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Abstract—Given wireless sensor networks' significant data 

transmission requirements, conventional direct transmission 

often leads to bandwidth constraints and excessive network 

energy consumption. This paper proposes a transmission line 

monitoring technology based on compressed sensing wireless 

sensor networks to achieve real-time monitoring of ice-covered 

power lines. Grounded in compressed sensing theory, this 

method utilizes dual orthogonal wavelet transform sparse 

matrices for sparse representation of sensor data. Considering 

the practical requirements of power line monitoring, a data 

transmission model is established to implement compressed 

sampling transmission. The regularization orthogonal matching 

pursuit algorithm is employed for high-precision reconstruction 

of compressed data. The software and hardware components of 

the power line monitoring system are designed, and experiments 

are conducted under real-world conditions. The results 

demonstrate that: 1) the system operates stably with an ideal 

data compression effect, achieving a compression ratio of 

93.191%. The absolute reconstruction errors for temperature, 

humidity, and wind speed sensor data are 0.064°C, 0.052%, and 

0.128 m/s, respectively, indicating high reconstruction accuracy 

and effectively avoiding transmission impacts caused by 

bandwidth issues. 2) In a 36-hour energy consumption loss test, 

compared to direct transmission, the compressed transmission 

mode exhibits a lower rate of battery voltage decay, with a 

decrease of approximately 11.18%, effectively extending the 

network's lifespan. 
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I. INTRODUCTION  

As a crucial component of the power system, transmission 
lines are responsible for conveying the electrical energy 
generated by power stations to various distribution points and 
ultimate consumers. The stable operation of these 
infrastructures is vital to the reliability and security of the 
entire power system, and it also directly affects the continuity 
and quality of power supply [1]. In view of the uneven 
geographical distribution of China's power resources, 
transmission lines often have to traverse regions with complex 
geographical environments and adverse climatic conditions. 
Particularly in environments characterized by low 
temperatures, high humidity, and strong winds, the surfaces of 
transmission lines are highly susceptible to ice accretion, which 
increases the risks of galloping, breakage, overloading, and 
flashovers on insulator strings, severely threatening the 
stability and safe operation of transmission lines [2-4]. In 
response to these risk factors, it is particularly important to 

implement real-time monitoring and develop efficient 
transmission line operational status monitoring systems. By 
employing advanced sensing technologies, image processing 
techniques and big data analytics, comprehensive condition 
monitoring of transmission lines can be achieved, enabling 
timely identification and response to existing or potential issues 
and effectively reducing the probability and impact of failures. 
Such monitoring systems not only provide early warnings of 
possible line failures but also offer real-time data support to 
operations and maintenance personnel, assisting them in 
making rapid and accurate decisions. Therefore, strengthening 
the real-time monitoring capabilities of transmission lines plays 
a crucial role in enhancing the levels of fault prevention and 
control, improving the system's emergency response and early 
warning capabilities, and ensuring the safe and stable operation 
of the power grid. 

