
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

206 | P a g e

www.ijacsa.thesai.org

Enhancing Particle Swarm Optimization Performance

Through CUDA and Tree Reduction Algorithm

Hussein Younis, Mujahed Eleyat

Department of Computer Systems Engineering, Arab American University, Palestine

Abstract—In this paper, we present an enhancement for

Particle Swarm Optimization performance by utilizing CUDA

and a Tree Reduction Algorithm. PSO is a widely used

metaheuristic algorithm that has been adapted into a CUDA

version known as CPSO. The tree reduction algorithm is

employed to efficiently compute the global best position. To

evaluate our approach, we compared the speedup achieved by

our CUDA version against the standard version of PSO,

observing a maximum speedup of 37x. Additionally, we identified

a linear relationship between the size of swarm particles and

execution time; as the number of particles increases, so does

computational load – highlighting the efficiency of parallel

implementations in reducing execution time. Our proposed

parallel PSOs have demonstrated significant reductions in

execution time along with improvements in convergence speed

and local optimization performance - particularly beneficial for

solving large-scale problems with high computational loads.

Keywords—Particle swarm optimization; tree reduction

algorithm; parallel implementations; CUDA; GPU

I. INTRODUCTION

Optimization techniques are crucial in various domains for
finding optimal solutions to complex problems. However,
Particle Swarm Optimization, a widely used metaheuristic
algorithm, has demonstrated limitations in terms of
convergence speed and local optimization performance [1] [2].
As a result, researchers have turned to parallel computing
techniques like Compute Unified Device Architecture (CUDA)
a parallel computing platform and application programming
interface (API) developed by NVIDIA, to enhance the
performance of PSO by implementing it on a parallel
architecture. Significant reductions in computing time
compared to traditional implementations using different
programming languages have been observed by researchers.

In the field of parallel computing, practitioners often
employ various techniques to break down a computational task
into smaller subtasks that can be executed simultaneously on
multiple processors. These subtasks, commonly known as
threads, are vital in this approach and are managed for
execution by an operating system. CUDA supports shared
memory parallel programming, which enables multiple
processors or cores to access a shared memory space efficiently
[3].

The integration of CUDA technology plays a pivotal role in
enabling the seamless implementation of Particle Swarm
Optimization (PSO) within a parallel architecture. This cutting-
edge approach harnesses the power of GPUs to efficiently
distribute workloads into smaller tasks, allowing for concurrent

processing on the Graphics Processing Units. By utilizing
CUDA for the parallel execution of PSO on GPUs,
computational tasks benefit from enhanced efficiency and
performance through the utilization of parallel processing
capabilities, ultimately leading to accelerated computations and
improved results in various applications such as optimization,
machine learning, and scientific simulations [4].

This parallel method empowers each particle to
autonomously execute a designated number of iterations before
resynchronization occurs. Many researchers have successfully
implemented PSO algorithms using CUDA for GPUs, and the
outcomes from these endeavors unequivocally indicate that
parallelization significantly enhances the performance
capabilities of PSO [5].

This paper produces a CUDA version of the PSO algorithm
called (CPSO). The tree reduction algorithm and the CUDA
shared memory were used in CPSO to reduce the comparison
operations to half and reduce the amount of time spent
accessing global memory. The contributions of this work are
summarized as follows:

1) Propose a CUDA version of the PSO algorithm.

2) Enhance the CUDA implementation of the PSO

algorithm using the tree reduction algorithm and the CUDA

shared memory.

3) Compare the proposed algorithms in terms of execution

time and speedup to demonstrate the effectiveness and

efficiency of our proposed algorithm.

The structure of this paper is outlined as follows: Section II
presents the background information, Section III discusses
related work, Section IV details the implementation of PSO
algorithms, Section V outlines the experimental setup, Section
VI presents the results and discussions, and Section VII
provides the conclusions and suggestions for future work.

II. BACKGROUND

A. Graphics Processing Unit

The Graphics Processing Unit (GPU) was initially
developed in the 1970s as an electronic circuit for displaying
vector graphics [6]. Over the years, the GPU has undergone
significant development and has evolved into a highly parallel
processor capable of performing complex computations,
providing significant performance boosts for graphics-intensive
applications [7]. One of the main advantages of the GPU is its
ability to provide higher instruction throughput and memory
bandwidth than the Central Processing Unit (CPU) within the
same power envelope. Unlike the CPU which is designed to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

207 | P a g e

www.ijacsa.thesai.org

execute threads as fast as possible and execute only a few
threads in parallel depending on the number of cores, the GPU
is designed to execute thousands of sequences of operations,
called “threads,” in parallel up to 1024 threads per block limit
of the GPU [8]. The main architecture of the CPU and GPU is
illustrated in Fig. 1, where the CPU (host) and GPU (device)
work together and communicate via a PCI-express bus [9].

 (a) (b)

Fig. 1. The architecture of (a) CPU; and (b) GPU.

