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Abstract—Stock trading is a highly consequential and 

frequently discussed subject in the realm of financial markets. 

Due to the volatile and unpredictable nature of stock prices, 

investors are perpetually seeking methods to forecast future 

trends in order to minimize losses and maximize profits. 

Nevertheless, despite the ongoing investigation of various 

approaches to optimize the predictive efficacy of models, it is 

indisputable that a method for accurately forecasting 

forthcoming market trends does not yet exist.  A multitude of 

algorithms are currently being employed to forecast stock prices 

due to significant developments that have occurred in recent 

years. An innovative algorithm for predicting stock prices are 

examined in this paper which is a Gated Recurrent Unit 

combined with the Aquila optimizer. A comprehensive data 

implementation utilizing the Hang Seng Index stock price was 

executed as a dataset of this research which was collected 

between the years of 2015 and the end of June 2023. In the study, 

several additional methods for predicting stock market 

movements are also detailed. A comprehensive comparative 

analysis of the stock price prediction performances of the 

aforementioned algorithms has also been carried out to offer a 

more in-depth analysis and then the results are displayed in an 

understandable tabular and graphical manner. The proposed 

model obtained the values of 0.9934, 0.71, 143.62, and 36530.58, 

for 𝑹𝟐 , MAPE, MAE, and MSE, respectively. These results 

proved the efficiency and accuracy of the suggested method and 

it was determined that the proposed model algorithm produces 

results with a high degree of accuracy and performs the best 

when it comes to forecasting a time series or stock price. 

Keywords—Financial markets; stock future trend; Hang Seng 

Index; Gated Recurrent Units; Aquila Optimizer 

I. INTRODUCTION 

The stock market, as defined, is a marketplace wherein 
individuals engage in the buying and selling of stocks 
associated with certain companies. Over time, the values of 
these stocks exhibit significant fluctuations. Nevertheless, it 
would be unwise to disregard the factors contributing to the 
significant fluctuations in the stock market, which may include 
political influences, brand perception, and the prevailing global 
conditions. The aforementioned elements have the ability to 
significantly influence the perspectives and convictions of 
prospective investors, hence contributing to fluctuating patterns 
in the stock market. Hence, while it is crucial to comprehend 
the potential variables contributing to these fluctuations, it 
remains insufficient to devise a methodology that can reliably 
forecast trends in light of perpetual worldwide transformations 

and uncertainties [1]. Given the inherent unpredictability and 
significant market volatility, a considerable number of 
individuals interested in the stock market want to acquire a tool 
or method that can dependably forecast market trends, so 
enabling them to achieve more profitability [1]. Nonetheless, 
persistent endeavors are being undertaken to construct a model 
or algorithm that can assist investors in forecasting changes 
with more precision than previously achieved. The utilization 
of machine learning (ML) algorithms is a prevalent and well-
accepted approach for constructing predictive models [2]. ML 
is a computational paradigm in which computers acquire 
information and make predictions based on previous 
experiences and training, without relying on external 
programming [2]. A few approaches and algorithms linked to 
ML have been investigated and addressed in  [3-5]. Many 
advancements in data science and ML have occurred in the last 
few years, which have led to the creation of certain specific 
algorithms that are highly effective for predictive analytics 
across all sectors. Among the models examined in this article is 
GRU, a subfield of machine learning. 

Recurrent neural networks (RNNs), such as Gated 
Recurrent Units (GRUs) [5], are used to handle sequential data, 
including time series. It was presented as an abridged form of 
the long short-term memory (LSTM) architecture. GRU is 
intended to address the vanishing gradient issue in RNNs and 
allow the network to store data over extended sequences, much 
like LSTM. The GRU model has one fewer gate structure than 
the LSTM; it consists of an update gate and a reset gate. It has 
been demonstrated that GRU performs comparably to LSTM 
while processing time series data, therefore this difference in 
operation impact is not very important. Compared to LSTM, 
GRU can converge more quickly because of its streamlined 
structure, which also speeds up training. Applications for the 
GRU model include speech recognition, video analysis, and 
natural language processing [5]. GRU was utilized by Ya Gao 
et al. [6] to predict stocks. GRU Neural Network Based on 
CEEMDAN-Wavelet was utilized by Chenyang Qi et al. [7] to 
predict stock prices. 

