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Abstract—Content-Based Medical Image Retrieval (CBMIR) 

is a widely adopted approach for retrieving related images by the 

comparison inherent features present in the input image to those 

stored in the database. However, the domain of CBMIR specific 

to multiclass medical images faces formidable challenges, 

primarily stemming from a lack of comprehensive research in 

this area. Existing methodologies in this field have demonstrated 

suboptimal performance and propagated misinformation, 

particularly during the crucial feature extraction process. In 

response, this investigation seeks to leverage deep learning, a 

subset of artificial intelligence for the extraction of features and 

elevate overall performance outcomes. The research focuses on 

multiclass medical images employing the ImageNet dataset, 

aiming to rectify the deficiencies observed in previous studies. 

The utilization of the CNN-based Autoencoder method manifests 

as a strategic choice to enhance the accuracy of feature 

extraction, thereby fostering improved retrieval results. In the 

ImageNet dataset, the results obtained from the proposed 

CBMIR model demonstrate notable average values for accuracy 

(95.87%), precision (96.03%) and recall (95.54%). This 

underscores the efficacy of the CNN-based autoencoder model in 

achieving good accuracy and underscores its potential as a 

transformative tool in advancing medical image retrieval. 

Keywords—Medical image retrieval; multiclass medical 

images; artificial intelligence; deep learning; convolutional neural 

network; autoencoder 

I. INTRODUCTION  

Content Based Medical Image Retrieval (CBMIR) plays a 
pivotal part in modern healthcare, leveraging the developments 
in Deep Learning (DL) to enhance efficiency and accuracy of 
diagnosing and treating various medical conditions. As medical 
imaging technologies continue to evolve, the vast amount of 
digital medical images generated necessitates robust and 
intelligent retrieval systems. DL, a subset of Artificial 
Intelligence (AI), has emerged as a transformative force in the 
field, offering unprecedented capabilities in feature extraction 
and pattern recognition. This research delves into the area of 
CBMIR, exploring the application of DL techniques to 
navigate and retrieve relevant information from extensive 
medical image databases [1]. The integration of DL models not 
only streamlines the retrieval process but also contributes to the 
overall improvement of diagnostic accuracy and clinical 
decision-making. In this comprehensive examination, we delve 
into the key methodologies, challenges, and breakthroughs 

associated with CBMIR using DL, shedding light on the 
promising future it holds for the medical community [2]. 

 The fusion of cutting-edge technology and healthcare 
exemplifies a synergy that has the potential to revolutionize 
patient care and medical research. Through an exploration of 
various DL architectures and their adaptations to the intricacies 
of medical images, this work provides implications for the 
future of CBMIR. In navigating the intricate landscape of 
medical data, DL proves to be an invaluable tool, offering a 
paradigm shift in how medical professionals access, analyze, 
and leverage the wealth of information embedded in medical 
images [3]. The integration of DL into CBMIR not only 
addresses the challenges posed by the sheer volume of data but 
also opens avenues for novel insights, early disease detection, 
and personalized treatment strategies. As we embark on this 
exploration, it is evident that the combination of medical 
imaging and DL is poised to redefine the landscape of 
healthcare, paving the way for more precise diagnoses, timely 
interventions, and improved patient outcomes [4]. 

DL can automatically obtain hierarchical representations 
from images and provide a compelling solution to the complex 
task of CBMIR. By leveraging Convolutional Neural Network 
(CNN) and other sophisticated architectures, DL models can 
discern subtle patterns and relationships within medical images 
that may elude traditional retrieval methods [5]. The synergy 
between the depth of neural networks and the intricacies of 
medical image content enables the extraction of high-level 
features crucial for accurate retrieval and analysis. 
Heterogeneity of imaging modalities, ranging from X-rays and 
MRIs to CT scans and beyond [6] is a serious issue. DL 
algorithms, through transfer learning and domain adaptation, 
demonstrate their adaptability to diverse imaging sources, 
promising a unified framework for efficient retrieval across 
modalities [7]. 