B. Compute Unified Device Architecture

NVIDIA, a leading player in the field of visual computing
and parallel processing, introduced the CUDA in 2007 as a
parallel platform programming model [10]. CUDA provides a
set of tools that enable the development of high-performance
applications to be executed on GPUs. Typically, a CUDA
program consists of two parts: the first part is executed on the
host CPU, while the second part is executed on the device
GPU, with the result being returned to the host CPU [11]. As
shown in Fig. 2, the CUDA programming architecture consists
of N number of grids which depends on the limitations of the
GPU hardware. Each grid is composed of blocks, and each
block contains multiple threads that can be executed
concurrently. The thread blocks are organized into 1D, 2D, or
3D arrays of threads [12].

Fig. 2. CUDA 2D grid and thread block indexes presentation.

Each thread within a block has a specific index that is used
to identify its location during the execution of the CUDA
function, known as the 'kernel' function. The thread index for a
1D dimension is calculated using the following equation [13]:

𝑡ℎ𝑟𝑒𝑎𝑑 𝑖𝑛𝑑𝑒𝑥 = (𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑥. 𝑥 × 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥) +

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 (1)

Here, 𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑥. 𝑥 represents the x-dimension identifier of
the thread block, 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 represents the x-dimension of
the thread block, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 represents the x-dimension
identifier of the thread.

In GPUs, threads can be executed together in parallel in
groups called "warps" which consist of 32 or 64 threads
depending on the GPU architecture [14]. Within each warp, the
threads execute the same instruction at the same time, a
concept known as Single Instruction Multiple Threads (SIMT)
which minimizes the amount of branching and divergence
between threads which can result in performance penalties
[15]. Each CUDA thread possesses its private local memory
and can access data from multiple memory spaces.
Furthermore, each block has shared memory that can be
accessed by its threads or by other thread blocks as illustrated
in Fig. 3. Local memory offers the fastest memory access
speed for each thread, followed by shared memory. Global,
static, and texture memory speeds are relatively slower [15].

Fig. 3. Memory hierarchy in GPUs.

CUDA provides a function called “cudaMallocManaged”
for unified memory management between CPU and GPU
without explicit data transfers. It acts like a single memory
space that can be accessed by both CPU and GPU. The
overhead of explicit data transfer between CPU and GPU is
reduced which improves the overall performance by providing
a unified memory space [16]. Also, CUDA provides a function
called “cudaMemPrefetchAsync” to prefetch data from the host
or device memory to the device cache before it is needed. The
main advantage of “cudaMemPrefetchAsync” is that data
movement operation is performed asynchronously, optimizing
memory access patterns and reducing data transfer latency in
CUDA applications [17], [18]. Typically, a GPU program
consists of one or more kernels which are collections of tasks
executed sequentially by GPUs. These kernels are composed of
blocks, separate groupings of Arithmetic Logic Units (ALUs).
Each block contains multiple threads, representing various
levels of computation. Usually, the threads within a block
collaborate to calculate a specific value. It is important to note
that threads within the same block can share memory, enabling
efficient data interchange. In the context of CUDA, the most
common computation involves transferring data from the CPU
to the GPU [19] The main steps of the CUDA program flow, as
depicted in Fig. 4, are: the data is loaded into the host CPU
memory and then transferred to the GPU memory using a
function called "cudaMemcpy". Subsequently, the kernel is
launched on the GPU using the syntax "kernel<<<numBlocks,
threadsPerBlock>>>" [14]. The "<<<>>>" notation is
employed to configure the execution of the kernel by
specifying the number of thread blocks and the number of
threads per block [20].

Fig. 4. GPU program workflow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

208 | P a g e

www.ijacsa.thesai.org

III. RELATED WORK

PSO has been applied and extended in various studies. In
this context, several works have focused on optimizing the
performance of PSO algorithms, particularly by leveraging
parallel computing techniques.

In study [21] the authors provide an overview of the PPSO
algorithm which is commonly used in complex optimization
problems requiring significant computational power. They
discuss different parallelization options for PPSO, including
programming languages and communication topologies. Also,
they cover various models of parallelization, implementation,
and uses of PPSO algorithms, making them a valuable resource
for researchers and developers working with PPSO and other
parallel optimization algorithms.

In study [22] the authors propose a novel algorithm called
"cuPSO" that reduces the computation time of PSO-based
algorithms with massive threads on GPUs. The proposed
algorithm addresses excessive memory accesses and thread
synchronization overheads faced by traditional reduction-based
methods through the use of atomic functions. Experimental
results show that cuPSO achieves over 200x speedups
compared to the serial version running on the CPU and
outperforms the state-of-the-art method by a factor of 2.2 in
terms of computation time. Similarly, the authors focus on
optimizing particle systems using CUDA-assisted
multithreading. They aim to improve the performance of
particle systems by enhancing a CUDA particle demo
developed by Nvidia using a Python script. The experimental
results in their work demonstrate the achievement of desired
performance levels by adjusting the number of particles, grid
size, and grid orientation. It also presents hypotheses regarding
the impact of changing these parameters on processing time
and provides experimental results to support these hypotheses
[23]. Furthermore, another work introduces a new approach to
running standard particle swarm optimization (SPSO) by
utilizing GPU's parallel computing capability and NVIDIA's
CUDA software platform. Experiments were conducted to
optimize benchmark test functions using both GPU-SPSO and
CPU-SPSO, results show that GPU-SPSO significantly reduces
running time compared to CPU-SPSO more than 11 times
faster than CPU-SPSO, especially for large swarm population
applications and high dimensional problems [24].

