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Abstract—The development of deep learning algorithms in 

recent years has shown promise in interpreting ECGs, as these 

algorithms can be trained on large datasets and can learn to 

identify patterns associated with different heart conditions. The 

advantage of these algorithms is their ability to process large 

amounts of data quickly and accurately, which can help improve 

the speed and accuracy of diagnoses, especially for patients with 

heart conditions. Our proposed work provides performant 

models based on residual neural networks to automate the 

diagnosis of 12-lead ECG signals with more than 25 classes 

comprising different cardiovascular diseases (CVDs) and a 

healthy sinus rhythm. We conducted an experimental study using 

public datasets from Germany, the USA, and China and trained 

two models based on Residual Neural Net-works-50 (ResNet-50) 

and Xception from CNN techniques, which is one of the most 

effective classification models. Our models achieved high 

performances for both training and test tasks in terms of 

accuracy, precision, recall, and loss, with accuracy, recall, and 

precision exceeding 99.87% for the two proposed models during 

the training and validation. The loss obtained by the end of these 

two phases was 3.38.10-4. With these promising results, our 

suggested models can serve as diagnostic aids for cardiologists to 

evaluate ECG signals more quickly and objectively. Further 

quantitative and qualitative evaluations are presented and 

discussed in the study, and our work can be extended to other 

multi-modal big biological data tied with ECG for similar sets of 

patients to obtain a better understanding of the proposed 

approach for the benefit of the medical world. 
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I. INTRODUCTION 

Globally, one of the major causes of death is cardiovascular 
disease (CVD) as it represents about greater than 30% which 
85% of it is a heart attack, it is expected that more than 130 
million people will be suffering by 2035 [1]. CVD has caught 
the attention of many researchers as they have been studying to 
elaborate solutions for the prevention and detection of these 
diseases regarding their impact economically [2]. Every year, 
studies have shown that the impact of CVD on the American 
and European economies is estimated at $555M and €210M, 
respectively. Understanding how the heart's electrical system 
works is crucial before examining [20] the electrocardiogram 
(ECG). The heart is an organ that periodically contracts and 
relaxes. Its cells play a role in the propagation of electrical 
impulses to nearby cardiac cells [3]. 

The principle of the ECG is to record the electrical impulses 
at the origin of cardiac contractions. The electrical impulses are 

recorded away from the heart, through the skin, using 
electrodes [4]. There are two types of electrodes: six precordial 
electrodes implanted on the chest and three frontal electrodes 
(or four, to refine the signal) placed on the limbs. The accuracy 
of the diagnosis is influenced by the number of electrodes. In 
fact, the more there are, the more accurate and precise the 
diagnosis will be. The accuracy of an electrocardiograph with 4 
leads will be less than one with 12 leads. the most common 
clinical use is with 12 leads [5]. If the electrical impulse moves 
toward one of these electrodes, it registers a positive signal; if it 
moves away, it registers a negative signal. The wrists and 
ankles of the patient are where the frontal electrodes are placed 
[6]. They enable the reconstruction of the patient's heart's 
electrical axis; the ECG is the tracing obtained. Numerous 
cardiac issues are highlighted by this diagram, including 
atrioventricular blocks (poor electrical impulse conduction), 
bradycardias, and tachycardias with a slowing or accelerating 
of these complexes on the drawing [7]. 

The interpretation of this schema enables the doctor to 
confirm whether the heart is functioning properly. The 
responsibilities of cardiologists are expanding along with the 
rise of cardiac problems. Cardiology variation both within and 
across radiologists affects the manual interpretation [8]. The 
result of the manual interpretation will also be influenced by 
other factors such as mood, exhaustion, and others. Doctors 
regularly analyze and interpret ECGs, the diagnoses are greatly 
influenced by the doctor's training, qualifications, expertise, 
and experience. However, even experts and specialists are 
unable to fully identify all ECG signals information. In 
actuality, the analysis of lengthy recordings, such as Holter 
examinations and ambulatory cases of continuous monitoring 
in intensive care and intensive care and resuscitation units, is 
difficult and time-consuming, particularly for the detection of 
characteristic waves of the ECG signal and the classification of 
heartbeats [9]. 

