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Abstract—Breast cancer can have significant emotional and 

physical repercussions for women and their families. The timely 

identification of potential breast cancer risks is crucial for 

prompt medical intervention and support. In this research, we 

introduce innovative methods for breast cancer detection, 

employing a Convolutional Neural Network (CNN) architecture 

and Transfer Learning (TL) technique. Our foundation is the 

ICAIR dataset, encompassing a diverse array of 

histopathological images. To harness the capabilities of deep 

learning and expand the model's knowledge base, we propose a 

TL model. The CNN component adeptly extracts spatial features 

from histopathological images, while the TL component 

incorporates pretrained weights into the model. To tackle 

challenges arising from limited labeled data and prevent 

overfitting, we employ ResNet152v2. Utilizing a pre-trained CNN 

model on extensive image datasets initializes our CNN 

component, enabling the network to learn pertinent features 

from histopathological images. The proposed model achieves 

commendable accuracy (96.47%), precision (96.24%), F1-score 

(97.18%), and recall (96.63%) in identifying potential breast 

cancer cases. This approach holds the potential to assist medical 

professionals in early breast cancer risk assessment and 

intervention, ultimately enhancing the quality of care for 

women's health. 
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I. INTRODUCTION 

In our contemporary landscape, cancer has solidified its 
status as a ubiquitous threat, permeating global communities 
and emerging as a predominant cause of illness and mortality. 
A chilling statistic underscores the severity of its impact—over 
14.5 million lives have succumbed to cancer worldwide, and an 
ominous prognosis emerge, suggesting an alarming surge to 
over 28 million by the year 2030. In the realm of oncology, 
breast cancer takes center stage, its diagnosis often initiated 
through the intricate dance of biopsy and subsequent 
microscopic image analysis [1]. Within the microscopic 
tapestry of breast tissue, pathologists wield their expertise, 
navigating the labyrinthine structures and components that hold 
the key to early detection. Histologically probing the 
microscopic realm, they unravel the intricate distinctions 
between normal tissue, benign formations, and the malignant 
lesions that herald a potential storm [2]. The insights harvested 

from these histological images are not merely observations; 
they serve as the bedrock for prognosis assessments, guiding 
the course of treatment in the relentless pursuit of increased 
curative outcomes with minimized morbidities. 

As the medical landscape continues to evolve, the arrival of 
Deep Learning (DL) heralds a promising era, transcending 
traditional boundaries in recognition tasks. DL-based 
technologies, seamlessly integrated into the workflow of 
pathologists and clinicians, become instrumental in the 
perpetual quest for early cancer detection—a steadfast research 
focus in the expansive field of tumor oncology [3]. A beacon 
within this evolving narrative is the emergence of Computer-
Aided Breast Cancer Diagnosis, an application of paramount 
importance. Yet, to maintain a grounded perspective on clinical 
applications, the imperative of multicategory diagnosis 
becomes evident, recognizing the intricate spectrum of breast 
cancer manifestations. Motivated by this imperative, the 
incorporation of deep learning approaches stands as a beacon, 
promising not just innovation but an elevation in the accuracy 
of classifiers, further fortifying the arsenal against cancer's 
relentless assault [4]. 

The intricate relation between microscopic analysis and 
biopsy marks the inception of the breast cancer diagnostic 
journey, unraveling the complex narrative within tissue 
samples. In the relentless pursuit of early cancer detection, the 
intersection of radiomics and histopathology emerges as a 
frontier, promising enhanced insights into tumor 
characteristics. Emerging technologies such as three-
dimensional histopathological reconstruction redefine our 
approach, offering a holistic visualization of tissue architecture 
for comprehensive diagnosis. Beyond traditional image-based 
classification, molecular signatures and genomic profiling 
usher in a new era of precision medicine, tailoring treatments 
to individual patients. Ethical considerations in the use of 
artificial intelligence within pathology underscore the need for 
responsible and transparent integration into clinical workflows 
[5]. 