Currently, transmission line monitoring methods primarily 
include manual inspection, unmanned aerial vehicle (UAV) 
surveillance, infrared thermal imaging, and fiber optic sensing 
technologies. Tang [5] proposed a technical approach utilizing 
video surveillance systems for vibration analysis of 
transmission lines. This method involves the collection of 
video image data from transmission lines and the establishment 
of a relative coordinate system between the power tower and 
the transmission line, thereby enabling the tracking of vibration 
frequency and amplitude at specific line positions. Through 
such tracking, the dynamic characteristics and operational 
status of the transmission lines can be assessed. Although this 
technology has demonstrated certain effectiveness in vibration 
monitoring of transmission lines, its implementation relies on 
various equipment, and the operational process is complex with 
insufficient real-time capabilities, making it unsuitable for 
widespread deployment in large-scale transmission line 
systems. He [6] addressed the requirements of the sensor layer 
in the power Internet of Things by combining fiber optic 
sensing technology with big data and artificial intelligence for 
multi-risk monitoring of transmission lines. The monitoring 
system was deployed, and experiments were conducted using 
different monitoring scenarios, yielding good performance. 
However, the scheme is costly to implement, complex to 
install, and susceptible to temperature effects, leading to less-
than-ideal practical application outcomes. Wireless Sensor 
Networks (WSN), which integrate microsensors, embedded 
computing, wireless communication, and information 
processing, coordinate among network nodes to monitor, sense, 
collect, and process information about the objects of interest, 
transmitting data wirelessly [7,8]. Sensors in WSN are less 
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affected by time, space, and environmental conditions during 
data collection and are widely used in various monitoring 
fields. However, the transmission of large volumes of data in 
WSN, when using traditional transmission methods, can lead to 
congestion in limited bandwidth, reducing the efficiency of 
data collection and increasing the energy consumption of 
nodes, thus affecting the network's lifespan. Consequently, 
some scholars have adopted compressed sensing technology to 
address the shortcomings of traditional WSN transmission 
methods. Compressed sensing is a novel signal acquisition 
theory that enables the reconstruction of sparse or compressible 
signals from sampling frequencies far below the Nyquist rate, 
offering advantages such as low sampling rates, strong anti-
noise capabilities, efficient signal recovery, low energy 
consumption, and ease of implementation, and it is widely 
applied in various monitoring scenarios. Yang et al. [9] used a 
distributed wavelet transform theory based on hybrid 
decomposition, leveraging the computational capabilities of 
nodes to reduce communication overhead from inter-node 
exchange of wavelet coefficients, and employed adaptive 
wavelet transform to determine network overhead, resulting in 
significant improvements in network performance. Fute [10] 
utilized distributed data compression algorithms to reduce the 
total amount of data within WSN, decreasing the likelihood of 
data packet collisions on wireless media to enhance data 
transmission efficiency, reduce resource consumption within 
the network, and extend network lifespan. Jiang [11] proposed 
a compressed sensing algorithm with dynamic retransmission 
to address data packet loss due to unreliable wireless 
communication, achieving high-precision signal reconstruction 
to improve network energy utilization and lifespan, with the 
normalized mean absolute error (NMAE) reduced by 64.5%, 
and energy efficiency also correspondingly enhanced. Yang 
[12] estimated the signal's sparsity through an adaptive 
subspace pursuit algorithm, selected atoms using an 
approximate matching principle, and completed signal residual 
updates after multiple iterations to achieve signal 
reconstruction. 

The aforementioned research has provided valuable 
guidance for the study of Wireless Sensor Networks (WSN); 
however, due to the complexity of the algorithms, their 
adaptability in the transmission line monitoring networks with 
parallel transmission of large volumes of data is not optimal. In 
light of this, this paper draws on the theory of Compressed 
Sensing (CS) as the design cornerstone and designs a 
transmission line monitoring network based on real-world 

scenarios. The biorthogonal wavelet transform algorithm is 
utilized to construct a sparse sampling model for signal 
compression, while the Regularized Orthogonal Matching 
Pursuit (ROMP) algorithm is employed for high-precision 
signal reconstruction. Based on this, a transmission line 
monitoring system is designed to ensure the real-time and 
stable monitoring of lines, which holds positive implications 
for the secure operation of power systems and the extension of 
the service life of monitoring networks. 

The remainder of the paper has been organized as follows. 
The compressed sensing theory in Section II introduces an 
innovative method for transmission line monitoring using 
Compressed Sensing (CS) theory. It discusses CS's ability to 
reconstruct sparse signals from low-frequency samples, crucial 
for dense wireless sensor networks (WSNs). To tackle non-
sparse signal transmission challenges, the paper proposes a 
method in Section III utilizing biorthogonal wavelet transform 
for signal sparsity and the ROMP algorithm for efficient 
reconstruction. It details network architecture and sparse 
sampling model, emphasizing adaptive signal analysis via 
wavelet transformation. Additionally, it explains the ROMP 
algorithm's iterative process, highlighting its role in enhancing 
accuracy and handling noise. The paper also discusses the 
system design, including hardware components and data 
transmission mechanisms in the design and implementation of 
the monitoring system in Section IV. The experimental results 
and analysis in Section V validate the proposed method's 
efficacy, showcasing high compression ratios, low 
reconstruction errors, and reduced energy consumption 
compared to existing algorithms. Finally, conclusions 
emphasize the significance of the proposed scheme in 
enhancing transmission line monitoring efficiency and 
extending network lifespan, offering practical value for energy-
efficient management of monitoring systems in Section VI. 