The authors explore and evaluate two different ways of
utilizing GPU parallelism in the implementation of particle
swarm optimization (PSO) on graphics processing units
(GPUs). The execution speed of these two parallel algorithms
is compared with a standard sequential implementation of PSO,
known as SPSO. The study also includes a comprehensive
analysis of the computation efficiency of the parallel
algorithms, considering speed-up and scale-up with SPSO.
Also, the authors investigate the extent to which PSO can
benefit from a parallel implementation using CUDA. The
design of the two parallel versions of PSO considered in this
study was influenced by the structure of CUDA and compatible
GPUs. Additionally, the practical implications of the parallel
algorithms resulted in two possible solutions that differentiate
the potential use of each version [5].

Finally, another work introduces a parallel implementation
of Cooperative Particle Swarm Optimization (CPSO) using
CUDA. The work includes a comparison between CPSO
implemented in C and C-CUDA, and tests were conducted on
standard benchmark optimization functions. The results
showed improvements in speed and convergence time, with
CUDA's randomizing procedures contributing to better
solutions. The paper emphasizes the utility of CUDA for
complex and computationally intensive applications [25].

IV. PSO ALGORITHMS IMPLEMENTATION

In general, the choice of data structure in the PSO
algorithm is crucial for effectively representing and
manipulating particles within the swarm. The main data
structure used in proposed PSO algorithms is the Particle
structure as illustrated in Fig. 5(a), which encapsulates the
necessary information for each particle. This structure typically
includes components such as the current position, best position,
velocity, and best value. The current position represents the
particle's location in the search space, while the best position
stores the particle's personal best solution found so far. The
velocity determines the particle's movement in the search
space, and the best value represents the fitness or objective
value associated with the best position. The struct position as
illustrated in Fig. 6(b) represents a two-dimensional position in
space, with x and y coordinates stored as floating-point values.
It also includes two member functions and two overloaded
operators. PSO algorithms can efficiently update and track the
positions and velocities of particles, facilitating the exploration
and exploitation of the search space by utilizing these data
structures. The design and implementation of these data
structures are critical for the success of PSO in finding optimal
solutions to optimization problems.

 (a) (b)

Fig. 5. Data structure for (a) The particle struct; and (b) The position struct.

 (a) (b) (c)

Fig. 6. A 2D visualization for PSO with 5000 particles: (a) The initial state of

particles; (b) The particle's state after 100 iterations; (c) The particle's state after

200 iterations.

A. Standard PSO Algorithm

The Standard Particle Swarm Optimization (SPSO)
algorithm is one such technique that draws inspiration from the
social behavior of bird flocking or fish schooling. It is
categorized as a population-based optimization technique and
was first introduced in 1995 by Kennedy and Eberhart. In

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

209 | P a g e

www.ijacsa.thesai.org

SPSO, each solution is referred to as a "particle" that moves
through the search space, seeking the optimal position as
illustrated in Fig. 6. The search for the optimal position is
guided by a "fitness function." Each particle has its position
and velocity which are adjusted in each iteration based on its
experience and the collaboration with its neighbors in the
search space [26], [27].

This collaboration is demonstrated by the following
equations [28]:

𝑣𝑖
𝑛 = 𝜔𝑣𝑖

𝑛 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑛 − 𝑥𝑖

𝑛) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑛 − 𝑥𝑖
𝑛) (2)

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1 (3)

where, the 𝑣𝑖
𝑛 𝑎𝑛𝑑 𝑥𝑖

𝑛 present the current velocity and the
position of the particle 𝑖 at the 𝑛th iteration respectively, the 𝜔
presents the inertia weight, the 𝑐1 𝑎𝑛𝑑 𝑐2 present the cognitive
and social coefficients, respectively, the 𝑟1 𝑎𝑛𝑑 𝑟2 are random
numbers in the range [0,1] , the 𝑝𝑏𝑒𝑠𝑡𝑖

𝑛 represents the best
position of the particle 𝑖 in the 𝑛th iteration and the 𝑔𝑏𝑒𝑠𝑡𝑛
represents the best position among all particles at the 𝑛 th
iteration.

Algorithm 1 demonstrates the pseudocode of the SPSO
algorithm, with the following description of the SPSO
parameters [26]:

 Population: It presents the total number of particles in
the swarm space.

