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Abstract—Synthetic data generation research has been pro-
gressing at a rapid pace and novel methods are being designed
every now and then. Earlier, statistical methods were used to learn
the distributions of real data and then sample synthetic data from
those distributions. Recent advances in generative models have led
to more efficient modeling of complex high-dimensional datasets.
Also, privacy concerns have led to the development of robust
models with lesser risk of privacy breaches. Firstly, the paper
presents a comprehensive survey of existing techniques for tabular
data generation and evaluation matrices. Secondly, it elaborates
on a comparative analysis of state-of- the-art synthetic data
generation techniques, specifically CTGAN and TVAE for small,
medium, and large-scale datasets with varying data distributions.
It further evaluates the synthetic data using quantitative and
qualitative metrics/techniques. Finally, this paper presents the
outcomes and also highlights the issues and shortcomings which
are still need to be addressed.
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I. INTRODUCTION

Tabular Data made up of databases with tabular structures
consisting of rows representing observations and columns
representing features. In the digital era, “data” is considered as
“new water”. On the one side,compliance of privacy laws like
GDPA has imposed an obligation on organizations to secure
and protect private and sensitive data,while on the other side,
data acts as a fuel in the wide range of machine learning
applications like Cloud migration, Artificial Intelligence (AI)/
ML model training, application testing, simulation analysis,
data sharing, scientific trials, and new product development.
An innovation solution to address the issue is to generate the
synthetic data.

Synthetic data is an artificially generated data which car-
ries the same statistical properties (i.e. mean, median, mode,
correlation, regression, etc.). as the real data. Synthetic data
is useful where it is challenging to obtain and use real data
due to privacy concerns and difficulty in collecting real data,
augmenting small datasets, and range of machine learning
applications. Moreover, real data can be of types like tabular,
time-series, audio, video, medical images/ signals etc. Out of
these types, tabular data is the most commonly used form of
data and generation of synthetic data for it is still challenging
and requires to address the multiple constraints/ characteristics
of tabular data to produce quality synthetic data.

There are multiple constraints (multimodal, class imbal-
ance, non Gaussian data, learning from sparse one-hot-encoded
vectors, mixed data type) inherently present in the tabular
data that need to be addressed while generating its synthetic
counterpart. Along with these constraints, a feature has varying
characteristics. In this paper, tabular data features have been
categorized into four categories: continuous, categorical, mixed
type, and anonymized. Characteristics of each tabular data
feature are shown in Table I. Generation of synthetic tabular

TABLE I. DATA CHARACTERISTICS

Feature Type Details
Continuous Columns Gaussian Distribution

Multi-Modal Distribution
Long Tail Distribution

Categorical Columns Binary Categorical
Multiple Categorical

Mixed Type Columns Missing Values
A high-frequency finite value mixed
with other values

Anonymized Columns Unique Columns - Roll Number, Patient
ID, etc.
Non-Unique Columns - Name, Country,
etc.

data requires identification of the distributions of each feature
and simultaneously mapping the correlations present in the
data.

Broadly, there are two categories of models used to gen-
erate synthetic tabular data, namely, statistical or Probability
[4], [5] and machine learning [7], [8], [9], [10] methods based
models.

Probabilistic models have existed and are continually being
developed to generate synthetic data. But recent advancements
in deep learning-based generative models, especially GANs
[1], have made them state-of-the-art in the field of synthetic
data generation. Moreover, the existence of stricter privacy
laws and general awareness regarding user privacy have made
data sharing difficult. This has led to the development of
novel privacy-preserving mechanisms to ease the generation
and sharing of data. Differential privacy [2] has become the
gold standard in this domain. It uses randomized algorithms
[3] for the sanitization of sensitive information and also limits
the privacy risk of revealing sensitive information.