Nowadays, innovative technologies such as Artificial 
intelligence have been helpful in a revolutionary way. 
Computer-aided medical diagnostics (CAMD) are now crucial 
for the diagnosis of CVD due to developments in hardware and 
algorithms. Cardiologists can consult CAMDs based on ECG 
signals for guidance and interpret results within a few seconds 
by checking CVD-specific characteristics. Due to the enormous 
number of patients in critical care units and the requirement for 
ongoing surveillance, they can assist doctors in making the 
diagnosis in a simpler and quicker way, which appears to be 
essential [10]. This is how it appeared that DMAOs helped 
with the ECG signal-based cardiac diagnosis. These systems 
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should be simple to use, scalable, precise, reliable, and solid. 
Several techniques have been suggested in the latest decades 
for the evaluation of CVD. Various approaches, such as Deep 
Learning (DL) techniques have lately become useful tools in 
complex applications such as computerized machine vision and 
natural language processing. Among DL technics, a 
convolutional neural network (CNN) is by far one of the most 
effective [11]. 

Many researchers have shown interest in this topic and 
numerous approaches have been put out by various researchers 
to address it. There are several types of CVDs surpassing 100 
types. This study aims to classify 27 heart rhythm types using 
ECG data including 26 different varieties of CVDs and normal 
sinus rhythm. The four merged used datasets to train, validate, 
and assess models in this classification, which comprises 42511 
ECG records. The dataset utilized comprises 12-lead ECG 
signals, which is a common ECG category used in hospitals 
and clinical situations. It is trained with two models based on 
Residual Neural Networks-50 (ResNet-50) and Xception from 
CNN techniques, which is one of the most effective 
classification models. 

The remainder of this investigation is organized as follows. 
Section II provides a review of comparable publications in the 
literature, while Section III described the suggested model and 
the simulation methodologies. A discussion and evaluation of 
the proposed ECG classification models’ findings are provided 
in Section IV. Test phases are given in Section VI. Finally, 
Section VI discusses the conclusion and future projects. 

II. RELATED WORKS 

For ECG diagnosis, the Uni-G analysis tool, developed by 
the University of Glasgow, used rule-based criteria on signal 
processing and medical characteristics [3]. Datta et al obtained 
the best score in the Physionet/CinC Challenge 2017 [4] that 
have as its objective the single-leads ECGs classification. They 
applied a feature-oriented technique that includes a two-layer 
cascaded binary classifier. Another SP was employed in [6], 
Aziz et al used a Discrete Wavelet Transform (DWT) and 
SVM to detect R peaks and classify ECG signals. 

Lately, DL models have been used on ECG data for a 
variety of applications such as denoising signals, pathology 
diagnosis [12], annotation or detection, and so on. The 
application of Deep Neural Network (DNN) in the 
classification of single or multiple ECG leads had shown a 
wonderful outcome [13]. Moreover, the results obtained by the 
em-ployment of a DNN on 91,232 ECG records are more 
performant than cardiologists when trying to diagnose 11 types 
of CVDs [14]. 

There are a variety of datasets used to train DL models. 
Most publications employ public databases such as MIT-BIH 
Databases and the Phsysionet/CinC Challenges da-taset. For 
example, the first dataset is MIT-BIH Arrhythmia Database 
[15] which comprises 48 2-leads ambulatory ECG recordings. 
Each one has a duration of 30 min. These were acquired from 
the BIH Arrhythmia Laboratory's 47 patients investigated 
between 1975 and 1979. This dataset includes five classes. In 
addition, MIT-BIH Atrial Fibrilla-tion Database [16] contains 
25 ECG records. The duration of all the recordings is 10 hours. 

Most of the investigation dedicated to the Atrial Fibrillation 
(AFib) automated detection used this dataset. In addition, PTB 
is a widely used dataset that includes 54912-leads ECG signals 
from 290 subjects. This contains nine various diagnostic 
classes. Also, Ones of the most utilized dataset in the task of 
ECG classification are China Physiological Signal Challenge 
datasets [17]. Actually, the CPSC 2017, includes 8528 single 
lead ECG recordings. Their duration varies from 9s to 61s, and 
this comprises four classes: AFib, Normal, Noise and other 
MCVs. Whereas the CPSC 2018, it is a series of 6877 10s 12-
leads ECG records. This comprises 9 diagnostic classes [18]. 