 Tmax present the maximum number of iterations.

 xi and vi present the current position and the velocity,
respectively, for the particle pi.

 italicsfitnessi and pbest_fitnessi : present the fitness
value and the best fitness value, respectively, for the
particle pi.

 pbesti presents the best position for the particle pi.

 gbest and gbest_fitness present the team best position
and best fitness value, respectively, of the entire swarm
space.

 Termination condition presents the criteria that
determine when the SPSO will stop searching for the
optimal solution.

Algorithm 1 Sequential SPSO algorithm

For every particle pi in the swarm space, where 0 ≤ i <

population do:

 Initialize the xi and vi randomly

 Evaluate the fitnessi by the xi using the fitness function.

 Initialize the pbest_fitnessi and 𝑝𝑏𝑒𝑠𝑡𝑖.

 Update the 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠.

End

For every iteration 𝑡 = 0,1,2, … , 𝑇𝑚𝑎𝑥, do:

 For every particle pi in the swarm space, where 0 ≤ i <

population do:

 Update the position xi and the velocity vi for

particle pi by the Eq. (4) and (5).

 Evaluate the new fitnessi by the xi using the fitness

function.

 If the new fitnessi > pbest_fitnessi then update

pbest_fitnessi by new fitnessi and 𝑝𝑏𝑒𝑠𝑡𝑖 by xi.

 If the new fitnessi > 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 then update

𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 by new fitnessi and 𝑔𝑏𝑒𝑠𝑡 by 𝑝𝑏𝑒𝑠𝑡𝑖.

 If the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 met the termination condition,

then exit from main and secondary loops.

 End

 End

The time complexity of the SPSO algorithm is
typically𝑂(𝑇 × 𝑃), where the 𝑇 is the number of iterations and
the 𝑃 is the number of particles in the swarm space.

B. CUDA PSO Algorithm

The SPSO algorithm is one such technique to leverage the
power of parallel computing of GPU, to introduce the CUDA
Particle Swarm Optimization (CPSO). The CPSO involves
parallelizing by assigning each particle to a separate thread on
the GPU to update its position and velocity based on its own
best position (𝑝𝑏𝑒𝑠𝑡) and the best position (𝑔𝑏𝑒𝑠𝑡) founded by
any particle in the swarm space. Also, the unified memory
management and shared memory within each block have been
utilized since the SPSO is a memory-bound problem. The
CPSO consists of three kernels update particle velocity, update
particle position, and compute the best position (𝑔𝑏𝑒𝑠𝑡). The
pseudocode of the CPSO is demonstrated in Algorithm 2.

Algorithm 2 CUDA PSO Algorithm (CPSO)

Set the blockSize equal to 32 and determine the grid size by

the Eq. (3).

Allocate memory for particles, 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠

using cudaMallocManaged.

Initialize the particles with random starting positions,

velocities, and 𝑝𝑏𝑒𝑠𝑡.

compute 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 using

ComputeGlobalBestPosition kernel.

Prefetch the particles array to the GPU.

For every iteration 𝑡 = 0,1,2, … , 𝑇𝑚𝑎𝑥, do:

 Update the velocity of each particle using the kernel

updateParticleVelocity.

 Update the position of each particle using the kernel

updateParticlePosition.

 Update the 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 using the

kernel ComputeGlobalBestPosition.

 If the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 met the termination condition,

then terminate.

 End

End

Wait for GPU to finish the computation.

Free allocated memory.

The kernel “ComputeGlobalBestPosition” is implemented
by applying the "tree" reduction algorithm where each block

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

210 | P a g e

www.ijacsa.thesai.org

calculates its bbest within its shared memory where the bbest
presents the best position within each block. This means that
each block independently determines the bbest among the
particles it is responsible for. The resulting minimum bbest is
stored in shared memory and then reduced across all blocks to
find the overall minimum value to obtain gbest. The following
Fig. 7 illustrates a chart that shows how this works for a block
of eight threads.

Fig. 7. Tree reduction algorithm workflow for eight threads.

For the first iteration, Thread 0 compares the best fitness
value at index 0 with value at index 4, Thread 1 compares
value at index 1 with value at index 5, Thread 2 compares
value at index 2 with value at index 6, Thread 3 compares
value at index 3 with value at index 7 and Threads 4-7 do
nothing. For the second iteration, Thread 0 compares value at
index 0 with value at index 2, Thread 1 compares value at
index 1 with value at index 3 and Threads 2-3 do nothing. For
the third iteration, Thread 0 compares value at index 0 with
value at index 1 to obtain the final minimum value.

In each iteration of the loop, the number of threads that
perform a comparison is halved. This means that the number of
iterations required to reduce all values to a single minimum
value is 𝑙𝑜𝑔2(𝑁), where N is the number of threads in the
block. After the parallel reduction loop completes, each thread
block has found its own minimum value and corresponding
index. These values are stored in shared memory. The final
step is to reduce across all thread blocks to find the overall
minimum value and corresponding index. This is done on the
CPU after all threads have completed their computations.