Besides the generation of synthetic data, robust evaluation
mechanisms [2], [11] are of equal importance. This paper
presents exciting methods for synthetic data generation and
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Fig. 1. Synthetic data generation techniques.

elaborates on evaluation mechanisms. This paper highlights
rigorous analysis to analyze the performance of the state-of-
the-art models for tabular data generation on varied nature
data. Presented is a rigorous comparative analysis of the state-
of-the-art models, namely, TVAE [12] and CTGAN [12] for
small-iris [13] and breast cancer [13], medium-adult [13] and
large-credit [13] datasets with comparative statistical scores
and visualization reports.

The structure of the paper is organized as follows: Section
II describes existing methods for synthetic data generation
extensively; Section III lists the techniques for evaluation of
generated synthetic data in detail; Section IV describes the
datasets, models, and evaluation metrices used in the research;
Section V provides an in-depth analysis of the results obtained;
and Section VI presents a short qualitative summary of the
proposed research in the conclusion.

II. EXISTING MODELS FOR SYNTHETIC TABULAR DATA
GENERATION

The existing models for generating synthetic tabular data
have been broadly classified into two categories namely, statis-
tical methods-based models [4], [5], [6] and machine learning-
based techniques [7], [8], [9], [10] as shown in the Fig. 1. This
section entails a detailed and comprehensive in-depth analysis
of each methods at hand.

A. Statistical Methods-based Models

Several statistical methods-based models [4], [5], [6] have
existed, and novel methods have been proposed to address
the task of synthetic data generation. One of the earliest
statistical techniques for synthetic data generation is Inverse

Transform Sampling [6] which involves sampling data from a
known data distribution for the random variable X. It gener-
ates independent univariate samples. Thereafter, a perturbation
technique involving fitting a multivariate Gaussian distribu-
tion on input data is introduced. The General Additive Data
Perturbation(GADP) technique [4] generated synthetic data by
adding a noise variable to the estimated distribution. Another
variant of GADP is the Dirichlet Multivariate Synthesizer [6]
which is based on Maximum Likelihood Estimation (MLE)
[14]. The problem with MLE is that the computation increases
exponentially as the number of variables increases. Apart from
these statistical methods, one of the most useful statistical
methods for synthetic data generation uses copulas. Details
of copulas are described in Sub-section II-A1

1) Copulas: A copula [15] is a mathematical function that
describes the correlation between the marginals of random
variables. This helps in identifying the multivariate joint distri-
bution for a set of random variables. A lot of research has been
done to identify the right parameters for the copula model and
the marginals. Based on these, several variants of copula have
been proposed. Gaussian Copula [5] is the most popular and
one of the very few copula functions available for modeling
the joint multivariate probability distribution. Apart from the
Gaussian Copula [5] and t-Copula [16] models for multivariate
distribution, Vine Copula [17] models have gained prominence
lately as a modeling method as they are built only on the
univariate and bivariate distributions. More recently, neural
network techniques are being incorporated to identify the right
set of parameters to construct a generic copula that models any
multivariate joint distribution [7].

a) MTCopula: Since Gaussian Copula [5] fails to ad-
dress the complex distributions of marginals and the joint
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Fig. 2. Proposed comparison model.

distribution, Benali et al. propose a novel MTCopula [6] which
involves parameter selection criteria for selecting the para-
metric marginal and multivariate copula functions based on
Akaike Information Criterion (AIC) [18]. The main drawback
of this approach is that it selects one of the existing parametric
marginals or parametric copulas. The complex distributions of
a random variable may not be exactly modeled by parametric
marginals. Moreover, it considers only Gaussian Copula [5]
and t-Copula [16] for the selection of multivariate copula
functions, and the complex relationships among the random
variables are not always captured by these two generic copula.

b) Vine copula: Vine copulas [17] are a special class of
copula models as they use bivariate distribution as the building
blocks for multivariate joint distribution [15]. This is achieved
by forming a vine-like structure, one node at a time. However,
with the increase in the number of variables, the number of
feasible configurations of a vine copula expands exponentially,
making model selection a significant development issue. This
problem is addressed by [9] using reinforcement learning and
selecting tree levels sequentially while using LSTM networks
[19] to learn from vine configurations.