Autoencoders, with their capacity to learn compact and 
informative representations of input data, are examined for 
their utility in extracting latent features from medical images 
[8]. Whether applied to X-rays, MRIs, or CT scans, 
autoencoders demonstrate their versatility in capturing intrinsic 
features, thereby enhancing the robustness of CBMIR systems 
across a spectrum of medical image types. An in-depth 
discussion on the potential synergy between autoencoders and 
other DL architectures, such as CNN, is presented [9]. The 
combination of these models provides a comprehensive 
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framework for medical image retrieval, where autoencoders 
contribute to feature extraction and CNNs leverage these 
extracted features for accurate CBMIR. Furthermore, the paper 
addresses the interpretability of autoencoder-based models, 
highlighting how the encoded representations can be harnessed 
for visualizing and understanding the salient features within 
medical images [10]. This interpretative aspect not only fosters 
trust in the model's decision-making process but also facilitates 
the identification of clinically relevant patterns that may elude 
traditional CBMIR techniques. The major contribution of the 
proposed work includes: 

 Integration of two powerful techniques, autoencoder 
and CNN, to tackle content-based retrieval of 
multimodal medical images. 

 Provides a solution to efficiently search and retrieve 
images based on their content, enabling better 
diagnosis, treatment planning, and research in 
healthcare. 

 Enhances retrieval accuracy and efficiency compared to 
traditional methods by leveraging deep learning 
techniques. 

II. LITERATURE REVIEW 

CBMIR witnessed transformative advancements with the 
integration of DL techniques. In the area of multimodal image 
representation, the effective retrieval of relevant medical 
images plays a pivotal role in ensuring accurate and timely 
diagnoses. This survey examines the recent developments and 
contributions of DL methods, specifically focusing on CBMIR 
for multimodal diagnosis images. 

  Ozturk [11] introduced an approach for radiological image 
retrieval by employing deep features extracted through CNN. 
The study demonstrates an enhancement in retrieval 
performance, showcasing the potential of DL in streamlining 
radiological diagnosis. The automated feature extraction 
process proves crucial in improving the efficiency of the 
diagnostic workflow, providing valuable insights for the 
integration of DL in medical imaging applications. Liu et al. 
[12] propose an innovative technique utilizing autoencoder 
architectures for feature extraction in cross-modality image 
retrieval. The research highlights the versatility of 
autoencoders in handling various medical imaging modalities, 
showcasing improved performance and robustness. By 
minimizing misinformation, this work contributes significantly 
to the reliability and accuracy of cross-modality image 
retrieval, offering potential advancements in diagnostic 
capabilities across diverse imaging technologies. Cai et al. [13] 
conducted a comprehensive comparative analysis of multiple 
CNN architectures for medical image retrieval. The findings 
reveal substantial variations in retrieval accuracy based on the 
selected network architecture, providing critical insights for 
practitioners in choosing optimal models for specific medical 
imaging applications. This study underscores the influence of 
network architecture on the performance of medical image 
retrieval systems, aiding informed decision-making for the 
development and implementation of DL technologies in 
clinical settings. 

  Li et al. [14] analyzed the robustness of CNN-based 
autoencoders in the realm of CBMIR. The study evaluates the 
performance of these models across various medical imaging 
modalities and assesses their ability to handle noisy or low-
quality images. By investigating the robustness of CNN-based 
autoencoders, the research contributes valuable insights into 
the reliability of these models in real-world clinical scenarios. 
The findings provide guidance on the potential challenges and 
opportunities in deploying such models for CBMIR 
applications. Guan et al. [15] concentrate on improving the 
interpretability of features extracted by CNN in CBMIR. The 
study introduces methodologies for visualizing and 
understanding critical features, enhancing transparency in the 
decision-making process. This research marks a crucial step 
toward building trust in DL models and refining their 
interpretative capabilities for real-world medical applications. 
Shen et al. [16] explored the application of federated learning 
for privacy-preserving CBMIR. This research underscores the 
potential of federated learning in maintaining data security 
while advancing CBMIR capabilities. 