The accuracy of predicting the value of the stock market 
rose as optimizers were developed and combined with a range 
of models to provide better outcomes in the predictions. 
Among the optimizers that were demonstrated were the whale 
optimization algorithm (WOA) [8], biogeography-based 
optimization (BBO) [9], genetic algorithm (GA) [10], moth–
flame optimization (MFO) [11], ant lion optimization (ALO) 
[12], grey wolf optimization (GWO) [13], and Aquila 
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optimizer (AO) [14]. The most recent method to replicate the 
four distinct stages of Aquila hunting behavior is the AO, 
which was put out by Abualigah et al. [14]. Aquila employs 
four main hunting techniques: strolling and capturing prey, 
contour flying with a brief glide, low flying with a slow drop, 
and high soar with a vertical stoop [15]. These four core Aquila 
hunt processes served as the inspiration for the creation of the 
AO, a nature-inspired optimization algorithm that 
fundamentally clarifies the actions of each hunt stage. 
Initialization, Expanded Exploration, Narrowed Exploration, 
Expanded Exploitation, and Narrowed Exploitation are the five 
main processes that the traditional AO concentrates on. One of 
the most important aspects of the algorithm, the current 
iteration maximum iteration, usually guides the AO algorithm 
from the exploration to the exploitation stage. The exploration 
phase will be activated if the condition mentioned is true; 
otherwise, the exploitation step will be carried out [15]. 

From the commencement of 2015 until the conclusion of 
June 2023, daily transaction data from the Hang Seng Index 
(HSI) was collected, encompassing the following metrics: 
opening price, closing price, highest price, lowest price, and 
trading volume. To assess the reliability of each model, the 
research looked at a variety of models, including GRU, ALO-
GRU, GWO-GRU, and AO-GRU. For this post, the AO-GRU 
model was selected since it has the best performance. The rest 
of the paper is structured as follows. The literature review is 
given in the Section II. Numerous analytical methods, 
including optimizer approaches, and the GRU model along 
with the dataset were provided in Section III. The study's 
findings are provided in Section IV and their discussions are 
demonstrated in Section V. Section VI provides a quick 
summary of the research's findings. 

II. LITERATURE REVIEW 

In recent years, there has been a significant increase in the 
utilization of machine learning algorithms for the purpose of 
forecasting the stock market. A comparative study of 
fundamental analysis, technical analysis, and machine learning 
(ML) approaches was what Christanto et al. [16] proposed as 
an investigation into methodologies utilized in the capital 
market to forecast stock prices. For predicting stock prices, 
they employed Support Vector Regression (SVR) and Support 
Vector Machine (SVM) as ML techniques. Technical-only 
(TEC), financial statement-only (FIN), and a combination of 
the two (COM) parameter groups are assessed. Financial 
statement integration had a neutral effect on SVR predictions 
but a positive effected on SVM predictions, according to their 
experiments. The model achieved an accuracy rate of 83% in 
the conducted study. Chen et al. [17] examined the historical 
backdrop of economic recessions, highlighting the sudden and 
catastrophic consequences of occurrences such as the 2008 
financial crisis, characterized by a substantial decrease in the 
SP 500. Driven by the prospective advantages of timely crisis 
detection, they implemented sophisticated machine learning 
methodologies, including Random Forest and Extreme 
Gradient Boosting, to forecast possible market downturns in 
the United States. Comparing the performance of these 
approaches, their research seeks to ascertain which model is 
more accurate at predicting US stock market crashes. Market 
indicators for crisis prediction were analyzed by employing 