The integration of blockchain technology into 
histopathological data management ensures secure, traceable, 
and interoperable handling of sensitive medical information. 
The collaboration between pathologists and computational 
biologists becomes a cornerstone, fostering a symbiotic 
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relationship for refining algorithms and validating findings [6]. 
Virtual reality applications in medical education leverage 
histopathological images, providing immersive learning 
experiences for the next generation of pathologists. Novel 
contrast agents in histopathology imaging promise heightened 
sensitivity, enabling the detection of subtle cellular changes 
indicative of early-stage malignancies. The burgeoning field of 
exosome analysis in breast cancer pathology offers a promising 
avenue, unveiling the potential of liquid biopsy for non-
invasive and real-time disease monitoring [7]. 

However, challenges persist in the current paradigm. The 
inadequacy of feature representation in existing methods poses 
a threat to classifier accuracy, highlighting a critical need for 
improvement [8]. Furthermore, the influence of the 
magnification factor in acquiring histopathology images 
introduces a variable that can lead to misclassification, 
amplifying the urgency for refinement. The deficiencies in 
accuracy and sensitivity within existing methods underscore 
the necessity for an overhaul, especially in applications 
demanding precise classification results [9]. In navigating this 
complex terrain, the existing classification algorithms grapple 
with singular features—be it spatial, morphological, or textural. 
The demand echoes for a comprehensive framework adept at 
handling multiple feature types, bridging the existing gaps and 
fortifying the foundation for a new era in cancer diagnosis [10]. 
As the quest for reliable and precise classification intensifies, 
the intersection of medical expertise and technological 
innovation emerges as the crucible where breakthroughs are 
forged and the relentless pursuit of conquering cancer unfolds. 

Moreover, considering the limited availability of labeled 
data, the study leverages advanced Transfer Learning (TL) 
methods to enhance the model's adaptability to the specific task 
under consideration. Following this, the model undergoes a 
process of fine-tuning and adaptation tailored to the breast 
cancer detection task. This enables the model to autonomously 
acquire the ability to discern relevant spatial features from 
histopathological images. The integration of information from 
various sources, including disparate imaging and clinical data, 
into a unified model showcases commendable levels of 
accuracy, sensitivity, and specificity. In an age where 
healthcare increasingly embraces data-driven methodologies, 
this study contributes significantly to the expanding domain of 
medical image analysis. It underscores the importance of 
employing TL to overcome the limitations imposed by scarce 
labeled data. Subsequent sections of this manuscript will delve 
into the intricacies of the methodology, the careful design of 
the experimental framework, the presentation of results, and a 
thorough discussion of the findings. 

By seamlessly combining the capabilities of hybrid neural 
network architectures with sophisticated TL techniques, this 
research aims to establish a more refined approach to breast 
cancer risk assessment. These pioneering efforts are expected 
to have a substantial impact on healthcare outcomes and usher 
in a new era of enhanced women's health. The major 
contribution of the research work includes: 

 Enhancing the accuracy of breast cancer classification 
from histopathological images by leveraging transfer 
learning-based CNN models. 

 Effectively extract relevant features for breast cancer 
classification, reducing the annotation burden and 
potentially speeding up the diagnostic process. 

 Transfer learning-based CNN models offer increased 
generalizability across different datasets and scalability 
to handle larger volumes of data. This allows the 
developed model to be applicable across diverse clinical 
settings and potentially assist in automating the analysis 
of histopathological images on a larger scale, thus 
improving the efficiency of breast cancer diagnosis and 
treatment. 