Ribeiro et al [19] used 2,322,513 ECG recordings, collected 
from 1,676,384 various patients, containing 6 types of CVDs as 
the training and the validation set. Their model is based on a 
Deep Neural Network (DNN) Architecture. DNNs 
outperformed cardiology resident clinicians in detecting six 
categories of anomalies in 12-lead ECG recordings, with F1-
score over 80% and specificity exceeding 99%. These findings 
show that ECG diagnosis using DNNs, which was before 
examined in a single-lead scenario, generalizes effectively to 
12-lead tests, bringing the technique closer to mainstream 
clinical practice. Besides, Zhu et al. [23] established their work 
on private dataset counting 180,112 12-leads ECG from 70,692 
patients, including 21 classes. To classify these CVDs, they 
employed a CNN. The suggested CNN model consists of 
fifteen alternating layers for multilabel classification of the 21 
heartbeats varieties. Shortcut connections in residual blocks 
were utilized to skip intermediate layers to avoid gradient 
vanishing difficulties. Rectified linear unit (ReLU) nonlinearity 
with dropout was utilized in the network to improve the 
performance and avoid the overfitting of the model. Similar to 
Zhu et al., Zhang et al. [21] used CNN to classify 6877 12-
leads ECG provided by the CPSC 2018 to nine heart rhythm 
types. The suggested 1D-CNN has a similar overview to the 
original residual neural network for image recognition with 2D 
CNNs [22]. Actually, the proposed model has 34 layers. To 
capture deep characteristics, four residual blocks are stacked, 
then employed. Moreover, they used SHapley Additive 
exPlanations (SHAP) [23] to interpret the prediction of the 
model. This was used to interpret the patient level and the 
population level. Otherwise, this clarifies the attitude of the 
model against the single input, 12-lead ECG, and the whole 
used dataset. The SHAP method is based on game theory. In 
simple terms, it measures the impact on the prediction of 
adding a variable (all else being equal) by permuting all 
possible options. 

In other papers, researchers opted to combine Neural 
Networks to boost models’ performance. Zheng et al. [24] 
developed model formed by a combination of CNN and long 
short-term memory (LSTM) which belong to the Recurrent 
Neural Network (RNN) and trained it on the MIT-BIH 
databases. CNN is best suited for analyzing spatial or locally 
linked data, whereas LSTM excels at collecting time series data 
properties. Concerning the CNN, they used two models. The 
first is a simple CNN. The model's layers 1-9 are convolutional 
layers connected to the highest collection layer, while layer 10 
is the LSTM layer. To predict the output, the network's end 
employs a fully - connected layer. Whereas the second is 
VGGNet belonging to the deep CNN. By combining 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

321 | P a g e  

www.ijacsa.thesai.org 

convolution and pooling layers, the model can successfully 
collect ECG deep information. 

To enhance the robustness of models, investigators used 
data augmentation technics which are usually figured when 
there is an imbalance in training data. Wu et al. [25] utilized 
shifting test data. Moreover, Nonaka et al. [26] applied 13 data 
augmentation method on ECG signals to improve the efficiency 
of their DNN model. For example, they used erasing, scaling, 
squaring and so on. 

III. METHODS 

Fig. 1 depicts the process of the proposed methods, which 
were used in this investigation. The next subsections will 
discuss each phase of this workflow. Actually, this starts with 
the fundamental steps which is data preparation. This step 
comprises data cleaning, data preprocessing, data partition and 
data augmentation. The next step is the training and validation 
of the proposed models using the training and validation data 
already split. Lastly, the test of the trained and validated model. 
This requires the test data. 

Data
Preprocessing

Training

Data

Test

Data

Validation

Data

Data 
Augmentation

Model 
Training

Model 
Evaluation

Results
Dataset

 
Fig. 1. Workflow of the proposed methods. 