B. Machine Learning Methods-based Models

Recent advancements in the development of generative
models [1] have transformed visual media-centric research to
new heights. The ability of generative models is now being
utilized to learn the complex relationships of tabular data
and generate similar synthetic data. The two most important
techniques using generative models are variational autoen-
coders [20] and generative adversarial networks [1], which are
discussed in the following section.

1) Bayesian Networks: Bayesian networks [21] are prob-
abilistic graphical models used to determine probabilistic
inferences between variables. They are frequently used in
computational systems biological method [22] to understand
the underlying biological relationships. Here, the dependencies
of variables are defined prior to training. This is also a major
drawback, as it requires prior information on the dataset.
Moreover, it becomes computationally expensive when dealing
with large and sparse datasets.

2) Variational Autoencoders: The architecture of VAEs
[20] consists of an encoder network and a decoder network.

The encoder takes real data as input and converts it into a
vector corresponding to a latent distribution. This vector is
served as an input to the decoder, which reconstructs the
real data that was served as an input to the encoder. On
training completion, the decoder network can now generate
new samples. The variational part brings randomness to this
process.

a) Differentially private autoencoder: [23] introduced
a novel differentially private autoencoder for synthetic data
generation.

b) TVAE: Xu et al [12] propose a novel VAE known
as TVAE for tabular data using two neural networks, one for
the encoder and the other for the decoder network, and train
them using Evidence Lower-Bound (ELBO) loss [24].

3) Generative Adversarial Networks: GAN [1] is based
on the adversarial training of the generator network and the
discriminator network, where the task of the generator is to
produce fake samples that closely resemble the real samples
while the discriminator tries to distinguish between the real
and fake samples. GANs also belong to a generative class
of models, but the key distinction between GANs and VAEs
is that in VAEs, the encoder sees the real data, while in
GAN, real data is not visible to the generator network. This is
particularly useful in privacy-oriented applications. Different
types of GANs are discussed below.

a) Non-Conditional GAN: GANs were first incorpo-
rated for synthetic tabular data generation in MedGAN [25],
Table-GAN [26] and TGAN [8]. Vanilla GAN [1] architectures
usually suffer from the problem of vanishing gradients, which
leads to mode collapse. This has led to the rise of several
variations of GAN architectures, such as WGAN, Wasserstein
GAN [27] and conditional GANs [28].

b) Conditional GAN: When allowing the GAN [1]
model to condition external information, it can generate sam-
ples by operating in different modes based on the contex-
tual information provided. Thus, conditional GAN [28] is an
extension of the GAN [1] architecture with the conditional
operation. The different variations of conditional GANs are as
follows.

• CTGAN [12] deals with problems like mixed data
types, multimodal distributions, and imbalanced cat-
egorical columns of tabular data extensively. For the
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problem of multimodal distribution in continuous data,
it fits a variational Gaussian Mixture Model [29].
Thereafter, a mode is sampled from the identifiable
modes, and the column is normalized based on the
probability density of the selected mode. For discrete
columns, one hot encoding is used.
The problem of adequately representing all the cat-
egories in the synthetically generated data is han-
dled using a conditional vector. Since the minority
category may not be adequately represented in the
synthetic data, instead of providing random noise to
the generator, it uses a conditional vector constrained
on each respective category to train the generator
and discriminator network. Finally, the discriminator
is trained using a sampling method based on the
conditional vector, i.e., sampling a row from the real
data constraining each respective category.

• CTABGAN Conditional Tabular GAN (CTAB-GAN)
[10] is based on the Convolutional Neural Network
with an additional classifier network based on a multi-
layer perceptron apart from the generator and discrim-
inator networks. It considers not only continuous and
categorical variables but also a third class of variables
known as mixed variables and also deals with variables
with long-tail distributions. Zhao et al. proposed an
advanced version of CTABGAN, CTABGAN+ [30]
using Wasserstein loss [27] with gradient penalty and
training with differential privacy stochastic gradient
descent to ensure strict privacy guarantees.