daily financial market data and 75 explanatory variables, which 
encompass general US stock market indexes as well as sector 
indexes. By employing particular classification metrics, they 
derived conclusions concerning the efficacy of their predictive 
models. Tsai et al. [18] discussed investors' interest in stock 
prediction, especially with the recent use of machine learning 
to improve accuracy. Machine learning works in technical, 
fundamental, and sentiment analysis, according to prior 
research. They discussed fiscal year-end selection and how 
misaligned reporting periods affect comparability and 
investment decisions. They emphasized synchronized fiscal 
years and use machine learning models for fundamental 
analysis to forecast Taiwan (TW) stock market returns. They 
created stock portfolios with higher predicted returns using 
Random Forest (RF), Feedforward Neural Network (FNN), 
Gated Recurrent Unit (GRU), and Financial Graph Attention 
Network (FinGAT) models. These portfolios outperformed 
TW50 index benchmarks in returns and portfolio scores, 
according to their study. Machine learning models were 
beneficial for stock market analysis and investment decision-
making, according to Tsai et al [18]. Ardakani et al. [19] 
proposed a federated learning framework for stock market 
prediction using Random Forest, Support Vector Machine, and 
Linear Regression models. They compared federated learning 
to centralized and decentralized frameworks to find the best 
approach. Federated learning outperformed centralized and 
decentralized frameworks in Mean Square Error (MSE) using 
Random Forest (0.021) and Support Vector Machine (37.596). 
Linear regression model-based centralized learning (MSE = 
0.011) outperformed federated and decentralized frameworks. 
Federated learning had a lower model training delay than 
benchmarks for Linear Regression (9.7 s) and Random Forest 
(515 s), while decentralized learning saves time for Support 
Vector Machine (3847 s). Their findings illuminated stock 
market prediction learning framework strategies [19]. A novel 
stock price prediction method by Mamluatul et al. [20] uses 
machine learning, stock price data, technical indicators, and 
Google trends. SVR, MLP, and Multiple Linear Regression 
were used to predict stock prices. SVR predicts Indonesian 
stock prices better than MLP and Multiple Linear Regression 
with a MAPE of 0.50%. They found that SVR predicts stock 
prices accurately, helping investors make informed stock 
market decisions [20]. The importance of stock market 
forecasts in financial market profits was stressed by Juare et al. 
[21] Their research used Random Forest, Support Vector 
Machine, KNN, and Logistic Regression to predict stock 
market trends. These algorithms are evaluated using accuracy, 
recall, precision, and F-Score. The main goal was to find the 
best stock market prediction algorithm. Effective forecasts can 
benefit stock exchanges and investors, highlighting the 
importance of predictive models in financial decision-making 
[21]. Swathi et al. [22] emphasized the need for investors to 
use stock price prediction (SPP) models in the global financial 
market for profit. Earlier SPP models used statistical and 
machine learning (ML) methods. In their study, the authors 
introduced SCODL-SPP, a stock price prediction method using 
Sine Cosine Optimization (SCO) and deep learning. The 
SCODL-SPP model forecasts share closing prices using deep 
learning and a stacked long short-term memory (SLSTM) 
model. The SLSTM model hyperparameters are optimized 
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using the SCO algorithm after the min-max normalization of 
primary data. The SCODL-SPP model outperformed other 
models in stock price prediction accuracy, according to 
experiments [22]. Su et al. [23] proposed a stack framework 
using LGBM to predict the Taiwan stock market index. 
Their study created a comprehensive feature set to account for 
political events, economic conditions, investor psychology, and 
global market trends that affect stock market predictions. 
They introduced a feature selection algorithm to identify 
important features and improve training performance. A 
stacking strategy integrates multiple classifiers to improve 
prediction accuracy. The proposed model is tested using a 10-
year Taiwan Stock Exchange Capitalization Weighted Stock 
Index dataset. Both the prediction model and feature selection 
method performed well in experiments, indicating that the 
proposed approach is effective in stock market index prediction 
[23]. Ryan Chipwanya's study examined how stock market 
prediction tools and data have improved, making market 
predictions possible [24]. Logistic regression, decision trees, 
and random forest algorithms were compared for predicting 
Japanese stock market asset movements using machine 
learning models for time-series forecasting. The models were 
also compared to feedforward deep neural networks. Overall, 
all models achieved directional bias forecasting accuracy above 
50% [24]. Pardeshi et al. [25] emphasized the importance of 
stock market prediction for profitable investing. To address 
complex financial market dynamics, they emphasized deep 
learning. Geopolitical events and historical price trends affect 
stock market volatility. They introduced Long Short-Term 
Memory with a Sequential Self-Attention Mechanism (LSTM-
SSAM) to predict stock prices with low error. Their proposed 
model was tested using SBIN, HDFCBANK, and 
BANKBARODA stock datasets. Their study showed that 
LSTM-SSAM improves stock price prediction accuracy 
through extensive experimentation [25]. 

The literature review on stock market prediction effectively 
addresses several identified gaps. The inclusion of the Hang 
Seng Index as a focal point allows for the provision of market-
specific insights pertaining to Hong Kong, thereby expanding 
the geographical scope of research within this field. Moreover, 
through the transparent elucidation of data preprocessing 
procedures, the assurance of data quality and reproducibility is 
achieved, thereby addressing the existing gap in the literature 
regarding the evaluation of data quality and preprocessing 
methodologies. Furthermore, the enhancement of predictive 
accuracy through domain knowledge is exemplified by the 
integration of domain-specific insights into the AO-GRU 
model, thereby addressing the limitation of limited domain 
knowledge integration. Moreover, the comparison between the 
AO-GRU model and ensemble techniques offers valuable 
insights into the efficacy of ensemble methods, thus filling the 
void in the limited investigation of these methods. Finally, a 
more thorough evaluation of model performance can be 
achieved by integrating supplementary evaluation metrics or 
examining the constraints of current ones, thereby addressing 
the deficiency in insufficient evaluation metrics. These 
contributions have made significant advancements in the field 
of stock market prediction, resulting in improved robustness, 
accuracy, and applicability of predictive models in financial 
markets. 