II. COMPRESSED SENSING THEORY 

Compressed Sensing (CS) is a novel signal sampling 
method proposed by Candès et al. in 2004, aiming to address 
the shortcomings of traditional signal acquisition and 
processing [13]. This theory indicates that if the original signal 
exhibits sparsity and orthogonality, it can be reconstructed 
from observation values at a sampling frequency much lower 
than the Nyquist theorem requires. In other words, it is possible 
to reconstruct the signal using a much lower sampling 
frequency and an appropriate reconstruction algorithm. Fig. 1 
illustrates the concept of compressed sensing data collection. 

 

Fig. 1. Schematic diagram of compressed sensing data collection. 
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Wireless sensor networks are characterized by dense sensor 
node deployment and high signal sampling frequencies, 
making the original signals compressible [14]. However, in 
most cases of transmission line monitoring networks, signal 
values are not zero, indicating a lack of sparsity [15]. 
Therefore, it is necessary to employ methods for transforming 
continuous-time domain signals into sparse signals. If 𝑋 is an 
𝑁 -dimensional column vector representing the original signal 
and, 𝛼 is the coefficient vector under the basis 𝛹, the sparse 
processing can be expressed as follows: 

𝑋 = 𝛹𝛼           (1) 

Assuming the sparsity level K  represents the number of 
non-zero points in the sparse domain. If 𝐾 = 𝑛 （𝑛＜＜𝑁）is 
satisfied, the data can be sampled using the observation matrix 
𝛷（𝑀 × 𝑁） to obtain the observation values 𝑦 . The 
observation matrix 𝛷 is randomly generated from a Gaussian 
matrix with a mean of zero and a variance of 1/ 𝑀 . If the 
performance meets the requirements, the observation values 𝑦 
contain the essential information from the original signal 𝑋. 

The signal reconstruction can be solved through non-
deterministic polynomial (NP) optimization problems, 
expressed as follows: 

𝑦 = 𝛷𝑋           (2) 

{
𝛼(0) = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝜕∈𝑅𝑁
‖𝛼‖0

𝑦 = 𝛷𝑋 = 𝐴𝛼
  (3) 

Since the term 𝐴 = 𝛷𝛹  belongs to a non-convex 
combinatorial optimization problem, convex relaxation 
approximation methods can be employed for solving: 

{
𝛼(1) = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝜕∈𝑅𝑁
‖𝛼‖1

𝑦 = 𝛷𝑋 = 𝐴𝛼
      (4) 

III. MODEL CONSTRUCTION 

A. Network Structure and Sparse Sampling Model for Signal 

The transmission line monitoring network adopts a tree 
structure, as illustrated in Fig. 2. Sensor nodes transmit 
collected information through long-distance communication 
modules. After convergence nodes compress the observations, 
the information is transmitted to the remote monitoring 
platform through GPRS and the Internet. The monitoring 
platform utilizes corresponding algorithms to reconstruct the 
data information, thereby achieving the identification of the 
original signal for monitoring and early warning purposes. 

Router

Sink node

Sensor

Base station

Remote monitoring

 platform

 
Fig. 2. Transmission line monitoring network structure. 

Various sensor nodes exchange information with 
convergence nodes through a wireless network in the 
perception area. The temporal characteristics of signals 
collected by various sensors exhibit continuity and piecewise 
smoothness, and they have approximate spatial regularity. 
Based on spatiotemporal characteristics, the biorthogonal 
wavelet transform can locally transform the signal in both time 
and frequency. Using translation and scaling operations, it 
achieves multi-scale refinement of signals, meeting the 

adaptive analysis requirements of time-frequency signals. This 
makes it suitable for sparse representation of signals in 
monitoring sensor networks [16]. Therefore, based on the 
characteristics of the transmission line monitoring signals, a 
sparse sampling model is constructed using the biorthogonal 
wavelet transform algorithm to achieve signal compression. 
The detailed signal transmission steps are shown in Fig. 3, 
where the dashed box represents the sparse sampling process. 

 
Fig. 3. Compressed sensing-based signal transmission process. 
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B. Data Information Reconstruction 

The Regularized Orthogonal Matching Pursuit (ROMP) 
algorithm represents an improvement over the classical 
Orthogonal Matching Pursuit algorithm. The ROMP algorithm 
enhances signal reconstruction accuracy and stability by 
incorporating greedy algorithm principles, convex optimization 
methods, and regularization conditions during iterations [17]. 

In this algorithm, atoms in the sparse representation are 
systematically selected through iterations, considering both the 
sparsity of the signal and regularization conditions. This 
approach efficiently achieves the reconstruction of the original 
signal, contributing not only to improved reconstruction 
accuracy but also enhanced capability in handling noise and 
complex signal structures, showcasing excellent performance 
in practical applications. 