• DATGAN [31] proposes DATGAN which is a novel
architecture based on GAN using Directed Acyclic
Graphs (DAGs) to model the information about the
dataset. It uses LSTM cells to model expert knowledge
using DAG.

c) GAN with Differential Privacy: Jordan et al. [32]
apply Private Aggregation of Teacher Ensembles (PATE) [33]
to the GAN model so as to obtain a generative model with tight
differential privacy guarantees. Xie et al. [34] add noise to gra-
dients to achieve differential privacy with GANs. Evaluation
techniques that are utilized to assess the quality of generated
synthetic data are explained below.

III. EVALUATION TECHNIQUES

Synthetic data generation not only focuses on generation
algorithms but also on robust evaluation mechanisms that can
highlight the quality of generated synthetic data. To this end,
evaluation mechanisms are classified into broadly three cate-
gories (quantitative, qualitative, and machine learning utility),
highlighting each unique aspect of synthetic data. Further
explanation is provided on these categories along with privacy
preservability and differential privacy.

A. Quantitative Statistical Similarity Measures

Ideally, the generated synthetic data should have the same
statistical properties as the real data. To ensure this, several
statistical tests and metrics were compared to the synthetic
data with real data.

1) Kolmogorov-Smirnov Test: To measure the similarity
between the data distribution of continuous columns in real
data and the generated synthetic data, the two-sample In-
verted Kolmogorov-Smirnov test [35], commonly referred to
as KSTest, is utilized. The p-value and D statistic obtained rep-
resent the similarity between the column distributions. For the
whole dataset, a mean of the D statistic is obtained considering
all the continuous columns, and then it is subtracted from 1 to
obtain the final score. The D statistic can be computed using
the following equation:

Dm,n = max|F (x)−G(x)|. (1)

where F (x) is the cumulative distribution function of the
first sample with size m and G(x) is the cumulative distribution
function of the second sample with size n.

2) Chi-Square Test: Similarly, for discrete data, the Chi-
Square Test [36] is used. After applying it to all the discrete
columns in the data, an average of the score is obtained.

χ2 =
∑ (Oi − Ei)

2

Ei
(2)

where χ2 = Chi Squared statistic, Oi = Observed value,
Ei = Expected value

3) Wasserstein Distance: Also known as Earth Mover dis-
tance [37], it intuitively defines how much quantity should be
transported from x to y to transform a probability distribution
from PA to PB .

W := W (FA, FB) = (

∫ 1

0

|(F−1
A (u)− F−1

B (u)|2 du) 1
2 (3)

Where, F−1
A and F−1

B are the corresponding quantile functions,
and FA and FB are the associated cumulative distribution
functions (CDFs).

4) Kullback-Leibler Divergence: Finally, the third metric
considered for quantifying the difference between the two
probability distributions is the Kullback-Leibler divergence
[11] or KL divergence, encompassing both the continuous and
discrete variants. For discrete probability distributions P and
Q:

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)
(4)

For probability distributions P and Q of continuous variable:

DKL(P ||Q) =

∫ ∞

−∞
P (x)log

P (x)

Q(x)
dx (5)

B. Qualitative Visualization Techniques

Apart from the above-mentioned quantifiable measures,
data visualization methods are useful for analyzing the qual-
ity of synthetic data. Of these, probability distributions for
univariate and bivariate analysis and correlation heatmaps for
multivariate analysis provide deep visual insights into the
quality of the generated synthetic data.
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C. Machine Learning Utility

One important aspect of the task of synthetic data gener-
ation is to produce synthetic data that has approximately the
same machine-learning utility as the real data. Without any
utility, the generated synthetic data might not be of any value.