II. LITERATURE REVIEW 

The emergence of Computer-Aided Breast Cancer 
diagnosis signifies a pivotal milestone in clinical applications, 
amplifying the need for a realistic perspective that incorporates 
multicategory diagnosis. The incorporation of DL approaches 
in breast cancer diagnosis holds the ability to enhance the 
accuracy of classifiers by delivering more robust foundation 
for clinicians and pathologists. Existing methods face 
challenges related to feature representation, affecting the 
overall accuracy of classifiers, thereby necessitating a drive for 
improved methodologies. The influence of the magnification 
factor in acquiring histopathology images introduces 
variability, potentially leading to misclassification—a factor 
that demands standardized protocols and careful consideration. 
Current breast cancer classification algorithms often focus on 
singular features, such as spatial, morphological, or textural 
characteristics, highlighting the need for a comprehensive 
framework capable of handling multiple feature types. Existing 
methodologies contribute uniquely to the evolving landscape of 
breast cancer detection, encompassing advancements in DL, 
challenges in feature representation, and the quest for a more 
comprehensive diagnostic framework. 

Xie et al. [11] introduced a convolutional neural network 
(CNN) architecture tailored for breast cancer grading, 
demonstrating exceptional performance across diverse datasets 
and illustrating the model's adaptability to different staining 
techniques and tissue variations. The research elucidates the 
interpretability of the deep learning model, utilizing attention 
mechanisms to highlight regions crucial for accurate grading, 
fostering trust and understanding among clinicians. This work 
delves into the transferability of the trained model to different 
institutions, addressing concerns of model generalizability and 
promoting wider adoption in diverse clinical settings. 
Expanding on morphological features, Wei et al. [12] 
conducted an in-depth analysis of the discriminatory power of 
specific morphological descriptors, emphasizing the 
significance of nuclear shape, glandular arrangement, and 
stromal characteristics. This study explored the correlation 
between morphological features and clinical outcomes, 
establishing potential links between specific histopathological 
patterns and prognosis. The computational efficiency of 
morphological feature extraction methods is crucial for real-
time applications in clinical settings. 

Zewdie et al. [13] introduced texture analysis methods, 
including gray-level co-occurrence matrices and Gabor filters, 
evaluating their effectiveness in capturing subtle textural 
nuances indicative of different breast cancer subtypes. They 
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explored the impact of preprocessing techniques on texture 
analysis outcomes, shedding light on the importance of 
standardized image preparation for robust classification results. 
Moreover, the research investigates the reproducibility of 
texture features across multiple institutions, addressing 
concerns related to dataset variability and ensuring the 
reliability of the proposed classification approach. Aswathy et 
al. [14] introduced a novel spatial feature integration method, 
considering not only local but also global contextual 
information for improved classification accuracy. They 
explored the impact of spatial feature incorporation on the 
model's ability to differentiate between intertumoral 
heterogeneity and distinct tumor subtypes. They discussed the 
potential applications of spatial feature-based classification in 
guiding targeted therapies and predicting treatment response 
based on spatial tumor characteristics. 

Building on ensemble learning model, Hameed et al. [15] 
systematically evaluated various ensemble strategies, including 
bagging and boosting, to discern their impact on breast cancer 
diagnosis accuracy. They investigated the robustness of 
ensemble models against noisy or imbalanced datasets, 
providing insights into the models' performance in real-world 
clinical scenarios. They discussed the scalability of ensemble 
learning approaches, exploring their feasibility for large-scale 
deployment in healthcare institutions. Yan et al. [16] 
introduced a multimodal fusion paradigm, which showcased 
the synergy between histopathological images and 
complementary data sources, such as gene expression profiles 
or clinical information. The added value of multimodal fusion 
helped in resolving ambiguous cases, demonstrating the 
potential for more confident and accurate breast cancer subtype 
classification. Challenges related to data integration, 
emphasizing the importance of harmonized datasets for 
meaningful fusion and collaboration across different domains 
were discussed. 

