contribution of 
both objectives to the overall objective function. 

 For the unemployment rate and region development rate, 
we explore three different values for both small and large 
problems, as outlined in Table X and Table XI. Additionally, 
the assumption is made that all facilities are located within the 
same region. The economic value is centered on two aspects: 
cost savings achieved through the recycling of medical waste 

and revenue generated by purchasing recovered waste for use 
in creating new products. 

1) Results for small problem: To calculate our second 

objective function, as shown in Table X, it is imperative to 

quantify the regional development rate. The term 'regional 

development' includes economic it is imperative to quantify 

the regional development rate. The term 'regional 

development' includes economic, environmental, it is 

imperative to quantify the regional development rate. The 

term 'regional development' includes economic, 

environmental, and social progress within a specific region. 

The primary goal of regional development is to enhance 
the overall well-being of the population in that region by 
addressing economic disparities, improving infrastructure, and 
promoting address multidimensional poverty rates, where we 
will examine three different rates of multidimensional poverty. 
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TABLE X.  THE RESULTS FOR SMALL PROBLEM 

Unemployment rate 
Multidimensional 

poverty rate 
Scenario 

GABC  ABC  

Job creation 

opportunities 

Economic 

development ($) 
CPU Time 

Job creation 

opportunities 

Economic development 

($) 

CPU 

Time 

5.4% 3.1% 

1 
2 

3 

4 
5 

6 

122.53 
134.31 

148,75 

169.37 
195.75 

212.83 

8532.84 
9797.51 

11454.27 

14861.46 
16903.55 

19601.61 

24.56 
37.45 

49.03 

65.76 
88.92 

95.30 

111.68 
127.25 

148.43 

160.4 
192.5 

204.75 

7890.85 
9323.96 

11384.48 

13769.98 
16879.39 

19273.93 

2.32 
4.16 

5.59 

8.48 
9.52 

11.27 

10.3% 11.9% 

1 
2 

3 

4 
5 

6 

207.32 
226.91 

257.18 

282.34 
338.28 

338.78 

7187.83 
8608.76 

9954.29 

12265.83 
14667.73 

17165.15 

25.67 
36.73 

51.98 

66.23 
89.45 

97.43 

201,89 
214.25 

250.9 

274.3 
334.41 

375.62 

7098.67 
8477.20 

9863.08 

11007.61 
14873.90 

17983.01 

3.52 
4.33 

5.12 

8.61 
10.39 

12.52 

16.1% 24.3% 

1 
2 

3 

4 

5 

6 

301.04 
336.25 

384.05 

419.39 

517.43 

538.00 

6057.44 
7220.63 

8765.48 

10876.75 

12870.16 

14936.95 

25.55 
37.92 

54.76 

68.15 

90.95 

96.45 

292.86 
329.34 

375.1 

408.98 

500.36 

572.3 

6164.47 
7284.04 

8619.85 

10237.03 

12634.83 

14763.11 

3.83 
5.08 

7.81 

9.69 

12.72 

13.65 

TABLE XI.  THE RESULTS FOR LARGE PROBLEM 

Unemployment rate 
Multidimensional 

poverty rate 
Scenarios 

GABC  ABC  

Job creation 

opportunities 

Economic 

development 

($) 

CPU 

Time 

Job creation 

opportunities 

($) 