D. Privacy Preservability

This is one of the most important aspects in the task of
synthetic data generation, considering the present scenario.
Strict laws (e.g., the European General Data Protection Regu-
lation [38]) and privacy concerns play a major role in sharing
sensitive data. To address these, various mechanisms have been
proposed to ensure data privacy. These can be classified into
two major techniques: distance-based metrics (DCR (Distance
to Closest Record) [30] and NNDR (Nearest Neighbour Dis-
tance Ratio) [39], and differential privacy mechanisms.

1) DCR: A synthetic record’s Euclidean distance from its
nearest real neighbour is measured by DCR [30]. Ideally, the
chance of a privacy breach decreases as DCR increases.

2) NNDR: The NNDR [39] measures the ratio between the
Euclidean distance for the closest and second-closest actual
neighbours to any matching synthetic record, as opposed to
just measuring the closest neighbour. This ratio falls between
0 and 1. Better privacy is indicated by higher values. Sensitive
information from the nearest real data record may be revealed
by low NNDR values between synthetic and real data.

E. Differential Privacy

By reducing the impact of each data point based on a
predetermined privacy budget, Differential Privacy [2] defends
against privacy assaults. Renyi Differential Privacy (RDP) is
used by Zhao et al. [30]. Because it sets more stringent
limits on the privacy budget. RDP offers tighter limitations
for tracking the cumulative privacy loss through a series
of mechanisms using the composition theorem, making it a
strictly stronger privacy definition than DP.

Up to this point, elaboration has been provided on ex-
isting methods for synthetic data generation and evaluation
metrics for analyzing the quality of the generated data. The
next section delves into the methodology for designing and
implementing the comparison model.

IV. METHODOLOGY FOR COMPARISON MODEL

Comparing and analyzing two state-of-the-art synthetic
tabular data generation techniques, namely, TVAE [12] and
CTGAN [12], Four datasets were explored of varying sizes,
data features, and characteristics. For qualitative analysis, a
selection of three statistical metrics is made, which are then
implemented and analyzed across both models using varying
batch sizes (20, 50, 100, and 300) and epochs (100, 200, 500,
and 5000). Additionally, a visualization report is generated
using probabilistic distribution and correlation heatmaps for
variables in the datasets.

The process flow highlighting each component in the
proposed comparison model is shown in Fig. 2. It lists four real
datasets to be used, which train the two models, TVAE [12]
and CTGAN [12]. The trained models then generate synthetic

samples for each dataset individually. Finally, this synthetic
data, along with real data, is used to prepare an evaluation
report that highlights quantitative statistical metrics and a
qualitative visualization report depicting feature distributions
and correlations for synthetic as well as real data. Further
subsections describe the datasets (Section IV-A), algorithms
(Section IV-B), and evaluation metrics (Section IV-C) used
to design and implement the proposed comparison model in
detail.

TABLE II. DATASETS DETAILS

Category Name Total Fea-
tures

Total
Records

Feature Distribu-
tion

small iris 6 150 (5 continuous, 1
discrete)

breast
cancer

33 569 (32 continuous, 1
discrete)

medium adult 15 32561 (6 continuous, 9
discrete)

large credit 31 284807 (30 continuous, 1
discrete)

TABLE III. CREDIT SAMPLE

Total
Records

Class 0
Class
1

% Class
0

% Class
1

Real 284807 284315 492 99.8273 0.1727
Sample
(15%)

42721 42647 74 99.8268 0.1732

A. Datasets

Datasets were categorized based on their size into three
broad categories: small (iris [13] and breast-cancer [13]),
medium (adult) [13] and large (credit). Four standard datasets
were considered in different domains with varied sizes and
a mix of different variable types. The extensive diversity of
the datasets is reflected in Table II. Table II shows the total
features and their distribution as continuous or discrete features
and complete records for each dataset. Moreover, for the large
dataset, credit, approximately 280,000 records are available.
A 15% sample of the original dataset is taken, as illustrated
in Table III. Due to the high imbalance in the credit dataset,
with just 0.173% of samples belonging to Class 1, the same
imbalance ratio is maintained in the sample.