Xue et al. [17] extended the application of transfer learning 
to histopathological image classification, leveraging pre-trained 
models on large datasets to enhance the efficiency and 
generalizability of classifiers. The impact of domain adaptation 
techniques in mitigating domain shift issues were addressed 
along with the challenges related to variations in staining 
techniques and image acquisition protocols. This work 
transferred knowledge from other medical imaging domains, 
offering insights into the broader applicability of 
histopathological image analysis. Hussain et al. [18] integrated 
explainable AI techniques and evaluated the effectiveness of 
explainability methods, such as saliency maps and attention 
mechanisms, in enhancing the transparency and trustworthiness 
of histopathological image classifiers. Hameed et al. [19] 

introduced and evaluated a suite of quantitative metrics specific 
to histopathological image classifiers, ensuring comprehensive 
and standardized performance assessment. The research 
addressed the limitations of traditional metrics, proposing 
novel measures tailored to the intricacies of histopathological 
images, including inter-observer agreement and sensitivity to 
rare subtypes. The importance of benchmark datasets with 
ground truth annotations is evaluated by facilitating fair and 
meaningful comparisons between different classification 
models. 

III. MATERIALS AND METHODS 

This section serves as the foundation of our endeavor to 
advance breast cancer classification by combining state-of-the-
art technologies. As we navigate through the intricate details of 
our approach, our goal is to elucidate the systematic framework 
that forms the foundation for the development and evaluation 
of our breast cancer detection model. Within this section, we 
delineate the essential steps, techniques, and tools utilized in 
our research, shedding light on the trajectory toward unlocking 
the full potential of transfer learning and CNN architectures. 
Breast cancer, posing a significant challenge to women's health 
globally, calls for innovative solutions in early detection [20]. 
Our methodology aims to bridge the gap between the 
intricacies of breast cancer diagnosis and the capabilities of 
artificial intelligence, specifically tailored for the ICIAR 2018 
histopathological dataset—an invaluable repository of 
histopathological images and clinical data. In the subsequent 
sections, we will meticulously detail our data preprocessing 
strategies, the architectural framework of our transfer learning 
model and the intricacies of the training and validation 
procedures. The proposed methodology is crafted not only to 
make a meaningful contribution to the field of breast cancer 
classification but also to serve as a blueprint for future research 
endeavors focusing on unlocking the potential of artificial 
intelligence in healthcare diagnostics. 

A. Dataset Description 

Utilized in our experimental investigations, the ICIAR 
2018 breast cancer histopathological dataset offers a 
comprehensive exploration of breast cancer pathology through 
Hematoxylin and Eosin (H&E) stained microscopy images 
[21]. These images, categorized as normal, benign, in situ 
carcinoma, or invasive carcinoma, present a diverse spectrum 
of breast cancer types. The dataset's credibility is ensured by 
the meticulous annotation conducted by doctors, with any 
annotation discrepancies leading to the exclusion. To provide 
visual context, Fig. 1 offers illustrative examples derived from 
the ICIAR 2018 dataset, granting a preview of the varied 
histopathological presentations contained within the dataset. 

 

Fig. 1. Images from ICIAR 2018 dataset (a) Benign, (b) Carcinoma-in-situ, (c) Carcinoma-invasive, (d) Normal. 
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Employing the Red-Green-Blue (RGB) color model, the 
dataset captures intricate cellular details. Each image boasts a 
resolution of 2048 x 1536 pixels, enabling microscopic 
insights. With a memory space requirement of 10-20 MB per 
image, the dataset strikes a balance between richness of 
information and computational efficiency. The image-wise 
labeling approach contributes to a holistic understanding of 
breast cancer pathology, offering valuable insights for 
researchers and clinicians alike. Table I furnishes a thorough 
breakdown, shedding light on the distribution of different 
image classes within the given dataset. This classification 
facilitates the methodical analysis of breast cell properties, 
serving both research and diagnostic objectives. 

TABLE I. IMAGES IN ICIAR 2018 DATASET 

Sl. 