The pseudocode of the “ComputeGlobalBestPosition” is
illustrated in Algorithm 3.

Algorithm 3 ComputeGlobalBestPosition kernel

Declares a shared memory array blockBestValueArray with a

size of 32 that will be used for the parallel reduction within

each block.

Compute the thread ID within the block 𝑡𝑖𝑑 for the current

thread by threadIdx.x and the idx for the current thread by Eq.

(1). where 𝑖𝑑𝑥 is the global index of the particle that this

thread is responsible for.

Initialize 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] with 𝑝𝑏𝑒𝑠𝑡 value of

𝑖𝑑𝑥′𝑠 particle.

Synchronize all threads within the block using __syncthreads

() to ensure that all threads have finished updating the shared

memory variables.

loop i=
𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

2
, 𝑖 < 0, 𝑖 >>= 1 do the following:

 If the 𝑡𝑖𝑑 < 𝑖 then

If 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] >

 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑 + 𝑖], then update

𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] with

𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑 + 𝑖].

 End

 End

End

Synchronize all threads within the block using __syncthreads

() to ensure that all threads have finished updating the shared

memory variables.

If the 𝑡𝑖𝑑 = 0 then

Update the 𝑔𝑏𝑒𝑠𝑡 value by the first element of

blockBestValueArray.

End

The kernel “updateParticleVelocity” is implemented where
each thread is responsible for a particle update their velocity
based on Eq. (4). The pseudocode of the “updateParti-
cleVelocity” is illustrated in Algorithm 4.

Algorithm 4 updateParticleVelocity kernel

Compute the idx for the current thread by Eq. (1) where 𝑖𝑑𝑥 is

the global index of the particle that this thread is responsible

for.

Declares a shared memory variable 𝑔𝑏𝑒𝑠𝑡 to access by all

threads within each block.

Synchronize all threads within the block using __syncthreads

() to ensure that all threads have finished loading the shared

memory variable.

If the 𝑖𝑑𝑥 < population then

 Update the velocity for particle pidx by the Eq. (4).

End

The kernel “updateParticlePosition” is implemented where
each thread is responsible for a particle updating its position
based on Eq. (5) and updating its pbest. The pseudocode of the
“updateParticlePosition” is illustrated in Algorithm 5.

Algorithm 5 updateParticlePosition kernel

Compute the idx for the current thread by Eq. (1) where 𝑖𝑑𝑥 is

the global index of the particle that this thread is responsible

for.

If the 𝑖𝑑𝑥 < population then

 Update the position for particle pidx by the Eq. (5).

Evaluate the new fitnessidx by the xidx using the fitness

function.

If the new fitnessidx > pbest_fitnessidx then update

pbest_fitnessidx by new fitnessidx and 𝑝𝑏𝑒𝑠𝑡𝑖𝑑𝑥 by

xidx.

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

211 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL SETUP

The software and hardware specifications for the computer
used to implement and test the PSO and CPSO algorithms are
listed in Table I and Table II respectively. The details
specification of the Graphics Card is listed in Table III.

TABLE I. SOFTWARE SPECIFICATION

Name Version

Microsoft Windows 11 22H2

Visual Studio 2022

Nsight Systems 2023.2.3

CUDA 12020

OpenMP 2.0

TABLE II. HARDWARE SPECIFICATION

Specification Properties

Processor

AMD Ryzen 9 5900HX, 3301 MHz, 8 Core(s), 16
Logical Processor(s)

Physical Memory

(RAM)
32.0 GB

Graphics Card NVIDIA GeForce RTX 3080 Laptop GPU

TABLE III. THE DETAILS SPECIFICATIONS OF THE GRAPHICS CARD

Specification Properties

Global memory 16,383 MB

Shared memory 48 kb

Block registers 65,536

Max threads per block 1024

Max dimensions of a block (1024, 1024, 64)

Max dimensions of a grid (231 − 1, 65535, 65535)

Warp size 32 threads

CUDA core 6,144 cores

Memory bandwidth 760.3 GB/sec

Memory channels 8

memory bus width 256-bit

Memory clock 1750 MHz

An important design parameter of the PSO algorithm is the
fitness function. We choose the Euclidean distance function as
the fitness function for all the experiments, as shown in Eq. (4).
The parameter 𝑤 used by the fitness function is set as 1 and
learning factor 𝑐1 and 𝑐2 as 2, which are commonly seen
settings [29].

𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2 (4)

VI. RESULTS AND DISCUSSION

The experiments were conducted ten times per particle
number to calculate the minimum, maximum, and average
execution time to ensure the reliability of results. Also, the
median execution time and standard deviation were calculated.
Table IV provides execution time data of the SPSO algorithm
on CPU for different numbers of particles. The data shows that

as the number of particles increases, the median execution time
also increases. For example, the median execution time for 32
particles is 328 (ms), while the median execution time for
65,536 particles is 793,717 (ms). This indicates that the SPSO
algorithm on the CPU becomes slower as the number of
particles increases. In addition, the standard deviation also
increases as the number of particles increases. This indicates
that there is more variation in the execution times for larger
numbers of particles which may be due to increased memory
usage and/or contention for system resources.