III. METHODS AND MATERIALS 

A. Data Gathering and Preparation 

The Hang Seng Index is a prominent stock market index in 
Hong Kong that tracks the performance of several notable 
companies listed on the Hong Kong Stock Exchange. The 
Hong Seng Index is composed of a diverse group of companies 
that lead their respective industries in many sectors of the Hong 
Kong economy. These sectors include, among others, the 
manufacturing, banking, real estate, and telecommunications 
sectors. Like other notable stock indices, the Hang Seng Index 
is weighted by market capitalization. Each company's weight in 
the index is based on its share market value; larger companies 
have a greater impact on the index's movements. Many factors, 
including trading volume and the Open, High, Low, and Close 
(OHLC) prices during a specific time period, should be 
included in a comprehensive study. The Hong Kong Stock 
Exchange provided hundreds of stocks from various industries 
that were used as the source of stock data for this study. Raw 
transaction data, comprising the opening price, closing price, 
highest price, lowest price, and trading volume, was gathered 
for every day from the start of 2015 to the end of June 2023. 
The gathered data was divided into two groups in order to 
maximize the performance of the models. As shown in Fig. 1, a 
partitioning approach was used in this experiment. In 
particular, twenty percent of the data was reserved for testing, 
while the remaining eighty percent was used for training. This 
division's main objective was to determine the most workable 
solution that balanced the need for a sizable amount of data for 
model training with the demands of a large, untested dataset for 
thorough testing and validation. 

B. Gated Recurrent Unit 

The GRU network was first introduced by Cho et al. [26]. 
The basic RNN concept [27] is to determine outputs by taking 
into account inputs and the hidden state, which is determined 
by squaring up past outputs or hidden states. With an update 
gate and a reset gate, the GRU offers sophisticated control over 
the data in a concealed state. In general, it can determine which 
data adding from the existing inputs is necessary (because it 
may be crucial to the future) and which data from the past may 
be eliminated from the hidden state (because it is unrelated to 
the present state). Compared to long short-term memory [28], 
which features a unit made up of three gates and a cell 
structure, the GRU has fewer parameters. A single GRU's 
construction is seen in Fig. 2, ℎ, in which 𝑧 is the update gate 
and 𝑟  is the reset gate. Several of these units, designated ℎ𝑗 
(along with associated 𝑟𝑗  and 𝑧𝑗 ) in a GRU network, are 

updated using the following equations: 

𝑟𝑗 = 𝜎 ([𝑉𝑟𝑥]𝑗 + [𝑈𝑟ℎ⟨𝑡−1⟩]𝑗
)           (1) 

𝑧𝑗 = 𝜎 ([𝑉𝑧𝑥]𝑗 + [𝑈𝑧ℎ⟨𝑡−1⟩]𝑗
)           (2) 

ℎ𝑗
⟨𝑡⟩
= 𝑧𝑗ℎ𝑗

⟨𝑡−1⟩
+ (1 − 𝑧𝑗)ℎ̃𝑗

⟨𝑡⟩
           (3) 

ℎ̃𝑗
⟨𝑡⟩
= 𝜙 ([𝑉𝑥]𝑗 + [𝑈(𝑟 ⊙ ℎ⟨𝑡−1⟩)]𝑗

) (4) 

Let  x(𝑡) be the vector that is input at a time 𝑡. The bias 
parameter is a part of 𝑉, which stands for parameter matrices. 
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To take the 𝑗-th element of a vector, use the boldface notation 
ℎ and 𝑟, which represent the vectors with all of the values ℎ𝑗 
and 𝑟𝑗. When first introduced, 𝜎 represents a hyperbolic tangent 

function and 𝜎 is a logistic function. In the beginning, for every 

𝑗, ℎ𝑗
(0)
= 0. 

C. Ant Lion Optimizer 

The predatory behavior of ant lions in the wild, which 
primarily consists of ants, ant lions, and elite ant lions, served 
as the primary inspiration for the creation of ALO in 2015 [12]. 
The structure of the ALO algorithm is as follows: Using the 
roulette and random walk techniques, the ant colony and ant 
placements are first established at random. After an ant has 
completed its journey, their fitness is assessed using a fitness 
function. If the ant's location outperforms that of the ant lions 
around it, then it is deemed the best option available at this 
time. Furthermore, the position of the ant lion becomes the best 
option if it manages to capture an ant. In every cycle, the elite 
antlion stands in for the best possible outcome within the ant 
lion population. In contrast, the elite antlion is updated if the 
optimal antlion outperforms it; if not, it stays the same until the 

end of the iteration, at which point it overcomes the elite 
antlion [12]. 

The random walk, which is used to show how ants travel, is 
stated as follows by Eq. (5): 

𝑋(𝑡) = [0, cs(2𝑟(𝑡1) − 1)], … , cs(2𝑟(𝑡𝑛) − 1) (5) 

  

where, 𝑟(𝑡𝑛) is the random walk function of the 𝑛 -th 
iteration and cs is the cumulative sum. 

Moreover, Eq. (6) illustrates how Eq. (5) is further 
standardized. 

𝑋𝑖
(𝑡)
=
(𝑋𝑖

(𝑡)
− 𝑎𝑖) × (𝑑𝑖 − 𝑐𝑖

(𝑡)
)

(𝑑𝑖
(𝑡)
− 𝑎𝑖)

 (6) 

The 𝑖-th individual's min and max values are denoted by 
𝑎𝑖  and 𝑑𝑖 , respectively, while the 𝑡 -th iteration of the 𝑖 -th 

variable maximum value is represented by 𝑐𝑖
(𝑡)
 and 𝑑𝑖

(𝑡)
, 

respectively. 