The ROMP algorithm plays a crucial role in signal 
reconstruction and is well-suited for handling large-scale 
sensor data generated in transmission line monitoring. Through 
meticulous and robust signal reconstruction, the ROMP 
algorithm provides an effective mathematical tool for 
accurately restoring the transmission line monitoring signal. 
This not only aids in reducing data transmission volume and 
improving network efficiency but also effectively addresses 
complex environmental conditions and multi-source 
interference, offering robust support for the reliability and 
robustness of monitoring systems. 

Assumption: 𝑟𝑡 represents the residual of the observed data, 
𝛷 represents the empty set, 𝜆𝑡  represents the column indices 
obtained after the 𝑡  -th iteration, 𝐴𝑡 represents the set of 
columns of matrix 𝐴  selected according to the index 𝛬𝑡 , 𝑎𝑗 

represents the 𝑗  -th column of the matrix, 𝛬𝑡  represents the 
index set for the 𝑡  -th iteration, <• ‚ •>  represents the inner 
product of vectors, ∪  represents the set union operation, 𝜃𝑡 
represents the column vector after the 𝑡  -th iteration, 𝑎𝑏𝑠[•
] represents the absolute value operation. The algorithmic 
process can be described as follows: 

Input: 𝑁 -dimensional observation vector  𝑦, sensing matrix 
𝐴, sparsity level 𝐾 

Output: Estimated sparse representation coefficients 𝜃
∧

, 𝑁 -

dimensional residual 𝑟𝐾 = 𝑦 − 𝐴𝐾𝜃
∧

𝐾 

Initialization: 

Iteration: 𝛬0 = 𝜙，𝐴0 = 𝜙，𝑟0 = 𝑦，𝑡 = 1 

1) Compute u = abs[ATrt−1]  by obtaining K  largest 

values and corresponding column indices set J of matrix A. 

2) Regularization: Search for a subset 𝐽0  within 𝐽 

satisfying the condition of |𝑢(𝑖)| ≤ 2|𝑢(𝑗)|  𝑖, 𝑗 ∈ 𝐽0 , and 

select 𝐽0 with the maximum correlation. 

3) Set 𝛬𝑡 = 𝛬𝑡−1 ∪ 𝐽0), 𝐴𝑡 = 𝐴𝑡−1 ∪ 𝛼𝑗(𝑗 ∈ 𝐽0) 

4) Solve for 𝑦 = 𝐴𝑡𝜃𝑡  by finding the least squares 

solution: 𝜃
∧

𝑡 = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝜃

‖𝑦 − 𝐴𝑡𝜃𝑡‖ = (𝐴𝑡
𝑇𝐴𝑡)−1𝐴𝑡

𝑇𝑦. 

5) Update the residual 𝜃
∧

𝑡 = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝜃

‖𝑦 − 𝐴𝑡𝜃𝑡‖ =
(𝐴𝑡

𝑇𝐴𝑡)−1𝐴𝑡
𝑇𝑦. 

6)  𝑡 = 𝑡 + 1. If 𝑡 ≤  𝐾, return to step 3; if 𝑡＞𝐾 or 𝑟𝑡 =
0  or ‖𝛬𝑡‖0 ≥ 2𝐾 , stop the iteration, and reconstruct 𝜃

∧

 by 

placing all non-zero elements at the positions 𝛬𝑡. 

After iterations, perform wavelet inverse transform on the 
obtained high-frequency signal and low-frequency part to 
complete the data reconstruction. 

C. Key Model Parameters 

The determination of key model parameters not only affects 
the efficiency of signal compression sensing and the quality of 
reconstruction but also governs the learning efficiency and 
accuracy of the model. Therefore, a comprehensive list of key 
parameters for the model has been constructed, taking into 
account the actual requirements of the model and the need for 
real-time and stable monitoring. The list is presented in Table Ⅰ.

TABLE I.  KEY PARAMETERS OF THE MODEL AND DETERMINATION 

Parameter Description 

Wavelet Basis 

In the realm of compressed sensing, the selection of an appropriate wavelet basis is of paramount importance, as it directly 

influences the sparsity representation and the quality of signal reconstruction. This study employs the Morlet wavelet to 
construct a sparse sampling model through experimental comparison, aiming to achieve signal compression. The Morlet 

wavelet, which combines a Gaussian function with a sine wave, aids in the identification of abrupt changes within signals, 

thereby facilitating line monitoring. 