B. Models and Algorithms

Two state-of-the-art machine learning algorithms are com-
pared across four different datasets. TVAE [12] and CTGAN
[12] models are employed for all datasets, with hyperparameter
tuning conducted for each. Hyperparameters are optimized
based on the size of the dataset, as detailed in Table IV, Table
V, Table VI, and Table VII.

C. Evaluation

Three quantitative statistical evaluation metrics were used,
Chi-Square (CS Test), Inverted KS D Statistic (KS Test), and
KL Divergence (KLc for continuous and KLd for discrete) for
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Fig. 3. Iris: Species Distribution.

Fig. 4. Real Iris.

each category of the data, continuous or discrete (as applica-
ble). Moreover, univariate distributions, bivariate distributions,
and correlation heatmaps are utilized for qualitative data anal-
ysis through visualization. Categorical distributions for the Iris
dataset are represented using histograms, as illustrated in Fig.
3. Further elaboration on these evaluation metrics can be found
in Section III.

V. RESULTS AND ANALYSIS

To analyze the results, the proposed comparison model was
implemented in Python using its ML libraries. Details of the
implementation environment are provided in Table VIII. TVAE
[12] and CTGAN [12] models were implemented, trained for
four datasets as explained in Subsection IV-A, and evaluated
using three metrics outlined in Subsection IV-C, with variations
in batch size and epochs, as shown in Table IV, Table V,
Table VI, and Table VII. Statistical and visual observations
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Fig. 5. CTGAN Iris.

were recorded, and the results were rigorously analyzed. This
analysis will present the suitability as well as limitations of
TVAE [12] and CTGAN [12] under varied and diversified
features of the datasets, as shown in Table II.

In most of the cases, it appeared that the variational
autoencoder-based TVAE [12] outperformed CTGAN [12],
reflected by the higher KL divergence score, meaning a closer
resemblance of the synthetic data distribution to the real data
distribution. But the major advantage of the GAN [1] based
model is the more effective privacy-preserving mechanism
since the generator is unaware of real data values. These
observations are rigorously analyzed in Subsection V-A and
Subsection V-B.

A. Statistical Measures: Quantitative Evaluation

Based on the categories of the datasets, small, medium, and
large, Batch sizes of the dataset were varied and described the
statistical metrics obtained as follows.

For small datasets, iris and breast-cancer, the batch size is
varied between 20, 50, and 100. Also, for small datasets, deep
learning methods are more useful when training is done for
longer periods of time, i.e., for larger epochs. Testing of this
was done by training the data for 100, 500, and 5000 epochs,
respectively.

From Table IV and Table V, observations were made that
the KL divergence score is best for both iris and breast-cancer
for the optimum value of 5000 epochs with a batch size of 50.
This is true for the synthetic data generated using both TVAE
[12] and CTGAN [12]. Another important observation from
Table V is that change in the number of epochs and batch
size did not have a significant influence on TVAE [12] while
increasing the number of epochs for CTGAN [12] significantly
increased all three metrics that were considered.

For the medium sized adult dataset, the batch size was
increased to 300, and training was conducted for 200 and
300 epochs. Similar values were obtained for all metrics, as
depicted in Table VI, with minimal significance observed in
changing the epochs.

The credit dataset is sampled, preserving the minority-
majority class ratio. The results obtained for a batch size of
300 and 200 epochs are shown in Table VII. The experiment is
repeated three times, and the mean of all the values is shown
in Table VII.

B. Visualization Analysis: Quantitative Evaluation

Apart from the statistical metrics, a visualization report
with univariate and bivariate distributions and correlation
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Fig. 6. Categorical distribution of real vs synthetic data.

heatmaps to study the similarity between real data and syn-
thetic data for all four different sizes of datasets, namely, small
(iris [13] and breast-cancer [13]), medium (adult) [13] and
large (credit) was generated.