  Liu et al. [17] focused on investigating semi-supervised 
DL approach in CBMIR. This work demonstrates the potential 
of leveraging unlabeled data to enhance model performance, 
addressing challenges associated with limited labeled datasets. 
By incorporating semi-supervised learning, the study 
contributes to the adaptability of CBMIR systems across 
diverse clinical scenarios. Bouchareb et al. [18] delve into 
ethical considerations associated with AI-driven diagnostic 
imaging. The study emphasizes transparency, accountability, 
and the mitigation of biases in the deployment of DL models 
for diagnostic purposes. By addressing ethical concerns, this 
research contributes to responsible AI practices in the evolving 
landscape of CBMIR. Swati et al. [19] provide a broader 
perspective by exploring applications of DL in precision 
medicine for medical imaging. The study highlights the 
potential for personalized treatment strategies based on 
CBMIR results, showcasing the transformative impact of DL in 
tailoring medical interventions to individual patient needs. 
Jaiswal et al. [20] focused on exploring the applications of 
transfer learning in the context of CBMIR. By adapting 
knowledge learned from one domain to another, transfer 
learning proves to be a valuable strategy for addressing 
challenges associated with limited labeled medical image 
datasets. The study provides insights into the potential of 
transfer learning to improve the generalization capabilities of 
DL models in the medical imaging domain. This research 
contributes to the ongoing efforts in making medical image 
retrieval systems more adaptable and effective in diverse 
clinical settings. 

  This review showcased the evolution of CBMIR in 
multimodal diagnosis, emphasizing the transition from 
traditional CBMIR to sophisticated DL models. The integration 
of CNN-based Autoencoders presents a promising avenue for 
addressing challenges in feature extraction and enhancing 
overall performance. This research continues to explore 
innovative methodologies and datasets to advance the 
capabilities of DL in CBMIR for multimodal diagnosis. 
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III. MATERIALS AND METHODS 

In this research, we present a novel CBMIR system 
designed specifically for multimodal diagnosis images 
associated with various diseases. Our primary focus is to 
overcome limitations identified in previous studies, and to 
achieve this, we employ the CNN-based autoencoder 
methodology. The rationale behind adopting the CBMIR 
approach lies in its demonstrated efficacy in optimizing both 
the feature extraction process and the learning phase. This 
strategic utilization aims to rectify and minimize inaccuracies 
that may have been prevalent in earlier research endeavors. 
The CNN-based Autoencoder method plays a crucial role in 

amending misinformation issues that might have arisen in the 
feature extraction process during previous studies. By 
leveraging the power of DL, this approach not only refines the 
accuracy of feature extraction but also contributes to an overall 
improvement in the system's performance in essence; this 
research positions the CBMIR system, enhanced by the CNN-
based autoencoder method, as a robust solution for retrieving 
multimodal diagnosis images. By addressing and mitigating 
misinformation concerns, we aim to contribute to the 
advancement of CBMIR methodologies, fostering precision 
and reliability in the context of subclass dataset categorization. 
The process flow of proposed methodology is depicted in Fig. 
1. 

 
Fig. 1. Basic block diagram of proposed method. 

A. Dataset Description 

The dataset comprising around 50,000 2D images, sourced 
from diverse and easily accessible open-access medical 
databases like ImageNet. The primary objective of this 
compilation is to enable the differentiation among Magnetic 
Resonance Imaging (MRI), X-ray Electroencephalograph 
(EEG), and OCT. ImageNet stands as a vast image repository 
that has played a pivotal role in propelling forward the realms 
of computer vision and DL research. Notably, the dataset 
encompasses images of varying data sizes, providing a 
comprehensive and diverse set of examples for training and 
evaluation purposes in the context of multimodal medical 
image analysis. The dataset has been categorized into four 
primary classes, encompassing X-ray, MRI, OCT, and EEG 
modalities. A visual representation of a sample image from the 
dataset, utilized in the present study, is depicted in Fig. 2. This 
division into distinct classes serves as a foundational structure 

for the dataset, facilitating a nuanced exploration and analysis 
of varied medical imaging modalities. 

B. Proposed Model Architecture 

The Autoencoder process involves three key stages: 
Encoder, Decoder, and the computation of the Calculating 
Function and Optimization Errors. During the encoding phase, 
input data undergoes a transformation into smaller dimensions, 
often referred to as compression. Employing Conv2D (2D 
Convolution Layer), the input image is transformed to 48 
nodes (latent dimension). This latent representation must then 
be converted back to initial state. Decoding process utilizes 
transpose operation to generate the reconstructed image. Loss 
calculation for each function is iteratively performed to 
determine the function with the lowest loss value. In this 
research, the selected loss function is Mean Square Error 
(MSE). Fig. 3 illustrates the structure of designed autoencoder. 
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Fig. 2. Sample images from dataset (a) EEG, (b) MRI, (c) OCT, (d) X-Ray. 