No 
Image Class Total Train Test 

1 Benign 1000 800 200 

2 Carcinoma-in-sit 1000 800 200 

3 Carcinoma invasive 1000 800 200 

4 Normal 1000 800 200 

The strategic use of data augmentation is implemented to 
address overfitting concerns in CNNs while concurrently 
improving the accuracy of disease detection. Fig. 2 provides a 
visual depiction of images within the dataset and a 
comprehensive overview of the image distribution. 

 
Fig. 2. Distribution of various categories in dataset. 

B. Breast Cancer Classification using Transfer Learning 

While dealing with histopathological images, the utilization 
of ResNet-152v2 stands as a pivotal advancement in leveraging 
deep learning for enhanced diagnostic accuracy. ResNet-
152v2, renowned for its depth and skip-connection 
architecture, proves instrumental in capturing intricate patterns 
and subtle features crucial for discerning between cancer 

categories [22]. This classification model benefits from its 
ability to mitigate vanishing gradient issues, allowing for 
effective training of deep networks using TL technique. This 
approach facilitates a more nuanced understanding of the 
complex structures present in histopathological images, 
empowering the model to provide precise and reliable 
identification of breast cancer pathology. The proposed model 
incorporating ResNet-152v2 and TL is illustrated in Fig. 3. 

 
Fig. 3. Proposed transfer learning model.
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To address the challenges associated with vanishing or 
exploding gradients during training, researchers introduced the 
concept of Residual Blocks. In the architecture of these 
Residual Networks (ResNets), a crucial technique called skip 
connections is employed. Skip connections establish links 
between the activations of one layer and subsequent layers by 
bypassing certain intermediary layers. This design creates what 
is known as a residual block, which is a fundamental building 
block of ResNets. The strength of ResNets lies in their ability 
to stack these residual blocks together, forming a deep and 
interconnected network. By incorporating skip connections, 
ResNets facilitate the flow of information across layers, 
mitigating the issues of vanishing gradients and enabling the 
training of exceptionally deep neural networks. This design 
principle has proven effective in improving the optimization 
process and fostering the successful training of deep model. 
The process flow and working of the skip connections is 
illustrated in Fig. 4. 

 

Fig. 4. Skip (Shortcut) connections. 

The methodology employed in this network diverges from 
conventional layer-wise learning of the underlying mapping. 
Instead, we enable the network to adapt to the residual 
mapping. Thus, rather than expressing it as H(x), the initial 
mapping, we encourage the network to adjust according to Eq. 
(1) and Eq. (2). 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥     (1) 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥      (2) 

The residual block in the proposed architecture is expressed 
using Eq. (3). This equation provides an insight about the 
output of the network. Here, x is the input to the block, Wi 
represents the learnable parameters, and F is a residual function 
implemented by a series of convolutional layers. The output y 
is the sum of the residual function and the input, allowing for 
the bypass of information is expressed as in Eq. (3). 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥     (3) 

The inclusion of skip connections offers a notable benefit: 
if a particular layer negatively impacts the architecture's 
performance, regularization allows it to be bypassed. 
Consequently, this permits the training of extremely deep 
neural networks without encountering issues related to 
vanishing or exploding gradients. The ResNet architecture 
pioneered the concept of employing deeper networks [23]. The 
skip connection technique facilitates the training of highly deep 
networks, contributing to enhanced model performance. By 
preserving acquired knowledge during training, residual 
connections expedite the training process, effectively 
amplifying the network's capacity. 

ResNet152V2 stands out as a residual network comprising 
an impressive 152 layers. Its primary function involves feature 
extraction from images by training input images based on pre-
existing weights [24]. The architectural makeup of this model 
encompasses various layers, including reshape, flatten, the first 
dense layer, dropout, the second dense layer, and an activation 
layer dedicated to predicting image classes. Given its 
considerable depth and a multitude of parameters, 
ResNet152V2 proves particularly well-suited for intricate 
tasks, especially in scenarios where datasets are extensive and 
diverse. It's important to highlight that initiating training for 
ResNet152V2 from scratch demands a substantial amount of 
labeled data and significant computational resources. This 
proves especially beneficial when confronted with limited data 
or computational resources. The proposed architecture, as 
illustrated in Fig. 5, encapsulates the key components of this 
sophisticated model. 