TABLE IV. SPSO ALGORITHM EXECUTION TIME ANALYSIS

Particles Iteration

SPSO CPU

Execution Time (MS) Median

Execution

Time (MS)

Standard

Deviation

(MS) MIN MAX AVG

32 100,000 309 387 335.90 328 23.31

64 100,000 604 693 634.30 622.50 28.35

128 100,000 1,222 1,401 1,259.30 1,243 48.38

256 100,000 2,676 2,813 2,735.10 2,731.50 40.05

512 100,000 5,378 5,664 5,489.90 5,482 81.48

1,024 100,000 11,189 12,237 11,496.10 11,360.50 309.38

2,048 100,000 24,548 25,640 4,865.50 24,812 296.38

4,096 100,000 45,907 47,328 46,369.80 46,248.50 387.45

8,192 100,000 101,203 103,771 102,598 102,670 703.28

16,384 100,000 199,465 201,425 200,503 200,560 796.56

32,768 100,000 93,643 402,628 398,791 399,447 3,717.68

65,536 100,000 788,879 798,531 793,711 793,717 4,784.19

TABLE V. CPSO ALGORITHM EXECUTION TIME ANALYSIS

Particles Iteration

CPSO CPU

Execution Time (MS) Median
Execution

Time (MS)

Standard
Deviation

(MS) MIN MAX AVG

32 100,000 5,405 5,432 5,422.33 5,430 15.04

64 100,000 5,478 5,617 5,537 5,516 71.84

128 100,000 5,703 5,823 5,752.33 5,731 62.78

256 100,000 5,783 5,902 5,824 5,787 67.58

512 100,000 5,769 5,882 5,829.67 5,838 56.96

1,024 100,000 5,797 5,893 5,841.33 5,834 48.42

2,048 100,000 5,806 5,939 5,864 5,847 68.11

4,096 100,000 5,931 6,027 5,988 6,006 50.47

8,192 100,000 6,179 6,268 6,221 6,216 44.71

16,384 100,000 6,828 6,904 6,869.67 6,877 38.53

32,768 100,000 13,121 13,212 13,180.33 13,208 51.42

65,536 100,000 21,382 21,471 21,431 21,440 45.18

Table V shows the execution time data for the CPSO
algorithm on a CUDA-enabled GPU for different numbers of
particles. The data indicates that as the number of particles
increased, the average and median execution times also
increased. The minimum and maximum execution times were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

212 | P a g e

www.ijacsa.thesai.org

also increased, with the highest execution time being 21,471
ms for 65,536 particles and 100,000 iterations. However, the
standard deviation shows that there is relatively little variation
in the execution times across the different numbers of particles.

As shown in Fig. 8 the execution times for SPSO increase
significantly as the number of particles increases. For example,
the execution time for 65,536 particles is 793,711 (ms). The
execution times for CPSO are much lower than SPSO and
show much more consistent execution times across different
numbers of particles. For example, the execution time for
65,536 particles is 21,431 (ms), and the percentage of the
decrease in execution time is approximately 97.308% by CPSO
compared to SPSO.

Fig. 8. Comparison of average execution time (ms) between SPSO on CPU

and GPSO on GPU with respect to number of particles.

To compare the performance of these implementations, we
calculated the speedup for CPSO relative to SPSO using the
execution time for SPSO as a baseline. The speedup for CPSO
was calculated using the following formula [30]:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑆𝑃𝑆𝑂)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)
 (5)

Table VI shows the speedup for CPSO relative to SPSO
using the execution time for SPSO as a baseline. Based on the
provided data for SPSO and CPSO with different particle
counts and iterations, here is a summary of the key findings:

1) Execution time trends: The execution time increases as

the number of particles and iterations increase. Also, for both

Standard PSO (SPSO) and Constricted PSO (CPSO), the

execution time generally follows an increasing trend with

higher particle counts.

2) Speedup comparison: The speedup values for SPSO

and CPSO range from 0.1 to 37.0 across different particle

counts. These values indicate the parallelization efficiency,

with higher values indicating better performance improvement

with parallel processing.

3) Comparison between SPSO and CPSO: In most cases,

CPSO shows lower execution times compared to SPSO for the

same particle count and number of iterations. This difference

suggests that the constriction factor used in CPSO may

contribute to faster convergence and better optimization

performance.

4) Impact of particle count: Increasing the number of

particles has a significant impact on execution time, with

higher particle counts leading to longer execution times. The

data shows a clear trend of increasing execution time as the

number of particles grows exponentially.

5) Optimal performance considerations: The choice

between SPSO and CPSO should be based on the specific

optimization problem and the desired trade-off between

execution time and convergence speed. It is essential to

consider the balance between speedup, execution time, and

convergence efficiency when selecting the appropriate PSO

variant.