A. Dataset 

The utilized dataset in this study contains four combined 
open source and free databases from George B. Moody 
PhysioNet Challenges which aims to classify 12-leads ECGs. 
This dataset contains 42 511 ECGs, 500 Hz-sampled, recorded 
from patients for a duration of 10 seconds. They come from 
three various countries, the USA, China, and Germany. Table I 
details the characteristics of these databases. 

TABLE I. CHARACTERISTICS OF THE USED DATABASES 

Database Source Records Length 

CPSC [21] China Physiological 
Signal Challenge in 

2018 

6877 M: 3699 

|F: 3178 
6 s ~60 s 

CPSC 
EXTRA [21] 

3453 M: 1843 
|F: 1610 

6 s ~60 s 

PTB-XL [26] 

Physikalisch 

Technische 

Bundesanstalt 

21837 M: 

11379 |F: 

10458 

10s 

Georgia [27] Georgia 
10344 M: 5551 

|F: 4793 
10s 

The database is annotated with more than 110 diagnostics. 
In this study, due to the delimited annotations scored by the 
SNOMED-CT organization, which is a standardized 
multilingual clinical terminology vocabulary, only 27 classes 
will be considered, divided into normal sinus rhythm (NSR) 
and 26 categories of CVDs. Fig. 2 presents these classes. 

 
Fig. 2. Distribution of classes in each database. 

B. Data Preparation 

The data preparation starts with the extraction of the 
patient’s personal information from the header files such as ID, 
age, gender, and anomalies codes. The following paragraphs 
detail the rest of the data preparation steps of training, 
validation, and testing. As indicated in paragraph 3, this work 
focuses on the 27 scored classes. For that, any annotated signal 
from the unscored classes will be removed. As a result, the 
number of ECGs will decrease from 42511 to 21724. The final 
distribution of the classes is presented in Fig. 3. 

 
Fig. 3. Dataset classes distribution. 

C. Data Preprocessing 

The dataset includes 12-lead multi-label ECGs with diverse 
lengths between 6 s and 60 s. Considering DL needs inputs to 
be the same length, the dataset has been preprocessed to 
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guarantee that all inputs have the same length. A variety of 
lengths were tried, and it was discovered that proceeding with 
lengths equal to 5000 (10 s duration, 500 Hz sampling rate) 
gave the best performance. Regarding ECGs with full length 
longer than 10 s, they will be shortened, and the first 10 
seconds of the ECG signal will be kept. Otherwise, they are 
padded with zeros until they have 10 seconds of recording. Fig. 
4 shows the techniques used in the preprocessing of the data. 

000000

5000

Padded

Truncated

 
Fig. 4. Data preprocessing techniques. 

D. Data-Split 

To start with, the dataset is partitioned into two sets with a 
0.75/0.25 ratio: the Training and Validation (TV) set and the 
test set. After that, the K-Fold stratified multi-class cross-
validation technique was used, with 10 folds for the training 
and validation sets. As a result, ten stratified folds were 
generated by keeping each class samples rate constant. This 
ensures its existence at all stages. The training set is used to 
ensure the training of the model. The validation set is set aside 
for model optimization. As a result, a search for the appropriate 
parameterization is done without utilizing test data. This aims 
to determine the model's performance and evaluate its 
generalization potential. To resume this step explained in Fig. 
5, the data was split into a TV set and a test set containing 
16293 and 5431 ECG records, respectively. For the TV set, 
each training and validation fold includes 14655 and 1638 ECG 
recordings, respectively. 

DATA

Training and Validation Set Test Set

Fold 1

Fold 2

Fold 10

Validation Data

Training Data

Stratifed 

10Folds

 
Fig. 5. 10-Folds stratified used in data split. 

E. Data-Augmentation 

As shown in Fig. 3, the problem of imbalance and 
insufficient data is very severe for the diagnosis of these 
cardiac arrhythmias. To solve this problem, Amplitude Scaling 
was applied to augment the data during the training phase. Data 
augmentation consists in generating realistic data to avoid data 
insufficiency. To extend or compress the amplitude, amplitude 
scaling method amplifies ECG signals by a random coefficient 
generated from a normal distribution N (1, 0,1). Although this 
da-ta augmentation technique introduces noise, it can assist 
prevent model overfitting and enhance resilience against bad 
cases [30]. 