 
Fig. 5. ResNet152 V2 architecture.

The architecture of proposed classifier within the context of 
multi-classification comprises of two distinct components: the 
reduction path and the classifier head. The reduction path 
follows conventional convolutional network design principles, 
incorporating repeated convolutions and max-pooling 
operations to facilitate down sampling [25]. This process 
involves iteratively applying three stages, collectively termed a 

"block," multiple times, contributing depth to the network. The 
sequence concludes with fully connected layers that form the 
classifier. Critical to this architecture are the convolutional 
layers, pivotal in computing local weighted sums, commonly 
known as 'feature maps,' at each layer. These feature maps are 
generated by the repeated application of filters across the entire 
dataset, significantly enhancing training efficiency. The 
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iterative application of these processes contributes to the 
network's depth and its ability to capture intricate patterns in 
the data. In the concluding stage, an activation function, 
specifically the softmax function, is employed to categorize the 
outputs of the model into different classes, covering various 
aspects of breast cancer cases. This crucial step equips the 

model with the ability to make nuanced and precise 
predictions, ultimately enhancing its diagnostic capabilities. 
Table II provides a detailed examination of the network's 
structure, encompassing the arrangement of layers and 
corresponding parameters. 

TABLE II. PROPOSED TRANSFER LEARNING MODEL SUMMARY 

Layers Type Output Shape Parameters 

Input Layer Dense 256 x 256 x 3 - 

ResNet152v2 Feature Transfer 8 x 8 x 2048 58331648 

Convolution Layer Conv2D 8 x 8 x 64 131136 

Max pooling layer Maxpooling2D 4 x 4 x 64 0 

Convolution Layer Conv2D 4 x 4 x 32 2080 

Convolution Layer Conv2D 4 x 4 x 64 2112 

Dense Dense 4 x 4 x 32 4160 

Dense Dense 4 x 4 x 64 2080 

Flatten Flatten 512 0 

Dense Dense 4 2052 

Total 58,475,268 

Trainable 143,620 

Non-Trainable 58,331,648 
 

The initial step involves transferring features and weights 
from a pre-trained ResNet152v2 model, originally trained on 
the ImageNet dataset. Following this, the data undergoes a 
series of processing steps, including convolutional operations, 
max-pooling, dense layers, flattening, and hidden layers. These 
operations result in a final output comprising six distinct 
classes, facilitating individual class predictions. During the 
model's training and validation, a batch size of 128 and a total 
of 25 epochs were utilized. 25 epochs are the optimal value 

required for the TL model to converge. It was noted that at this 
epoch count, both the loss and accuracy metrics stabilize, 
yielding the most favorable and consistent results. Fig. 6 
provides a visual representation of the proposed TL model 
tailored for the ICAIR 2018 dataset. This schematic diagram 
provides an overview of the model's architecture, initiating 
with six distinct classes and setting the stage for robust 
classification. 

 

Fig. 6. Proposed transfer learning model. 

IV. RESULTS AND DISCUSSION 

The systematic investigation involves the extraction of 
features from various levels within the CNN, placing a specific 

focus on evaluating the granularity of these features in relation 
to their performance in classification tasks. This process 
includes utilizing different layers of the CNN to obtain these 
features. An integral part of the research revolves around 
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identifying the optimal CNN layer that produces the most 
distinctive features for the classification of histopathological 
images into distinct categories. This holds particular 
significance considering the training of the TL-CNN model on 
the ICAIR 2018 dataset. The primary objective of the study is 
to unveil the CNN layer that offers the most valuable insights 
for distinguishing between different classes of breast cell 
images, ultimately enhancing the overall efficiency of the 
model. 