 

Fig. 1. Creating a separate train and test set of data. 

 
Fig. 2. The GRU model's structure. 
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Antlion traps have an impact on the random movement of 
ants, as demonstrated by Eq. (7) and Eq. (8): 

𝑐𝑖
(𝑡)
=  Antlion 

𝑗

(𝑡)
+ 𝑐(𝑡) (7) 

𝑑𝑖
(𝑡)
=  Antlion 

𝑗

(𝑡)
+ 𝑑(𝑡) (8) 

In the 𝑡 -th iteration, the individual's minimum and 

maximum values are denoted by 𝑐(𝑡)  and 𝑑(𝑡) , respectively, 

whereas 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
(𝑡)

signifies the location of the 𝑗-th ant-lion. 

Ants move randomly or in a roulette pattern around the 
antlion, as seen by Eq. (9): 

𝐴𝑛𝑡𝑖
(𝑡)
=
𝑅𝐴
(𝑡)
+ 𝑅𝐸

(𝑡)

2
 (9) 

The positions of the 𝑖 -th ant at the 𝑡 -th iteration are 

indicated by 𝐴𝑛𝑡𝑖
(𝑡)

, and 𝑅𝐴
(𝑡)

 and 𝑅𝐸
(𝑡)

 are the random walks 

around the elite or the roulette wheel on the second day of the, 
respectively. 

As the number of iterations increases, antlion will get 
closer to the approximate optimal solution by reducing the 
boundaries in the manner described by Eq. (10) and Eq. (11): 

𝑐𝑖 =
𝑐(𝑡)

𝐼
 (10) 

𝑑𝑖 =
𝑑(𝑡)

𝐼
 (11) 

where the lowest and maximum values of all variables at 

the 𝑡 -th iteration are denoted by 𝐼 , and 𝑐(𝑡)  and 𝑑(𝑡) 
accordingly. Eq. (12) displays the location update formula, 
which the ant lion will use to feed on the ants after the 
iteration. 

 Antlion 
𝑗

(𝑡)
= 𝐴𝑛𝑡𝑖

(𝑡)
, if 𝑓 ( Ant 

𝑖

(𝑡)
> 𝑓(𝐴𝑛𝑡𝑗

(𝑡)
) (12) 

Where the locations of the 𝑖-th and 𝑗-th ant-lions of the 𝑡-th 

iteration are represented by Antlion 𝑗
(𝑡)

 and 𝐴𝑛𝑡𝑖
(𝑡)

. 

D. Grey Wolf Optimization 

A novel swarm intelligence algorithm called the GWO 
makes use of the capabilities that Mirjalili et al. [29] 
discovered. Accurate stability is achieved between exploration 
and development, and it is expandable and adaptable. 
Following the wolf cooperation mechanism, the GWO imitates 
the actions of a population of grey wolves that are predators. 
Following natural law and rigid social structures, every wolf in 
the population has a certain role to fulfill [29]. Wolf 
populations in a GWO are arranged based on fitness levels. 

The wolf with the lowest health, 𝜔 , is regarded as the 
lowest-ranking person. A wolf within the wolf pack can be 
considered a feasible response, and the wolves corresponding 
to the finest solution, superior answer, and suboptimal answer 
of the present day may be designated as the 𝛼, 𝛽, and 𝛾 Wolf, 
respectively. The following sums up the grey wolf population's 
predatory behavior during the search: 

D = |C × Xp(t) − X(t)| (13) 

X(t + 1) = Xp(t) − A × D (14) 

The distance 𝐷 between the wolf and the target is given in 
Eq. (13). The coordinate transformation of a wolf is 
represented by Eq. (14), where 𝑋𝑃(𝑡)represents the target's 
location in the 𝑡-generation, X(t)represents the position of a 
lone wolf inside the 𝑡 -generation wolf pack, 𝐴  and 𝐶  are 
coefficients, and the calculation formula is as follows: 

𝑎 = 2 − 2 ∗
 iter 

 Max 
iter 

 (15) 

A = 2a ∗ r1 (16) 

C = 2r1 (17) 

where, 𝑟1, 𝑟2 ∈ [0,1], iter is the population of iterations, and 
Max 𝑖𝑡𝑒𝑟 is the maximum number of iterations. The three 
different sorts of wolves choose which gray wolf will replace 
which when the wolf assaults its prey, or when it catches 
quarry. The paradigm for this decision is as follows: 

Di
j
(t) = |C × Xi

j
(t) − Xj(t)| (18) 

Xi
j(t + 1) = Xi

j(t) − A × Di
j
(t) (19) 

X(t + 1) =
1

3
×∑Xm(t + 1) (20) 

The difference between the 𝑡 -generation and i(i =

𝛼, 𝛽, 𝛾)wolves are denoted by 𝐷𝑖
𝑗(𝑡). In accordance with 𝛼, 𝛽, 

and 𝛾  stride length and the wolf's motion direction, in that 
order, Eq. (18)-(20) determine the 𝜔 wolf. The new period of 
grey wolves formed following a location update is represented 
by Eq. (20). 