 
Fig. 3. Structure of the proposed autoencoder. 

The commencement of the training process in this 
investigation involves segregating images into three subsets: 
training (80%), validation (10%), and testing (10%). 
Employing the CNN- Autoencoder model, the original image 
is transformed into a reconstructed image. The Autoencoder 
involve in the extraction of output image to reconstruct the 
input image, facilitating a comparison with the original input 

image [21]. Following this, the learning process initiates, and 
through numerous iterations, the optimal model is obtained and 
saved, featuring the lowest loss value in relation to the 
extraction and retrieval stages. The training data includes the 
segmented data for training, while the validation data evaluates 
the developed model. Additional explanation of phases in the 
training process is provided in Fig. 4. 

 

Fig. 4. Process flow of training. 
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During the encoder stage, the input data undergoes 
compression. Conv2D, with modified default parameters, 
employs a stride of 2 for convolution, along with "same" 
padding value. This ensures even distribution of zero-value 
padding convolution. With 128 filters having 3x3 kernels, 
Leaky Relu is applied, which is recognized for its effectiveness 
in overcoming gradient loss issues in DL. Leaky Relu is 
preferred over its predecessors, sigmoid and Tanh, for its 
simplicity and improved performance [22]. The Leaky Relu 
function is defined by the following equation. 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝑎𝑥, 𝑥 < 0
  (1) 

The LeakyRelu activation function incorporates a 
parameter known as alpha, representing the negative slope 
coefficient, and in this study, it is set to 0.2. 

In a parallel arrangement to the encoder, the decoder 
employs a convolution method with 128 filters and a filter 
having 3x3 kernels, maintaining the same activation function 
but with a distinct approach to processing. The decoder 
employs transposed data from the latent dimension to produce 
the reconstructed image. Upon the conclusion of both the 
encoder and decoder stages, the procedure progresses to the 
error calculation and optimization phase. In this phase, iterative 
loss calculations are performed for each function, aiming to 
pinpoint the function with the minimum loss value [23]. The 
chosen loss function for this study is the Mean Square Error 
(MSE), calculated through Eq. (2). Here, pi is the predicted 
image and yi is the actual image. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑝𝑖 − 𝑦𝑖)2𝑛

𝑖=1                          (2) 

In the process of optimizing CNNs, the weighted values 
and biases of the convolutional layers undergo updates through 
the utilization of the Adam's algorithm. This algorithm, known 
for its efficiency in optimization tasks, plays a crucial role in 
adjusting these parameters. To initiate the learning process, a 
standard learning rate of 1e-3 is employed, serving as a 
foundational value for the optimization algorithm. Moreover, a 
learning rate scheduler is integrated into the training procedure, 
incorporating a decay parameter set at a rate of 2e-5. This 
scheduler dynamically adjusts the learning rate during the 
training epochs, enabling a gradual decrease in the learning rate 
over time. This adaptive learning rate scheduling contributes to 
the model's stability and convergence during the optimization 
process. By leveraging these techniques, the convolutional 
layers continually adapt their weighted values and biases to 
improve its ability to obtain meaningful features. The 
thoughtful integration of optimization strategies, such as the 
Adam's optimization algorithm and learning rate scheduling, is 
essential for achieving robust and effective performance in 
CNN training. 

Feature extraction involves the retrieval of distinctive 
attributes from an image, which are subsequently scrutinized 
for subsequent processes. Following this, the acquired features 
are recognized to establish distinctions between images [24]. 
As depicted in Fig. 5, extraction of features is executed by 
utilizing the stored optimal model. 

 

Fig. 5. Feature extraction process. 

The outcomes of this feature extraction process are 
systematically cataloged to create a “.json” (JavaScript Object 
Notation) file. This file not only includes the extracted features 
but also incorporates the image file names and labels 
associated with each image. The compilation of annotated 
images serves as a comprehensive database, pivotal for 
subsequent comparisons during the retrieval stage. 