Regularization Parameter 

The regularization parameter λ is utilized to control the degree of sparsity in the Regularized Orthogonal Matching Pursuit 
(ROMP) algorithm, striking a balance between data fidelity and sparsity to better capture the signal's sparse structure and 

enhance the quality of the reconstructed signal. This paper determines λ based on the minimum reconstruction error derived 

from leave-one-out cross-validation experiments, with the Mean Squared Error (MSE) serving as the evaluation metric for 
signal reconstruction error. 

Sparsity 

Sparsity is employed to regulate the balance between the greedy search and regularization in the ROMP algorithm, constraining 

the number of non-zero elements in the solution vector of the algorithm to prevent overfitting and underfitting phenomena. This 
study estimates sparsity by integrating the characteristics of the signal with prior knowledge and applying threshold processing. 

Atom Dictionary 

The Atom Dictionary dictates the representational capacity of the signal during the reconstruction process, reducing the number 

of atoms that need to be processed, lowering computational complexity, and enhancing computational efficiency. In this paper, 

the optimal Atom Dictionary is assessed, adjusted, and determined through cross-validation, based on the signal's characteristics 
and the degree of matching. 

Initial Estimate 

The Initial Estimate significantly impacts the convergence rate of the algorithm and the quality of the final solution. An 

appropriate Initial Estimate can effectively reduce computational complexity and minimize the influence of noise and outliers on 
the reconstructed signal. This research utilizes the Iterative Soft Thresholding Algorithm (ISTA) for sparse reconstruction as the 

Initial Estimate for the ROMP algorithm. 
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IV. DESIGN AND IMPLEMENTATION OF MONITORING 

SYSTEM 

Conditions for the formation of ice on transmission lines 
include environmental temperature ≤ 0°C, air relative humidity 
≥ 85%, and wind speed > 1m/s, among others [18]. Therefore, 
temperature, humidity, and wind speed sensors were chosen as 
monitoring nodes. The hardware and software components of 

the transmission line monitoring system were designed by 
combining the network structure mentioned above and the 
algorithmic model. These components underwent detailed 
analysis and testing to ensure that, under stable system 
operation, the comprehensive performance indicators met the 
design requirements. The hardware structure of the system is 
illustrated in Fig. 4.  

 

Fig. 4. System hardware structure. 

The monitoring system utilizes the convergence node as the 
time reference point to send clock synchronization control 
signals to sensor nodes. Each node estimates its delay and 
makes corrections. Due to timing differences between sensor 
timers [19], each node is set with a 2.5s lead time to ensure 
timely responses. When receiving commands from the superior 
node, nodes exit sleep mode, correct their clocks, and collect 
and upload data. Upon receiving an ACK message from the 
convergence node, sensors transition to sleep mode to reduce 
power consumption. If a sensor node does not receive an ACK 
message, it continues data collection and uploads until 
receiving one. Once all nodes have received ACK messages, 
the convergence node performs data compression and 
observation processing. 

The SHT31 sensor from Sensirion AG is employed for 
temperature and humidity sensing, with a temperature range of 
-40 °C to 125 °C and a humidity range of 0-100% RH, suitable 
for harsh weather conditions. The compact dimensions (2.5 x 
2.5 x 0.9 mm) facilitate lightweight sensor node design. Wind 
speed measurement is achieved using the FS4G wind speed 
sensor from Renke Corporation, with a range of 0-60m/s. 

The convergence node must perform data observation 
compression, remote transmission, and network management 
tasks. It is significantly affected by outdoor environmental 
factors. Overall, the convergence node should possess fast 
response, low power consumption, good sealing, and anti-
interference capabilities. The SmartRF04-CC2592 chip from 
Texas Instruments, which integrates a 2.4GHz multi-channel 
RF transceiver supporting various standard protocols such as 
IEEE802.15 and ZigBee, is used. It has advantages such as 
small volume (QFP 4×4mm package), low current 
consumption (21.8mA when TX at 0dBm output, 12.2mA 
when TX at -12dBm output), programmable high output 
power, and strong anti-interference capabilities, making it 
suitable for the development and application of small wireless 
nodes. Based on this, the CC2592 chip is used for 
communication between network nodes and data observation 

compression. It is connected to the SIM8200G-M2 wireless 
communication module via a serial bus, enabling 
communication with the monitoring center to ensure reliable 
and stable data transmission. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Environment and Parameters 