IV. MODELS ARCHITECTURES 

After the text edit has been completed, the paper is ready 
for the template. Duplicate the template file by using the Save 
As command and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. This section is reserved for the presentation of the two 
models’ architectures. Actually, in this work, the proposed 
models are model 1 and model 2 which refers to ResNet-50 and 
Xception respectively. 

A. Model 1 

The first proposed model is ResNet-50 which belongs to the 
residual neural networks. At the conclusion of its layers, this 
network learns numerous low/medium/high level 
characteristics. Instead of trying to train features, residuals are 
trained in residual training. The residual may be easily defined 
as input for that layer minus the trained features. ResNet 
employs shortcut connections for this purpose (directly linking 
the nth layer's input to the (n+i)th layer). The training of the 
model is made possible thanks to the residual blocks with 
shortcut connections. The input of the models is a patient ECG 

recording x ∈ ℝnsamples×12, and the output is ŷ ∈ ℝ1x27 

which represents the multi-label classification outcome. These 
inputs were subjected to a 1D convolution layer (Conv1D), a 
batch normalization layer (BN1D), a rectified linear unit 
(ReLU) activation layer, and a Max Pooling layer. As well as, 
for the extraction of wide features, 16 residual blocks were 
used. In this model, there are two types of residual blocks: 

1) Res_Block_1 consists of 3 Conv1D layers, 3 BN1D 

layers, 2 activation layers ReLU, 1 Conv1D layer and 1 BN1D 

layer, while it is utilized to adjust dimensions and skip con-

nections. Res Block 2 is just 3 Conv1D layers, 3 BN1D layers 

and 2 ReLU activation layers. 

2) The Conv1D layers extract features, the BatchNorm1D 

layers speed up and stabilize the model, and the ReLU layers 

do non-linear activation. The residual blocks' extracted 

characteristics are pooled by Average Pooling. The findings 

are gathered and transferred to the output layer (dense layer) 

for prediction utilizing the sigmoid activation function. 

Fig. 6 presents the architecture of the first proposed model 
is presented. 
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B. Model 2 

The second proposed model is Xception. It is a deep 
convolutional neural network architecture incorporating depth-
separable convolutions [31]. This is a powerful architecture that 
relies on its two main points of: Depth-separable convolution 
and Shortcuts between convolution blocks as in ResNet. Depth-
separable convolution is said to be an alternative to classical 
convolution and much more computationally time efficient 
[32]. As in the first model, the Xception model has the same 
input and output. Xception comprises 36 layers of convolutions 
that form the basis for extracting network features. They are 
divided into 14 modules with linear residual connections 
around all but the last and first modules. The Xception 
architecture is essentially a linear stack of depth-separable 
convolution layers with residual connections. Data is routed via 
the Entry flow first, then via intermediate flow 8 times, and 
lastly the Exit flow. A batch normalization layer follows all 
convolution (Conv1D) and separable convolution (Sep-
Conv1D) layers (BN1D). These modules' collected 
characteristics are pooled using Global Average Pooling. The 
pooling results are gathered and forwarded to the dense layer, 
which uses the sigmoid activation function to make predictions. 
Fig. 7 details the architecture of proposed model 2. 
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Fig. 6. Architecture of the proposed model 1. 
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Fig. 7. Architecture of the proposed model 2. 

V. RESULTS & DISCUSSIONS 

In the Training and Validation phase, there are many 
introduced metrics. In fact, this paragraph details the evolution 
of the accuracy, recall, precision, and loss during these two 
phases for the two proposed models. 

A. Accuracy 

At the end of the training and validation, for the model N°1, 
ResNet-50, the accuracy obtained is 99.99% and 99.98% 
respectively. For the model N°2, Xception, it reached 100% in 
both phases. Fig. 8 and 9 represent the development of the 
accuracy during the two phases for the ResNet-50 and 
Xception respectively. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

324 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 8. Evolution of accuracy during the training of two models. 

 
Fig. 9. Evolution of accuracy during the validation of two models. 

B. Precision 

Fig. 10 and 11 illustrate the evolution of the precision in the 
two steps for the two proposed models. Indeed, for model 1, it 
reached 99.99% in the training and 99.87% in the validation. 
Concerning the model N°2, the precision obtained in the two 
phases is 100% and 99.96%. 