C. Image Retrieval 

The retrieval process involves seeking identical images 
with reference to query image. The data, previously segregated 

into test data, undergoes feature extraction, mirroring the 
procedure in the preceding stage. Following the successful 
extraction of images, calculations ensue to determine the 
resemblances of features in test images and those indexed in 
the training set, saved in the “.json” file. In this work, the 
Euclidean Distance is specifically applied to quantify the 
distance similarity between two image vectors. A detailed 
depiction of the retrieval process is provided in Fig. 6. 

  Euclidean Distance is utilized for efficiently calculating 
the similarity distance between two vectors, irrespective of 
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their dimensionality—be it two-dimensional, three-
dimensional, or beyond [25]. The comparison of the two 
feature vectors extracted from the features involves calculating 
the distance between them. This meticulous process ensures a 
robust evaluation of the similarity between images, employing 
a widely recognized distance calculation method within the 
domain of image retrieval. The Euclidean Distance is 
expressed through the following equation, frequently employed 
for measuring the distance between vectors [26]. Here de is the 
Euclidean distance, qi is the vector query image and bi is the 
vector present in train data. 

𝑑𝑒 = √∑ (𝑞𝑖 − 𝑏𝑖)2𝑛
𝑖=1         (3) 

Following the computation of distances between each 
image in the test data and all images within the training data, 
the resulting distance values are subjected to comparison. A 
smaller Euclidean value indicates a higher degree of similarity 
between images. As a result, the image possessing the smallest 
distance value is included in the retrieval process. In essence, 
this retrieval methodology prioritizes images that exhibit the 
closest proximity in terms of features, as quantified by the 
Euclidean distance. The selection of the top five most similar 
images enhances the comprehensiveness and accuracy of the 
retrieval process, providing a nuanced understanding of image 
similarity. 

 
Fig. 6. Image retrieval process. 

IV. RESULTS AND DISCUSSION 

The evaluation stage is crucial in assessing the 
effectiveness of the system developed within this research [27]. 
Precision and recall metrics are actively employed to gauge the 
success rate of the system, providing insightful measures of its 
performance. Initially, the retrieval process flow begins by 
taking an image from the test data as input. Utilizing the saved 
encoder model from the training phase, the system generates 
latent features and proceeds to the retrieval evaluation stage. In 
this stage, Euclidean distances are calculated based on the 
indexed .json file, employing information obtained from the 
previous feature extraction process flow. The ultimate output 
of this process includes precision and recall values, which 
serve as key indicators of the system's retrieval performance. 
Eq. (4) and (5) outline the formulas employed for calculating 

precision and recall in this context. Here Ir represents the count 
of retrieved images, n represents the count of images captured 
and M denotes relevant images present in the database. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐼𝑟

𝑛
   (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝐼𝑟

𝑀
   (5) 

As depicted in Fig. 7, the training phase during the testing 
of the dataset in all categories exhibits a gradual reduction in 
loss values up to epoch 35. The cumulative results across all 
categories yield loss values below 0.2, indicating a successful 
retrieval process. This signifies the efficacy of the training 
process in minimizing errors, enabling a robust and accurate 
retrieval of images across various imaging modalities. 
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Fig. 7. Loss plot of proposed model. 

 

Fig. 8. Accuracy plot of proposed model. 

As illustrated in Fig. 8, the training phase showcases a 
steady rise in accuracy values for all categories up to the 5th 
epoch, maintaining a consistent level thereafter. The collective 
outcomes across all categories yield an accuracy value 
surpassing 94%, underscoring the success of the retrieval 
process. This highlights the effectiveness of the training 
process in minimizing errors, facilitating a resilient and precise 
retrieval of images across diverse imaging modalities. 

Upon conducting image retrieval using the implemented 
CBMIR model, the evaluation process provides crucial insights 
into the system's effectiveness, quantified through accuracy, 
precision and recall values. These metrics serve as key 
indicators of the system's ability to accurately retrieve relevant 
medical images based on content. The comparison of system 
performance involves assessing the proposed CBMIR system 
against varying number of retrieved images. This comparative 
analysis is conducted separately for each dataset category, with 
the results meticulously tabulated in Table I. 

The evaluation results presented in Table I affirm that 
CNN-autoencoder based CBMIR model has achieved notable 

success in delivering suitable outcomes. The effectiveness of 
this model is demonstrated through its capability to enhance 
precision and recall values, signifying improvements in the 
accuracy and completeness of the image retrieval process. 
Overall, this evaluation adds empirical evidence to the merit of 
the proposed system in the context of CBMIR. Fig. 9 visually 
represents the performance of the CBMIR system proposed in 
this study. 