Experiments were conducted in the simulation laboratory 
of the State Grid Corporation of China (SGCC) Henan 
Province Power Grid Simulation Center to validate the 
feasibility of the proposed method. The span of the 
transmission line is 42.5m, and sensor nodes are deployed at 
positions 1, 2, 3, 4, 5, and 6. The convergence node is placed in 
the tower control box. The monitoring center is located in the 
simulation center building, 1.2km from the convergence node, 
and is responsible for receiving reconstructed convergence 
node data. The deployment of nodes is shown in Fig.5. 
LG18650 lithium batteries power all nodes with a nominal 
voltage of 3.7V and a capacity of 3200 mAh. 

Data collection spanned five days from November 26 to 30 
during the experimental period. Different time intervals (00:00-
03:00, 8:00-10:30, 12:00-14:00, 17:30-19:30, 22:00-00:00) 
were selected to cover various working and environmental 
conditions, totaling 3450 minutes of sensor data collection. The 
analysis of diverse data aimed to ensure the reasonability and 
effectiveness of the experimental results. 

Each sensor node's sampling and transmission intervals 
were set at 30 and 120 seconds, respectively. The observed 
temperature, humidity, and wind speed values were all 256. 
After compression by the convergence node, the final quantity 
was reduced to 768. 

B. Reconstruction Error Performance Analysis 

Sensor nodes collected environmental information using 
the parameters designed in the previous section as the basis for 
the experiment. The convergence node then compressed and 
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uploaded the data, ultimately achieving the reconstruction of 
compressed data in the monitoring center. Throughout the data 
compression and transmission process, the nodes operated 
collaboratively, meeting the requirements for system stability. 

Taking the data collected during the time interval of 8:00-10:30 
on November 28 as an example, the reconstructed temperature, 
relative humidity, and wind speed were compared with the 
original data, as illustrated in Fig. 6, Fig. 7, and Fig. 8. 

Node-1

Node-2

Node-3 Node-4

Node-5

Node-6

sink 

node

 
Fig. 5. Node deployment diagram. 

 

Fig. 6. Temperature comparison curve before and after reconstruction. 

 
Fig. 7. Comparison curve of relative humidity before and after reconstruction. 
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Fig. 8. Wind speed comparison curve before and after reconstruction. 

The performance of the reconstruction algorithm is 
assessed by employing the Normalized Mean Square Error 
(NMSE) to calculate the mean square values of elements in the 
vector, thus evaluating the reconstruction error. 
Simultaneously, the data compression ratio 𝜌  is used to 
measure the efficiency of data compression to obtain the 
maximum absolute and relative errors before and after 
reconstruction. The formulas for NMSE and 𝜌 are expressed as 
Eq. (5) and Eq. (6), respectively: 

𝑁𝑀𝑆𝐸 =
‖𝑋

∧

𝑗(𝑛)−𝑋𝑗(𝑛)‖
𝑝

‖𝑋𝑗(𝑛)‖
𝑝

         (5) 

In the equations, 𝑋𝑗(𝑛) and 𝑋
∧

𝑗(𝑛) represent the 𝑗 -th values 

corresponding to the data before and after reconstruction, and 
the norm 𝑝 takes a value of 2. 

𝜌 =
𝑁−𝑀

𝑁
× 100%     (6) 

In the equations, 𝑀  and 𝑁 represent the quantities of 
observed data and original data, respectively. Table II presents 
the error situation of the reconstructed data. 

TABLE II.  RECONSTRUCTION DATA ERROR SUMMARY (N=3760) 

Project 

Data 

Compression 

Ratio 𝝆 (%) 

Mean Square 

Error NMSE

（%） 

Relative Error

（%） 

Absolute 

Error 

Temperature 93.191 3.741 13.346 0.064℃ 

Relative 

Humidity 
93.191 0.184 0.077 0.052% 

Wind Speed 93.191 2.752 16.454 0.128m/s 

As shown in Table II, the data sampling reconstruction 
method based on the joint use of the biorthogonal Wavelet 
algorithm and the ROMP algorithm achieves a high 
compression ratio, demonstrating excellent compression results 
and the ability to achieve the high-precision reconstruction of 
compressed data. Due to the relatively stable changes in 

relative humidity compared to temperature and wind speed, the 
sparsity after wavelet transformation is greater, resulting in 
higher data reconstruction accuracy. The mean square error 
accuracy of wind speed reconstruction is relatively ideal, but 
the relative and absolute errors are higher. This is because the 
wind speed signal exhibits significant fluctuations, and the 
sparse sampling process did not adequately adapt to the 
changing characteristics of the signal. 