 
Fig. 10. Evolution of the precision during the training of two models. 

 

Fig. 11. Evolution of the precision during the validation of two models. 

C. Recall 

Concerning the recall parameter, at the end of the training 
and validation of ResnNet-50 model, it reached 100% and 
99.87%. For the Xception model, it is 100% in both phases. 
Fig. 12 and 13 show the evolution of recall for the two models. 

 
Fig. 12. Evolution of the recall during the training of two models. 

 

Fig. 13. Evolution of the recall during the validation of two models. 
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D. Loss  

In terms of loss, the first model reached 7,89.10-05 and 
3,83.10-04 in the two phases. For the second model, at the end 
of learning and validation, it reaches 4,37.10-05 and 2,05.10-04, 
respectively. Fig. 14 and 15 present the declination of the Loss 
function for the two models. 

 
Fig. 14. Evolution of the loss during the training of two models. 

 
Fig. 15. Evolution of the loss during the validation of two models. 

Globally, for both models, the evolution of the performance 
parameters is generally similar to a faster stabilization of the 
Xception model. Indeed, the model N°2 has converged since 
the 60th epoch (beginning of fold N°5) whereas the model N°1 
has converged only after the 90th epoch (beginning of fold 
N°7). Also, the evolution of the validation curves of the 
performance parameters for the ResNet-50 model is more 
stable than that of the Xception model. Moreover, the saw teeth 
noticed in these curves are less severe for the model N°1. 

VI. TEST PHASES 

In the test phase, the metrics presented are the confusion 
matrices of the proposed two models as well as their 
classification reports. Fig. 16 presents the normalized 
confusion matrix obtained. The model N°1 is performing for 
the classes CRBBB, RAD, Brady, PR, NSR, RBBB, AF, 
IRBBB, STach, IAVB, PAC, LBBB. Indeed, their percentages 
of correct determinations are greater than 80%. Moreover, its 
performance is moderate for the PVC, SA, TInv, SB, and AFL 
classes where their percentages of correct predictions are 
higher than 60%. For lasting classes, such as QAb, LPR, and 
LAD, ResNet-50 has a bad performance. 

 
Fig. 16. Confusion matrix of the proposed model 1. 

Fig. 17 illustrates the normalized confusion matrix obtained 
from model N°2. It performs well for the classes NSIVCB, 
CRBBB, SVPB, NSR, RBBB, PR, IRBBB, AF, AFL, IAVB, 
STach. Moreover, their percentages of correct predictions 
exceed 80%. Moreover, its performance is moderate for the 
classes PAC, SB, SA, TInv, and LQRSV where their 
percentages of correct predictions are above 60%. For the 
remaining classes, like LPR, QAb, Brady and RAD..., Xception 
has a bad performance. 

 
Fig. 17. Confusion matrix of the proposed model 2. 

VII. CONCLUSION 

This study showcases a successful application of deep 
learning (DL) techniques for the accurate diagnosis of 
cardiovascular diseases (CVDs) using ResNet-50 and Xception 
models. The study considered 27 heartbeat rhythms, where one 
belongs to normal sinus rhythm (NSR), and the remaining 26 
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belong to cardiac abnormalities. The dataset utilized in this 
research was created by aggregating four distinct datasets from 
three different nations, providing a diverse range of cardiac 
conditions. The results demonstrate the effectiveness and high 
performance of the proposed methods, which were also 
validated against recent literature. However, it is essential to 
acknowledge the limitations of the suggested methods. Firstly, 
the high complexity of computation required for the deep 
learning models may hinder their implementation in some 
medical settings. Additionally, the limited interpretability of 
some of the classes in the global dataset used may pose 
challenges in diagnosing and treating certain cardiac 
conditions. To address these challenges, future studies will 
focus on enhancing the proposed techniques to make them 
more accessible and interpretable for a broader range of 
medical applications. Overall, this research provides promising 
insights into the potential of deep learning models for CVD 
diagnosis, and with further development, they have the 
potential to revolutionize the field of cardiac medicine. 
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