TABLE I. PERFORMANCE EVALUATION 

Retrieved 

Images (IR) 
Accuracy (%) Precision (%) Recall (%) 

20 98.34 97.84 98.42 

40 97.56 97.15 97.15 

60 96.11 95.48 94.87 

80 94.35 95.66 94.24 

100 93.00 94.00 93.00 
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Fig. 9. Performance of proposed CBIMR model. 

The evaluation outcomes reveal the effectiveness of the 
proposed approach, showcasing satisfactory performance with 
an average accuracy of 95.87%, precision of 96.03% and recall 
of 95.54%. Conversely, the results are comparatively optimal 
for all modalities of images in the dataset. Nevertheless, upon 
comparison with various parameters the performance gradually 
decreases while increasing the number of images to be 
retrieved. 

To analyze the effectiveness of the constructed model, a 
thorough examination of their image retrieval performance is 
essential. The assessment of proposed CBMIR model’s 
retrieval performance is conducted across multiple 
methodologies. The comparison of efficiency among existing 
models is presented in Table II, employing carefully chosen 
performance metrics, 

TABLE II. PERFORMANCE COMPARISON WITH EXISTING METHODS 

Methodology Accuracy (%) Precision (%) Recall (%) 

DCNN 88.42 87.48 88.62 

AlexNet 87.65 87.51 87.75 

VGG16 92.34 91.84 93.14 

ResNet50 93.74 92.27 92.57 

Proposed Method 95.87 96.03 95.54 

 

Fig. 10. Performance comparison. 
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Fig. 11. Experimental results (a) Query image, (b) Retrieved images. 

In the assessment of retrieval accuracy, the proposed CNN-
autoencoder model distinguishes itself with an impressive 
score of 95.87%. Among the pre-trained models, VGG16 
attains an accuracy rate of 92.34%, ResNet50 achieves 
93.74%, and AlexNet displays an accuracy of 87.65%. 
Notably, the proposed model outperforms its nearest 
competitor, the ResNet50 model, by a notable margin, 
achieving a superior accuracy that is 2.13% higher. Moving to 
precision, the proposed CNN-autoencoder model excels with 
an impressive precision rate of 96.03%. In contrast, ResNet50 
achieves 92.27% precision, VGG16 records 91.84%, and 
AlexNet obtains 87.51%. Fig. 10 provides a visual assessment 
of proposed model with state-of-the-art CBMIR models. 

The precision of the proposed model surpasses that of the 
ResNet50 model by 3.76%, reinforcing its superiority. 
Proposed CNN-autoencoder achieves an exceptional recall 
value of 95.54%, outperforming all other models in this metric. 
In comparison, VGG16 achieves a recall rate of 93.14%, 
ResNet50 reached 92.57%, and AlexNet also records 87.75% 
in recall. Notably, the proposed model's recall surpasses the 
ResNet50 model by a significant margin of 2.97%, 
highlighting its superiority in retrieving relevant images. The 
proposed model demonstrates highest accuracy in medical 
image retrieval. For the visual evaluation of the proposed 

model the retrieval result obtained from the proposed model is 
illustrated in Fig. 11. 

V. CONCLUSION 

This research work introduced an innovative approach 
CBMIR specifically tailored for multimodal diagnosis images. 
Leveraging the CNN-based autoencoder method, the proposed 
system incorporates a learning process. This learning process is 
strategically designed to mitigate misinformation during the 
feature extraction phase, aiming to refine and improve upon the 
performance observed in previous works. This method is 
intended to overcome challenges associated with feature 
extraction and subsequently enhance the overall efficiency of 
CBMIR. By applying a learning mechanism within the 
autoencoder framework, the system adapts and refines its 
ability to accurately represent and extract meaningful features 
from multimodal diagnosis images. The results obtained from 
the evaluation of this method demonstrate notable average 
accuracy of 95.87%, precision of 96.03% and recall of 95.54%. 
This work contributes to the advancing field of CBMIR. The 
proposed system stands out for its ability to harness DL 
methodologies to address challenges in feature extraction, 
thereby achieving superior performance in comparison to 
existing methods. 
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