C. Energy Consumption Analysis 

This section analyzes the power consumption of the 
compressed sensing wireless sensor network. Considering that 
the convergence node mainly completes the compression 
observation of data, experiments were conducted in direct and 
compressed transmission modes to ensure the comparability of 
experimental results. The lithium battery was fully charged to 
the nominal value, and the system was set to run for 36 hours 
in both modes to measure the voltage decay. The experimental 
results are shown in Fig. 9. 

From the power consumption decay curves in Fig. 9, it can 
be observed that the convergence node using compressed 
sampling transmission has a slower voltage decay rate. In a 
relatively short experiment period, the nominal battery voltage 
(3.7v) dropped to approximately 3.565v and 3.548v under 
direct and compressed transmission modes, respectively, with a 
decrease of about 11.18%. Therefore, the use of compressed 
sampling transmission can effectively extend the service life of 
the sensor network. 

D. Comparative Experiments 

To further corroborate the validity of the method proposed 
in this paper, experiments were conducted using the respective 
algorithms from study [9-11] under the premise of the same 
data transmission volume. A comparison was made between 
the reconstruction errors, computational efficiency, and energy 
consumption of each algorithm. Fig. 10 presents the results of 
the comparative experiments. 
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Fig. 9. Convergence node power consumption decay curve under different transmission modes. 

 
            (a) Signal reconstruction error                (b) Calculation time                    (c) Energy consumption 

Fig. 10. Comparison of performance indicators of different algorithms. 

Fig. 10(a) illustrates that with the increase in data volume, 
the reconstruction error of different algorithms escalates 
progressively. The signal reconstruction errors for the 
distributed optimal wavelet compression algorithm from 
reference 9, the distributed data compression algorithm from 
reference 10, and the dynamic retransmission-based 
compressed sensing algorithm from study [11] are notably 
higher. In contrast, the method proposed in this paper exhibits a 
relatively lower reconstruction error and superior stability, 
which can be attributed to the incorporation of a regularization 
condition within the iterative process. As observed in Fig. 
10(b), when the data volume reaches 100 bytes, the data 
processing time for the methods described in references [9], 
[10], and [11] all exceed 250 ms, whereas the processing time 
for the method introduced in this paper is reduced to only 163 
ms, fulfilling the requirements for real-time monitoring and 
rapid response of transmission lines. According to Fig. 10(c), 
the energy consumption of the method designed in this paper is 
significantly reduced to 2.7 J, which is considerably lower than 
that of the other three algorithms. This indicates a higher 
energy utilization rate for sensor nodes, which is conducive to 

extending the operational lifespan of the transmission line 
monitoring network and reducing maintenance costs. 

VI. CONCLUSION 

Focusing on addressing the technical challenges in 
transmission line monitoring, this paper proposes an innovative 
wireless sensor network monitoring scheme based on 
compressed sensing theory. The scheme leverages the 
combination of compressed sensing technology and orthogonal 
wavelet transform to achieve sparse representation and 
efficient compressed sampling transmission of sensor data. By 
employing the Regularized Orthogonal Matching Pursuit 
(ROMP) algorithm, the rapid and accurate reconstruction of 
compressed data is successfully realized. In terms of hardware 
and software co-design, system architecture suitable for 
transmission line monitoring is constructed according to the 
proposed algorithm model. Rigorous experimental validation 
has demonstrated that the designed monitoring method 
achieves a high compression ratio of 93.191%, with low signal 
reconstruction error and superior stability. Moreover, the 
method features reduced data processing time, meeting the 
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requirements for real-time monitoring and rapid response. 
Additionally, by introducing a compressed transmission 
mechanism at the sink node, the energy consumption of the 
system operation is significantly reduced, slowing down the 
rate of energy decay, and effectively prolonging the service life 
of the wireless sensor network. This scheme holds important 
practical value and long-term significance for optimizing the 
energy efficiency management of transmission line monitoring 
systems and enhancing the system's sustained operational 
capability. 
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