In our suggested methodology, our emphasis lies 
specifically on the profound layers of the model, leveraging 
their output features to train the classifier, while maintaining 
the immobility of the layers leading up to this depth. This 
approach effectively trims down the number of trainable 

components, although a considerable number of features 
remain viable. Our training approach involves an 80% 
allocation for training and a 20% allocation for testing. 
Furthermore, for result comparison with previous studies, we 
ensure consistency by employing the same parameters in cross-
validation and fixed partitioning methodologies. The 
development of the proposed model is executed using Python 
on the Google Colab platform. We have implemented a 
learning rate of 1x10-4 for this work, accompanied by a 
minimized batch size of 128 and a total of 25 training epochs. 
The loss the model needs to be reduced after each epoch. The 
loss becomes low and constant after 7 epochs. The accuracy 
also turns out to be constant after 7 epochs. Fig. 7 provides a 
graphical representation of the training and validation 
performance of the proposed TL-CNN classifier. 

 

Fig. 7. Accuracy plot and loss plot of proposed model. 

To comprehensively evaluate the effectiveness and 
operational efficiency of the model we suggest, we utilize a 
suite of four pivotal metrics: F1-score, accuracy, precision, and 
recall. In defining these metrics, we incorporate the terms False 
Positive (FP), False Negative (FN), True Negative (TN), and 
True Positive (TP), which are fundamental for evaluating 
model performance. These performance parameters are 
expressed mathematically as in Eq. (4), (5), (6) and (7). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (7) 

Beyond the 7th epoch in the proposed ResNet152v2 based 
CNN classifier, the performance metrics consistently display a 
commendable level of accuracy. This stability in performance 
can be credited to the effective application of TL techniques, 
addressing challenges inherent in categorization tasks. Within 

the training process, the consideration of errors, often referred 
to as loss, is crucial. In our case, the observed loss is merely 
0.3, indicating an exceptionally low level of error. To 
comprehensively evaluate the model, the entire test image 
dataset was employed. The mean accuracy achieved by our 
suggested TL-CNN model reaches an impressive value of 
96.47%. Additionally, the mean values for precision, recall, 
and F1-score showcase strong performance, measuring at 
96.24%, 96.63%, and 97.18%, respectively. Table III provides 
the classification report for the proposed multiclass 
classification model. 

TABLE III. CLASSIFICATION REPORT OF PROPOSED CLASSIFIER 

Category Precision (%) Recall (%) F1-Score 
Accuracy 

(%) 

Benign 96 96 96 95 

Carcinoma-

in-Situ 
97 92 95 97 

Carcinoma-
Invasive 

96 97 97 96 

Normal 95 98 96 97 
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The effectiveness of the proposed model is notably 
impressive in accurately identifying the breast cancer classes. 
Moreover, it maintains a minimum accuracy of 95% with 
benign class. This model provides maximum accuracy of 97% 
with carcinoma-in-situ and normal classes. Precision analysis 
reveals that the model attains its peak value of 97% for 
carcinoma-in-situ class. The lowest precision, still notably high 
at 95%, is observed in the normal class. Moving on to recall, 
the model reaches a maximum value of 98%, for the normal 
class. The lowest recall of 92% is noted in carcinoma-in-situ 
class. F1-score achieves a maximum value of 97% for the 

carcinoma-invasive class and maintains a minimum value of 
95% for the carcinoma-in-situ class. In summary, the 
classification report underscores the superior performance 
across all classes. The proposed model demonstrates particular 
proficiency in identifying various classes within the given 
dataset. For a detailed perspective on the performance of 
individual classes, (see Fig. 8). Additionally, Fig. 9 illustrates 
the confusion matrix generated for the proposed classifier, 
offering a comprehensive visualization of the classification 
performance across various breast cancer categories. 

 
Fig. 8. Category wise classification performance of proposed classifier. 