E. Aquila Optimizer 

The AO is a recently introduced algorithm that aligns with 
the inherent hunting behavior of the Aquila species [14]. The 
hunting process has four distinct stages: an initial phase of 
extensive exploration achieved via soaring at high altitudes 
followed by a rapid vertical drop, a subsequent phase of 
focused exploration accomplished through gliding with precise 
contour flight, a subsequent phase of extensive exploitation 
achieved through a low-flying descending attack, and a final 
phase of focused exploitation accomplished through walking 
and capturing prey as seen in Fig. 3. The AO algorithm 
employs a range of characteristics to facilitate the transition 
from the exploration stage to the exploitation stage [14]. The 
initial two-thirds of iterations are dedicated to simulating the 
exploration stage, while the remaining one-third of iterations is 
allocated for imitating the exploitation stage [14] as the 
summary of AO optimizer performance is shown in Fig. 4. 

The eagle starts the initial form of vertical descent when it 
identifies a potential area for prey and promptly determines the 
optimal hunting spot on the planet by ascending to significantly 
high elevations and identifying the region of investigation 
where the most efficient approach is determined using the 
subsequent formula: 
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{
𝑍1(𝑡 + 1) = 𝑍best (𝑡) × (1 −

𝑡

𝑇
) + (𝑍𝑀(𝑡) − 𝑍best (𝑡) ×  rand )

𝑍𝑀(𝑡) =
1

𝑁
∑  𝑁
𝑖=1  𝑍𝑖(𝑡), ∀𝑗 = 1,2,…… , Dim 

 

(21) 

The generation 𝑡 + 1solution is represented by 𝑍(𝑡 + 1), 
which is the result of the search strategy 𝑍1 ⋅ 𝑍best (𝑡), where 

(𝑡 ) is the ideal approach that indicates the position of the 
closest target prey. This loop has t iterations remaining. 𝑇 is the 
highest possible number of iterations. The location means of 
the current solution at the 𝑡-th iteration is denoted by 𝑍(𝑡). A 
random number between 0 and 1 is referred to as a Rand. The 
subsequent swift-gliding assault: The eagle soars to a height to 
discover the prey region in order to reduce the hunting area or 
search space in line with the following equation for the best 
reaction: 

{

𝑍2(𝑡 + 1) = 𝑍best (𝑡) × 𝑍(𝐷) + 𝑍𝑅(𝑡) + (𝑦 − 𝑧) ×  rand 

𝐿(𝐷) = 𝑠 ×
𝜇 × 𝜎

|𝜈|
1
𝛽

 (22) 

The Aquila enters the low-flying, slow-falling assault mode 
at the chosen target point when the prey zone has been 
carefully located and it is ready to land and attack. This is the 
third pattern of low-altitude flying; by using this tactic, the bird 
could see how its prey would respond and gradually approach 
it, as in the formula below: with 𝐷  representing the 
dimensional space, 𝑍𝑅(𝑡) representing the random solution 
between [1, 𝑁] , and 𝐿(𝐷) representing the hunting flight 
distribution function. 

𝑍3(𝑡 + 1) = (𝑍best (𝑡) − 𝑍𝑀(𝑇)) × 𝛼

−  rand + ((𝑈𝑏 − 𝐿𝑏) ×  rand + 𝐿𝑏)

× 𝛿 

(23) 

𝛼 and 𝛿 are the two moderating elements in this case. 𝑈𝑏 is 
upper bound on the issue. 𝐿𝑏is the lower bound of the issue. 
Walking capture is the fourth method when the eagle uses the 
following equation to rapidly converge and attack the target 
from above. 

{
  
 

  
 
𝑍4(𝑡 + 1) = 𝑄𝐹 × 𝑍best (𝑡) − (𝐺1 × 𝑍(𝑡) ×  rand ) − 𝐺2 × 𝐿(𝐷) +  rand × 𝐺1

𝑄𝐹(𝑡) =
2 ×  rand − 1

𝑡(1−𝑇)2

𝐺1 = 2 ×  rand − 1

𝐺2 = 2 × (1 −
𝑡

𝑇
)

 (24) 

The quality function, or 𝑄𝐹 , and the search technique is 
balanced. The Aquila's motions as it searches for its food are 

seen on 𝐺1. The hunting flying slope of Aquila is represented 
by 𝐺2 . 𝑍(𝑡)  is the solution for this iteration.

 

Fig. 3. An illustration of the Aquila hunting. 
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Fig. 4. The selective AO optimizer's graphical flowchart. 