1) Probability Distributions: The univariate and bivariate
distributions of variables based on the species type for the
iris dataset were depicted in Fig. 4. Similar distributions are
displayed for the synthetic version with the highest metric
values for CTGAN [12] to analyze the statistical similarity, as
shown in Fig. 5. Due to space constraints, only the distributions
and heatmaps with the best statistical scores for synthetic data
are presented. The distribution of the target variable “Species”
is separately shown for real and synthetic data in Fig. 6. For the
breast-cancer dataset, CTGAN [12] is good at capturing multi-
modal distributions, as can be seen from Fig. 7. Univariate
probability distributions for real and synthetic data (CTGAN)
are shown in Fig. 7.

From Fig. 9 and Fig. 10, a comparative visualization
of univariate and bivariate plots of numerical features for
the real adult dataset and the synthetically generated dataset
using CTGAN [12] is provided respectively. Additionally,

the categorical histograms of the same real and synthetically
generated data using CTGAN [12] are also depicted in Fig.
6. The categorical data histograms reflect the capability of the
model to learn the minority and majority category distributions
in a precise way.

Also, based on the univariate distributions obtained for the
real and synthetic data as shown in Fig. 8, few observations
that were made are:

The use of the variational Gaussian mixture model in CT-
GAN [12] oftentimes unnecessarily identified multiple modes
as can be seen from the distribution plots of “V11”, “V12”,
“V14”, “V16” and “V17” in Fig. 8.

Modeling mix-type variables such as “Amount” and “V28”
was a challenging task for both TVAE [12] and CTGAN [12]
as the distribution got centered around zero, while a large
number of finite values were not adequately represented.

Both TVAE [12] and CTGAN [12] failed to effectively
capture and model the problem of class imbalance. As shown
in Fig. 11, while TVAE [12] was unable to capture the minority
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Fig. 7. Data Distribution: Breast Cancer - Real vs Synthetic (CTGAN).

class, CTGAN [12] oversampled the minority class in synthetic
data, overriding the imbalance ratio.

Lastly, tuning the hyperparameters accordingly for each

Fig. 8. Data Distribution: Credit - Real vs Synthetic.

dataset improved the quality of the generated synthetic data
for both TVAE [12] and CTGAN [12]. Thus, even high-
dimensional data with complex relationships can be effectively
modeled using generative models for synthetic data generation.
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Fig. 9. Real Adult.

Fig. 10. CTGAN Adult.

2) Correlation Heatmaps: For the iris dataset, one obser-
vation worth mentioning is that the first row and first column
of the synthetically generated data in the heatmap (Fig. 12) as
well as the distributions in Fig. 5 did not correspond well with
their real counterparts. This is because one of the features in
the first row and the first column is the “Id” field, which served