Economic 

development 

CPU 

Time 

5.4% 3.1% 

1 

2 
3 

4 

5 
6 

435.96 

541.12 
625.87 

712.53 

784.01 
931,98 

18457.21 

25551.47 
29904.01 

32435.81 

36925.71 
40112.49 

78.71 

96.32 
115.76 

131.04 

135.76 
158.22 

421.65 

503.91 
603.09 

699.1 

765.01 
923.81 

18340.74 

25490.52 
29865.07 

32327.38 

36897.89 
40007.16 

3.42 

5.03 
6.34 

8.69 

10.98 
12.08 

10.3% 11.9% 

1 

2 
3 

4 

5 
6 

759.40 

931.43 
1100.24 

1299.83 

1438.19 
1727.26 

16982.07 

21238.64 
24954.28 

28003.91 

31132.54 
34532.17 

78.88 

96.70 
117.90 

136.77 

137.16 
167.49 

735.79 

908.37 
1096.06 

1278.03 

1405.75 
1711.39 

16675.12 

21084.77 
24642,24 

27890.73 

30393.36 
34198.10 

4.93 

5.17 
6.87 

9.02 

11.43 
12.91 

16.1% 24.3% 

1 

2 

3 
4 

5 

6 

1151.28 

1412.34 

1693.59 
2007.11 

2196.61 

2658.02 

14548.62 

19008.06 

23067.30 
25876.49 

27958.38 

31976.23 

79.78 

95.92 

117.84 
136.01 

137.53 

168.81 

1106.31 

1380.4 

1670.63 
1985.72 

2163.91 

2631.69 

14328.15 

18671.86 

22893.58 
25816.92 

27893.38 

31896.81 

5.34 

6.64 

7.09 
9.63 

11.92 

13.28 

The results from Table X and Table XI indicate that the 
solutions obtained by the proposed GABC algorithm are better 
than the solutions obtained by the original ABC algorithm for 
the two objective functions. Additionally, the time required to 
execute the GABC code is longer than that of the ABC, 
attributed to the hybrid nature of the GABC algorithm, which 
combines two algorithms. The increased computational time is 
expected due to this hybridization. 

Regarding job creation opportunities, is illustrated in 
Fig. 5, the value increases as the unemployment rate rises. 

In Fig. 6, depicting economic development, we observe the 
opposite trend: the economic value decreases as the 
multidimensional poverty rate increases.  

Fig. 5. Small problem comparison for different multidimensional poverty 

rates. 
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Fig. 6. Small problem comparison for different unemployment rates. 

1) Results for large problem: Same as the small problem, 

for the large problem, the proposed GABC algorithm exhibits 

better results than those obtained by the ABC algorithm. In the 

job creation opportunities function for the large problem, there 

is an increase in regions with rising unemployment rates 

Fig. 7. This highlights the need for establishing more facilities 

in regions with high unemployment rates to address the issue. 

For the balanced economic development function Fig. 8, we 

observe that the region with higher multidimensional poverty 

experiences a decrease in economic development. 

 
Fig. 7. Large problem comparison for different unemployment rates. 

 
Fig. 8. Large problem comparison for different multidimensional poverty 

rates. 

D. Discussion 

In this paper, our objective is to maximize positive social 
indicators by focusing on job creation and balancing economic 
value. The results indicate that through the recycling of 
medical waste, we can generate more job opportunities and 
promote balanced economic development, thereby reducing 
social disparities and enhancing overall well-being. 

Our research into the literature indicates a scarcity of 
studies focusing on the social impact of recycling end-of-life 
products. Specifically, few studies delve into issues such as 
job creation indicator or the number of days lost due to 
occupational accidents resulting from the construction of 
waste processing centers [25], [30], [38]. In light of this gap, 
our study aims to address the issue of multidimensional 
poverty, considering it as one of the positive indicators being 
investigated. Our examination of the existing literature 
highlights that this study marks the inception of discourse on 
this topic. The numerical results demonstrate that adopting 
sustainable practices to preserve natural resources and reuse 
them, using recycling principles, helps to create more job 
opportunities. This means decreasing the unemployment rate 
and multidimensional poverty, ultimately improving the 
quality of life for people. 

VI. CONCLUSION 

In this paper, we illuminate the often overlooked third 
dimension of sustainability in research, highlighting the 
significance of maximizing positive social indicators. Our 
hybrid approach, employing the Artificial Bee Colony (ABC) 
algorithm and Genetic Algorithm (GA) to tackle two objective 
functions: enhancing job creation opportunities and promoting 
balanced economic development. The paper focuses on the 
reverse supply chain for recycling medical waste, 
encompassing various stakeholders such as hospitals, 
collection centers, plastic recyclers, glass recyclers, and steel 
recyclers. To assess the performance and effectiveness of the 
proposed GABC algorithm, we conducted a comparative 
analysis with the ABC algorithm. We subjected the proposed 
approach to testing in diverse scenarios to simulate real-life 
situations. 

The comparison between the proposed GABC and the 
original ABC indicates that the suggested approach 
consistently outperforms in various scenarios studied, 
providing superior solutions for both job creation 
opportunities and economic development. This success can be 
attributed to the nature of the proposed approach, which 
integrates two algorithms: ABC and GA. 
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