IV. RESULTS 

A. Evaluation Metrics 

The evaluation of the accuracy of the future forecast was 
conducted by employing a variety of performance measures. 
The carefully chosen metrics provide a thorough evaluation of 
the reliability and precision of the predictions. The assessment 
criteria employed in this article encompass: 

 Coefficient of determination (𝑅2): 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

 (25) 

 Mean absolute error (MAE): 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1

𝑛
 (26) 

 Mean squared error (MSE): 

 MSE =
1

𝑁
∑  

𝑁

𝑖=1

(�̂�𝑖 − 𝑦𝑖)
2,  (27) 

 Mean absolute percentage error (MAPE): 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑛

𝑖=1

) × 100 (28) 

B. Statistic Values 

The dataset encompassed a significant temporal range, 
commencing on January 1, 2015, and concluding at the 
termination of June 2023. This section presents tabular 
representations of the project's outcomes subsequent to its 
effective implementation. The inclusion of OHLC price and 
volume statistics in Table I enhances the comprehensibility of 
the information. The utilization of statistical metrics such as 
count, mean, minimum (min), maximum (max), standard 
deviation (Std.), 25%, 50%, 75%, and variance enables a 
thorough and precise examination of the data.
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TABLE I.  A COLLECTION OF STATISTICAL VALUE SUMMARIES 

 
Open High Low Volume Close 

count 2090 2090 2090 2090 2090 

mean 24877.8 25026.72 24689.52 4013.656 24862.03 

Std. 3492.279 3486.289 3484.234 1462.996 3486.437 

min 14830.69 15113.15 14597.31 0 14687.02 

25% 22194.44 22350.36 21998.24 3068.985 22151.32 

50% 25002.49 25118.69 24755.93 3679.685 24973 

75% 27716.1 27860.96 27525.43 4594.719 27693.23 

max 33335.48 33484.08 32897.04 12025.52 33154.12 

variance 12196013 12154214 12139887 2140358 12155245 

C. Compare and Analysis 

The successful completion of the project has yielded the 
results, which are displayed in this section as Table II and Fig. 
5, 6. For this study, four algorithms were used to predict HSI 

stock values: GRU, ALO-GRU, GWO-GRU, and AO-GRU. 
The dataset was massive, spanning from the beginning of 2015 
to the end of June 2023. The models were evaluated using four 
important performance indicators: R2 , MAPE, MAE, and 
MSE.

TABLE II.  A PREDICTION OF THE EVALUATION OUTCOMES OF THE MODELS 

MODEL/Metrics 
TRAIN SET TEST SET 

𝑹𝟐 MAPE MAE MSE 𝑹𝟐 MAPE MAE MSE 

GRU 0.9894 1.09 280.91 92243.40 0.9875 1.01 202.16 69134.21 

ALO-GRU 0.9923 0.83 213.74 67466.58 0.9906 0.97 198.26 51900.77 

GWO-GRU 0.9941 0.77 197.79 51335.10 0.9921 0.78 161.26 43986.23 

AO-GRU 0.9952 0.60 154.69 41515.24 0.9934 0.71 143.62 36530.58 
 

V. DISCUSSIONS 

The tabulated results for the GRU obtained during the 
testing of a specific model on the dataset of that firm are shown 
in Table II. The AO-GRU method has produced the greatest 
predictive performance out of all four models, with an MSE of 
36530.58, the lowest of all four. This is because the optimum 
MSE value is near zero. The results of the R2  calculations for 
several models evaluated on a certain dataset are listed in Table 
II. The model fit is better when the value of 𝑅2 is nearer 1. The 
obtained results demonstrate that the AO-GRU has yielded the 
most encouraging outcomes among the four computational 
models that were examined. Because its R2score of 0.9934 is 
the closest to 1, which suggests that the accuracy rate of the 
model is high. This table offers a thorough summary of the 
MAPE that a given model obtained during testing on the 
dataset. A lower number in the MAPE indicates greater 
performance. With a MAPE of 0.71, Table II analysis reveals 
that AO-GRU performed the best out of the three algorithmic 

models examined. Because it produces the most accurate 
predictions, it can be concluded that the AO-GRU algorithm is 
the best computational model to apply when working with 
comparable datasets. Regarding the MAE report, it should be 
noted that the more accurate the prediction, the closer the 
reported value is to zero. This is supported by the reported 
table, which indicates that the reported number for the AO-
GRU model's test phase is 143.62, indicating that the model in 
question is more accurate at forecasting and is the one used in 
this article. The findings may be used in business and other 
domains where data analysis is essential for making well-
informed choices and forecasts. 

The GRU model's combination with the Aquila optimizer 
as seen in Fig. 7 and Fig. 8, it is clear from the analysis of the 
HSI index curves and their comparative assessment that the 
AO-GRU model performs better and is more effective than the 
other models investigated in this study. 