TABLE VI. THE SPEEDUP FOR CPSO RELATIVE TO SPSO

Particles Iteration
Execution Time (MS)

speedup
SPSO CPSO

32 100,000 335.90 5,422.33 0.1

64 100,000 634.30 5,537 0.1

128 100,000 1,259.30 5,752.33 0.2

256 100,000 2,735.10 5,824 0.5

512 100,000 5,489.90 5,829.67 0.9

1,024 100,000 11,496.10 5,841.33 2.0

2,048 100,000 4,865.50 5,864 4.2

4,096 100,000 46,369.80 5,988 7.7

8,192 100,000 102,598 6,221 16.5

16,384 100,000 200,503 6,869.67 29.2

32,768 100,000 398,791 13,180.33 30.3

65,536 100,000 793,711 21,431 37.0

VII. CONCLUSIONS

In this work, we propose a CUDA version of the standard
PSO algorithm to shorten the execution time for solving the
PSO problem. We have shown the key ideas of the
parallelizing algorithms for CUDA. Many experiments were
conducted to improve the execution efficiency of the proposed
algorithm by leveraging the power of parallel computing of
GPU with the tree reduction algorithm, the CPSO achieving
37x speedup compared with the serial version SPSO and
outperforming SPSO in terms of speedup. The result obtained
shows that the relationship between swarm particle size and
execution time is linear as the number of particles increased,
the computational load also increased, making parallel
implementations more effective at reducing the execution time.
However, CPSO performed faster than SPSO for a high
dimensional population, there was no significant improvement
for the small number of particles. So, CPSO can especially
benefit from optimizing with a large swarm population. For

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

3
2

1
2

8
5

1
2

2
,0

4
8

8
,1

9
2

3
2

,7
6

8

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(m

s)

Number of particles

SPSO CPU
Average
Execution
Time
(ms)

GPSO GPU
Average
Execution
Time
(ms)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 4, 2024

213 | P a g e

www.ijacsa.thesai.org

future work, further optimization and fine-tuning of the CPSO
algorithm could be explored to enhance its performance with
smaller particle numbers. Additionally, investigating the
scalability and adaptability of the proposed CUDA-based PSO
algorithm to handle even larger swarm populations and more
complex optimization problems would be a valuable direction
for future research. Integration with advanced parallel
computing techniques and exploring hybrid approaches could
also be considered to push the boundaries of speed and
efficiency in solving PSO problems.

REFERENCES

[1] K. Zheng, X. Yuan, Q. Xu, L. Dong, B. Yan, and K. Chen, “Hybrid
particle swarm optimizer with fitness-distance balance and individual
self-exploitation strategies for numerical optimization problems,” Inf Sci
(N Y), vol. 608, 2022, doi: 10.1016/j.ins.2022.06.059.

[2] R. M. Hou, Y. L. Hou, C. Wang, Q. Gao, and H. Sun, “A Hybrid
Wavelet Fuzzy Neural Network and Switching Particle Swarm
Optimization Algorithm for AC Servo System,” Math Probl Eng, vol.
2016, 2016, doi: 10.1155/2016/9724917.

[3] C. T. Yang, C. L. Huang, and C. F. Lin, “Hybrid CUDA, OpenMP, and
MPI parallel programming on multicore GPU clusters,” in Computer
Physics Communications, 2011. doi: 10.1016/j.cpc.2010.06.035.

[4] T. Kovac, T. Haber, F. Van Reeth, and N. Hens, “Heterogeneous
computing for epidemiological model fitting and simulation,” BMC
Bioinformatics, vol. 19, no. 1, 2018, doi: 10.1186/s12859-018-2108-3.

[5] L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of parallel particle
swarm optimization algorithms within the CUDATM architecture,” Inf
Sci (N Y), vol. 181, no. 20, 2011, doi: 10.1016/j.ins.2010.08.045.

[6] J. Peddie, The History of the GPU - New Developments. 2023. doi:
10.1007/978-3-031-14047-1.

[7] P. K. Das and G. C. Deka, “History and Evolution of GPU
Architecture,” 2015. doi: 10.4018/978-1-4666-8853-7.ch006.

[8] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, “General-Purpose
Graphics Processor Architectures,” Synthesis Lectures on Computer
Architecture, vol. 13, no. 2, 2018, doi:
10.2200/S00848ED1V01Y201804CAC044.

[9] M. Adnan, P. A. Longley, A. D. Singleton, and I. Turton, “Parallel
Computing in Geography,” in GeoComputation, Second Edition, 2014.
doi: 10.1201/b17091-10.

[10] R. Ansorge, “A Brief History of CUDA,” in Programming in Parallel
with CUDA, 2022. doi: 10.1017/9781108855273.013.

[11] M. Harris and I. Gelado, “More on CUDA and graphics processing unit
computing,” in Programming Massively Parallel Processors: A Hands-
on Approach: Third Edition, 2017. doi: 10.1016/B978-0-12-811986-
0.00020-0.