 
Fig. 9. Confusion matrix of proposed classifier.
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In evaluating the effectiveness of the constructed model, it 
is imperative to conduct a thorough comparison of their 
classification performance. The assessment of the proposed TL 

models' classification performance is conducted across diverse 
datasets. Table IV analyzes of the efficiency of existing models 
using the selected performance metrics. 

TABLE IV. PERFORMANCE COMPARISON 

Model Precision (%) Recall (%) F1-score (%) Accuracy (%) 

AlexNet 93.71 95.32 94.35 94.14 

GoogleNet 88.44 89.45 86.65 89.42 

ResNet 50 92.14 91.67 92.36 92.36 

VGG16 93.86 93.83 94.12 93.15 

Inception v3 89.31 87.61 88.38 86.11 

ResNet152v2-CNN (Proposed) 96.24 96.63 97.18 96.47 
 

In the assessment of classification accuracy, the proposed 
model distinguishes itself with the highest score of 96.47%. 
Noteworthy among the pre-trained models are VGG16 with an 
accuracy rate of 93.15%, ResNet50 at 92.36%, and AlexNet 
demonstrating a performance of 94.14%. Turning to precision, 
the proposed model excels with an impressive precision rate of 
96.24%. In contrast, AlexNet achieved 93.71% precision, 
ResNet50 recorded 92.14%, and VGG16 obtained 93.86%. 
Proposed model attains an outstanding recall value of 96.63%, 
outperforming all other models in this metric. In comparison, 
VGG16 achieved a recall rate of 93.83%, ResNet 50 reached 
91.67%, and AlexNet recorded 95.32% in recall. Remarkably, 
the proposed model's recall surpasses other TL models by a 

significant margin, demonstrating its superiority in capturing 
and correctly identifying relevant instances. Furthermore, in 
assessing the F1-score, the proposed model once again takes 
the lead with a score of 97.18%. There is a noticeable 
difference between the F1 score of proposed model and 
existing TL approaches, underscoring the proposed model's 
overall effectiveness in achieving a good balance between 
precision and recall. Overall, the proposed model not only 
exhibits the highest accuracy for breast cancer categorization 
but also emphasizes the crucial role of specific parameters, 
particularly TL, in mitigating overfitting and elevating 
classification accuracy. For a visual comparison of the 
proposed model with existing classifier (see Fig. 10). 

 
Fig. 10. Performance comparison. 

Primary among the benefits is the complete automation of 
the classification process, eliminating the necessity for manual 
intervention. Tasks such as feature extraction, noise filtering, 
delineation of regions, and selection become obsolete. As a 
result, the predictions provided by the proposed model not only 

become automated but also consistently reproducible, free 
from any inherent bias. The prediction results generated by the 
proposed model along with the ground truth are provided in 
Fig. 11. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

279 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 11. Prediction outputs.

V. CONCLUSION 

This study focused into the efficacy of TL in the 
classification of breast cancer through the analysis of 
histopathological images. The integration of TL with CNN 
structures proved to be an exceptionally efficient strategy, 
resulting in peak recognition rates. Notably, the ResNet152v2-
CNN model proposed in this research achieved remarkable 
accuracy (96.47%), precision (96.24%), F1-score (97.18%), 
and recall (96.63%) in the identification of potential breast 
cancer cases. One notable advantage of the proposed model 
lies in their capacity to diminish or even eliminate the need for 
extensive pre-processing stages, surpassing existing techniques 
in this aspect. Interestingly, when contrasted with the proposed 
model, the pre-trained AlexNet classifier demonstrated inferior 
performance across various performance metrics. Future 
research endeavors will focus on optimizing the deployment of 
the proposed model on mobile platforms, addressing 
computing complexity issues. Additionally, there will be an 
exploration of further fine-tuning methods and strategies, 
promising ongoing advancements in histopathological image 
classification. 
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