 

Fig. 5. The methods’ training outcomes contain a variety of measures, including 𝑅2, MAPE, MAE, and MSE. 

Train
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+  

Fig. 6. The methods’ testing outcomes contain a variety of measures, including 𝑅2, MAPE, MAE, and MSE. 

 

Fig. 7. The prediction curve produced during the training phase by applying the AO-GRU technique. 

 

Fig. 8. The prediction curve produced during the testing phase by applying the AO-GRU technique. 

TABLE III.  A COMPARATIVE ANALYSIS OF THE MODEL IS PROVIDED IN RELATION TO PREVIOUS STUDIES 

Authors Method 𝑹𝟐 

Zhu et al. [30] 

LSTM 0.6896 

EMD-LSTM 0.8703 

CEEMDAN-LSTM 0.9031 

SC-LSTM 0.6871 

EMD-SC-LSTM 0.9111 

CEEMDAN-SC-LSTM 0.9206 

Abdul et al. [31] 

Linear regression 0.73 

SVM 0.93 

MLS-LSTM 0.95 

Current study 0.9934 

Test
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Based on the findings presented in Table III, the AO-GRU 
model demonstrates superior performance when compared to 
other models evaluated in the domain of stock price prediction. 
In this study, the 𝑅2 value of 0.9934 was found to be highly 
impressive, surpassing the performance of other evaluated 
models such as LSTM, SVM, and MLS-LSTM. This indicates 
a stronger correlation between the predicted and actual stock 
prices, suggesting that the model is more effective in capturing 
the underlying data patterns. By integrating adaptive 
optimization techniques, the AO-GRU model gains the 
capability to dynamically modify its parameters during 
training. This allows it to adapt to the subtleties of the data and 
improve its capacity to handle variations and complexities in 
the stock market. The model effectively utilizes the GRU 
architecture to capture long-range dependencies in sequential 
data, while also addressing challenges such as the vanishing 
gradient problem. The gating mechanisms of GRU control the 
flow of information within the network, enabling more 
effective learning, especially in situations where there is a 
scarcity of training data. Significantly, the efficiency of the 
GRU architecture, which necessitates fewer parameters and 
computations in comparison to more intricate models such as 
LSTM, results in expedited training durations and reduced 
computational expenses. Consequently, the AO-GRU model 
becomes more viable for real-time or extensive applications. 
Moreover, the model's architecture, which is relatively 
uncomplicated, improves its interpretability, offering 
stakeholders valuable insights into the determinants of stock 
price fluctuations and the underlying reasoning behind the 
model's predictions, as opposed to certain intricate black-box 
models. 

VI. CONCLUSION 

This study aimed to develop machine learning models with 
improved stock price prediction accuracy. By making the 
appropriate sort of investment at the appropriate moment, 
traders and investors would be able to take advantage of these 
strategies and maximize their gains. This project included the 
effective implementation of four algorithms: GRU, ALO-GRU, 
GWO-GRU, and AO-GRU. A comprehensive comparative 
analysis of the algorithms' performances during stock price 
prediction was conducted after GRU algorithms were utilized 
to create accurate predictive models for use in the stock price 
prediction of HSI. The collected stock values 1st of January 
2015 to the end of June 2023. The four assessment metrics 
MSE, R2, MAPE, and MAE as well as the data gathered during 
the model testing are displayed in tabular and graphical form in 
the research study's results section. 

 Following a comprehensive review and analysis of the 
data, the AO-GRU approach is shown to be the most 
error-free among the available strategies for time series 
prediction, with the lowest MSE (36530.58), MAPE 
(0.71), and MAE (143.62) errors and the highest value 
of R2 (0.9934). 

The study's findings present compelling evidence that 
suggests several promising avenues for future research in the 
field of stock price prediction. In order to enhance predictive 
accuracy and robustness, it is imperative to investigate 
alternative optimization techniques beyond Aquila, the 

optimizer employed in the AO-GRU model. The incorporation 
of supplementary datasets not limited to the Hang Seng Index 
has the potential to yield more profound insights and improve 
the generalizability of the model. This could involve the 
inclusion of macroeconomic indicators, industry-specific data, 
or sentiment analysis derived from diverse sources. 
Furthermore, the implementation of strategies such as attention 
mechanisms or feature importance analysis has the potential to 
improve the interpretability of models, thereby promoting 
increased trust and usability among various stakeholders. It is 
imperative to conduct thorough testing in various market 
conditions and economic cycles in order to evaluate the 
robustness and flexibility of models. Additionally, 
investigating the applicability of these models to different asset 
classes, such as commodities or currencies, may reveal novel 
opportunities for investment strategies. By directing attention 
towards these specific areas, forthcoming research endeavors 
possess the capacity to propel the domain of stock price 
prediction forward and effectively address the changing 
demands of investors and financial professionals. 
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