[12] I. Gelado and M. Harris, “Advanced practices and future evolution,” in
Programming Massively Parallel Processors: a Hands-on Approach,
Fourth Edition, 2022. doi: 10.1016/B978-0-323-91231-0.00013-6.

[13] W. mei W. Hwu, D. B. Kirk, and I. El Hajj, “Multidimensional grids and
data,” in Programming Massively Parallel Processors: a Hands-on
Approach, Fourth Edition, 2022. doi: 10.1016/B978-0-323-91231-
0.00004-5.

[14] “CUDA C++ Programming Guide.” Accessed: Aug. 08, 2023. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[15] Nvidia, “Nvidia Cuda Getting Started Guide,” NVIDIA Corporation, no.
July, 2013.

[16] M. Knap and P. Czarnul, “Performance evaluation of Unified Memory
with prefetching and oversubscription for selected parallel CUDA
applications on NVIDIA Pascal and Volta GPUs,” Journal of
Supercomputing, vol. 75, no. 11, 2019, doi: 10.1007/s11227-019-02966-
8.

[17] L. Gebraad and A. Fichtner, “Seamless GPU Acceleration for C++-
Based Physics with the Metal Shading Language on Apple’s M Series
Unified Chips,” Seismological Research Letters, vol. 94, no. 3, 2023,
doi: 10.1785/0220220241.

[18] S. Lee and J. S. Vetter, “OpenARC: Extensible OpenACC compiler
framework for directive-based accelerator programming study,” in
Proceedings of WACCPD 2014: 1st Workshop on Accelerator
Programming Using Directives - Held in Conjunction with SC 2014:
The International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014. doi:
10.1109/WACCPD.2014.7.

[19] P. Xu, M. Y. Sun, Y. J. Gao, T. J. Du, J. M. Hu, and J. J. Zhang,
“Influence of data amount, data type and implementation packages in
GPU coding,” Array, vol. 16, 2022, doi: 10.1016/j.array.2022.100261.

[20] S. Cho, J. Choi, J. Hong, and H. Han, “Multithreaded double queuing for
balanced CPU-GPU memory copying,” in Proceedings of the ACM
Symposium on Applied Computing, 2019. doi:
10.1145/3297280.3297426.

[21] W. H. Mahdi and N. Taspiner, “Overview for Parallel Particle Swarm
Optimization Algorithms (PPSO),” in 2022 14th International
Conference on Electronics, Computers and Artificial Intelligence, ECAI
2022, 2022. doi: 10.1109/ECAI54874.2022.9847459.

[22] C. C. Wang, C. Y. Ho, C. H. Tu, and S. H. Hung, “cuPSO: GPU
Parallelization for Particle Swarm Optimization Algorithms,” in
Proceedings of the ACM Symposium on Applied Computing, 2022. doi:
10.1145/3477314.3507142.

[23] F. N. Sibai, A. Potvin, and S. Ngo, “Optimizing particle systems through
CUDA-assisted multithreading,” WSEAS Transactions on Systems and
Control, vol. 15, 2020, doi: 10.37394/23203.2020.15.69.

[24] Y. Zhou and Y. Tan, “GPU-based parallel particle swarm optimization,”
in 2009 IEEE Congress on Evolutionary Computation, CEC 2009, 2009.
doi: 10.1109/CEC.2009.4983119.

[25] J. Kumar, L. Singh, and S. Paul, “GPU based parallel cooperative
particle swarm optimization using C-CUDA: A case study,” in IEEE
International Conference on Fuzzy Systems, 2013. doi: 10.1109/FUZZ-
IEEE.2013.6622514.

[26] S. Sengupta, S. Basak, and R. A. Peters, “Particle Swarm Optimization:
A Survey of Historical and Recent Developments with Hybridization
Perspectives,” Machine Learning and Knowledge Extraction, vol. 1, no.
1. 2019. doi: 10.3390/make1010010.

[27] D. Sedighizadeh and E. Masehian, “Particle Swarm Optimization
Methods, Taxonomy and Applications,” International Journal of
Computer Theory and Engineering, 2009, doi: 10.7763/ijcte.2009.v1.80.

[28] A. Khare and S. Rangnekar, “A review of particle swarm optimization
and its applications in Solar Photovoltaic system,” Applied Soft
Computing Journal, vol. 13, no. 5. 2013. doi:
10.1016/j.asoc.2012.11.033.

[29] X. Li, “A multimodal particle swarm optimizer based on fitness
Euclidean-distance ratio,” in Proceedings of GECCO 2007: Genetic and
Evolutionary Computation Conference, 2007. doi:
10.1145/1276958.1276970.

[30] P. Zhang, Y. Li, Y. Li, G. Chen, W. Hua, and Z. Jiao, “Research on
calculation of surface irradiance for infrared extended sources based on
CUDA parallel speedup,” Opt Express, vol. 30, no. 19, 2022, doi:
10.1364/oe.470137.