TABLE IV. IRIS

Metric Batch
Size

Epochs TVAE CTGAN

CS Test 20 100 0.989522 0.999467
500 0.997869 0.997204
5000 0.996406 0.985703

50 100 0.968894 0.992429
500 0.985703 0.979415
5000 0.997 0.997

100 100 0.994283 0.999067
500 0.986755 0.992429
5000 0.983603 0.996274

KS Test 20 100 0.86533 0.706667
500 0.941333 0.88000
5000 0.950667 0.90000

50 100 0.829333 0.714667
500 0.896000 0.852000
5000 0.949 0.908

100 100 0.878667 0.730667
500 0.905333 0.842667
5000 0.910667 0.88000

KLc 20 100 0.251850 0.113536
500 0.307945 0.185478
5000 0.384911 0.258259

50 100 0.227984 0.114429
500 0.311331 0.171203
5000 0.375 0.266

100 100 0.282140 0.118934
500 0.262064 0.140582
5000 0.338058 0.209723

TABLE V. BREAST CANCER

Metric Batch
Size

Epochs TVAE CTGAN

CS Test 50 100 0.953622 0.991299
500 0.953622 0.947832
5000 0.944939 0.994

100 100 0.852929 0.976801
500 0.979700 0.976801
5000 0.997100 0.988399

KS Test 50 100 0.844492 0.671183
500 0.887239 0.706729
5000 0.881966 0.863

100 100 0.821475 0.666194
500 0.894042 0.719315
5000 0.884914 0.850728

KLc 50 100 0.697478 0.364236
500 0.694817 0.389121
5000 0.700066 0.560

100 100 0.710529 0.365040
500 0.706662 0.359388
5000 0.687059 0.544663

as the primary key. Its value has no intrinsic worth and is just
used to distinguish each record. Hence, its correlation is not of
much value. On a similar note, for the breast cancer dataset,
correlation heatmaps were obtained as shown in Fig. 13 and
Fig. 14 which show that the correlation of continuous columns
for adult dataset is effectively captured by CTGAN [12] while
from Fig. 15, observations were made that the CTGAN [12]
extrapolated correlations for the credit dataset.

The analysis of correlation heatmaps for various datasets
clearly shows that the complex relationships among the data
features are effectively captured by the generative model
CTGAN [12] when training is fine-tuned with optimum hy-
perparameters for each dataset.

VI. CONCLUSION

The paper presents a comprehensive overview of synthetic
data generation and evaluation techniques and performs a
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Fig. 11. Credit class imbalance.

Fig. 12. Correlation Heatmap of Real (LHS) vs Synthetic (CTGAN)(RHS): Iris.

TABLE VI. ADULT

Metric Batch
Size

Epochs TVAE CTGAN

CS Test 300 200 0.986172 0.982407
300 0.990 0.982

KS Test 300 200 0.845557 0.891655
300 0.855 0.886

KLc 300 200 0.866789 0.917393
300 0.935 0.935

KLd 300 200 0.942063 0.860879
300 0.951 0.858

rigorous analysis of small, medium, and large-scale synthetic
data generated using two state-of-the-art generative models,
TVAE and CTGAN. The choice of hyperparameters greatly
influenced the quality of synthetic data. Small datasets (iris and
breast cancer) required longer training periods for generating
statistically similar synthetic data. Preserving univariate and
bivariate distributions as shown in Fig. 4, Fig. 5, Fig. 6, Fig.
7, Fig. 8, Fig. 9 and Fig. 10 and multivariate joint distributions

TABLE VII. CREDIT

Metric Batch
Size

Epochs TVAE CTGAN

KS Test 300 200 0.684782 0.656325
KLc 300 200 0.854645 0.632121

TABLE VIII. IMPLEMENTATION ENVIRONMENT

Language Python (version 3.11.0)
Tool VS Code, Google Colaboratory
Libraries Pandas, NumPy, Scikit Learn, Matplotlib, Seaborn,

SciPy and SDV

as shown in Fig. 12, Fig. 13 and Fig. 14 are achieved for small
(iris and breast cancer), medium (adult) and large (credit)
datasets using generative models. There is scope in the future
to train large imbalanced datasets more rigorously and for more
iterations with different parameters on high-end computational
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Fig. 13. Correlation Heatmap: Real (LHS) vs Synthetic (CTGAN)(RHS) - Breast Cancer.

Fig. 14. Correlation Heatmap of Real (LHS) vs Synthetic (CTGAN)(RHS) data: Adult.

systems. While results for TVAE outperformed CTGAN for
all four datasets by varying margins, as reflected by the
KL Divergence score, CTGAN is the preferred method for
generating privacy-preserving synthetic data due to its agnostic
nature to real data values.

In this paper, the data on statistical metrics were evaluated,
and a visualization report was presented to extensively analyze
the synthetic data. The results not only highlighted the quality
of synthetic data but also mentioned the shortcomings and
caveats in the existing methods, which would open further
dimensions in the line of research.
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