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Abstract—Sign language recognition can be considered as a
branch of human action recognition. The deaf-muted community
utilizes upper body gestures to convey sign language words. With
the rapid development of intelligent systems based on deep learn-
ing models, video-based sign language recognition models can be
integrated into services and products to improve the quality of
life for the deaf-muted community. However, comprehending the
relationship between different words within videos is a complex
and challenging task, particularly in understanding sign language
actions in videos, further constraining the performance of pre-
vious methods. Recent methods have been explored to generate
video annotations to address this challenge, such as creating ques-
tions and answers for images. An optimistic approach involves
fine-tuning autoregressive language models trained using multi-
input and self-attention mechanisms to facilitate understanding
of sign language in videos. We have introduced a bidirectional
transformer language model, MISA (multi-input self-attention),
to enhance solutions for VideoQA (video question and answer)
without relying on labeled annotations. Specifically, (1) one
direction of the model generates descriptions for each frame of the
video to learn from the frames and their descriptions, and (2) the
other direction generates questions for each frame of the video,
then integrates inference with the first aspect to produce questions
that effectively identify sign language actions. Our proposed
method has outperformed recent techniques in VideoQA by
eliminating the need for manual labeling across various datasets,
including CSL-Daily, PHOENIX14T, and PVSL (our dataset).
Furthermore, it demonstrates competitive performance in low-
data environments and operates under supervision.
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I. INTRODUCTION

According to the National Disability Survey at the end
of 2016 and the beginning of 2017 (VDS2016), Vietnam has
approximately 6.2 million persons with disabilities (PWDs),
including around 2 million persons with speech and hearing
impairments [1]. Hearing and speech are innate faculties
possessed by most individuals. However, a significant portion
of the population lacks these faculties and faces challenges in
interpersonal communication. According to the World Health
Organization, an estimated 70 million individuals worldwide
are affected by deafness and muteness, with a total of 360
million individuals experiencing some form of hearing impair-
ment, among whom 32 million are children. Deaf-muted chil-
dren often encounter significant challenges in accessing public
services such as education and healthcare. Mainly, educational
programs not explicitly designed for deaf-mute children can
impede their development compared to the normal ones.
Advanced technologies are becoming increasingly prevalent

in enhancing our quality of life. The deaf-mute community,
especially children, can benefit from these rapid developments.
Establishing a sign language recognition model to support the
deaf-mute community in learning and communication would
be a significant step towards bridging the gap between them
and the external world. This sign language recognition model
can be integrated into applications to assist them in accessing
public services and daily communication. Additionally, it can
aid family members in learning sign language to communicate
with their deaf-mute relatives [2].

In recent years, multi-input and self-attention mechanisms
have garnered significant attention in the computer vision
community. Convolutional Neural Networks (CNNs) [3] have
been widely applied in image recognition [4], semantic seg-
mentation [5], and object detection [6], [7], achieving high
performance across various evaluation metrics. The integration
of Multi-input [8] into CNNs has dramatically improved both
accuracy and speed, as it enables the model to learn better
features. On the other hand, the self-attention mechanism [27]
was first introduced as an effective solution to natural language
processing tasks. Subsequently, this mechanism was applied to
deep learning models for the computer vision domain with
promising results. Recently, with the emergence of Vision
Transformer [10], the attention mechanism has even achieved
higher efficiency than CNN models in some vision tasks.
While both approaches have demonstrated significant success
independently, they consist of separate architectures for various
tasks, with minimal integration for sign language recognition.
The multi-input methodology leverages various input perspec-
tives to construct synthesized functions for feature extraction
from each input [11], including RGB images, blurred images,
and binary images. In contrast, self-attention modules utilize
input features to construct attention functions among intercon-
nected pixels [12], prioritizing different regions and capturing
more precise feature information within the image. Integrating
these two approaches could be a viable solution for the sign
language recognition problem. The strength of the combination
is that it would significantly enhance the performance of sign
language recognition.

This paper aims to explore a more integrated relationship
between Multi-input and Self-attention modules in recogniz-
ing sign language words. By segmenting the tasks of each
module and subsequently amalgamating them into a unified
framework, we develop a cohesive model called MISA, which
merges Multi-input and Self-attention techniques to enhance
efficiency and reduce computational time in addressing sign
language recognition challenges. We initially apply the Multi-
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input module to project the input image and extract a com-
prehensive set of intermediate features to achieve this. These
features are then synthesized and employed within the Self-
attention module. Through this integration, the MISA model
harnesses the strengths of both modules and proves effective
in prediction tasks. Additionally, we construct a PVSL dataset
consisting of videos of sign language problems. The videos
were collected by setting up a camera system to capture the
upper body of individuals while performing sign language
gestures.

In summary, our contributions are as follows:

• New dataset: We published PVSL, a new dataset of
Vietnamese sign language in the form of videos.

• Novel model: We proposed a novel model, MISA,
combining two modules, Multi-input and Self-
attention.

• Analysis and evaluation: We evaluated our model on
two public datasets and PVSL.

The remainder of this paper is structured as follows: Sec-
tion II discusses relevant previous studies. Section III presents
our method. Section IV gives the experimental evaluation.
Finally, Section V provides some concluding remarks and a
brief discussion.

II. RELATED WORKS

A. Multi-input Learning

Multi-input aims to process information from images and
natural language [13], [14] to train feature sets and learn their
representations. This approach has shown promising results
across various tasks on multi-source datasets. The success of
this approach has also motivated numerous research teams to
develop and train multi-input transformer models alongside
vision-based models concurrently [15], [16], [17], [18]. How-
ever, these studies frequently rely on learning representations
of vision-based or natural language-based data through weight
updates. Subsequently, a supervised learning model that can
be resource-intensive is constructed [19], [20] for dealing
with various tasks from videos [21], [22]. On the contrary,
our approach entails automatically generating annotations for
frames in videos to facilitate comprehension. Moreover, our
model can learn global weights, eliminating the need for
frequent weight updates during training from multi-input, thus
demonstrating the benefit of learning these global weights after
pre-training and efficiently training a supervised model for sign
language recognition.

B. Learning with Attention Models

The self-attention mechanism has been widely used in
recent deep learning models due to its ability to handle
long-range dependencies in computer vision tasks [23], [24].
Transformer models, which utilize self-attention, have emerged
to solve various computer vision tasks such as image pro-
cessing and pattern recognition [25], [26]. Numerous atten-
tion mechanisms have been proposed to improve the object
recognition model’s performance in images and videos. As
a result, numerous research studies have employed attention
modules or leveraged multi-channel information to aggregate

image features. In particular, [29], [30], [31] have employed
channel-wise attention re-calibration, while the research of [32]
have re-calibrated both channel and spatial positions to refine
feature maps. [33] has extended the number of convolutional
layers with attention map blocks to create distinct independent
pipelines. [34] has replaced convolutional operations with self-
attention mechanisms in the final stages of the model. Overall,
studies have alleviated the local limitations of conventional
convolutional networks by incorporating self-attention neural
networks.

C. Discussion

In general, studies on multi-input primarily focus on the
premise that adding more inputs enhances processing speed
and increases model storage memory. Therefore, our research
team combined multi-input with an attention model to focus on
important input features among a multitude of inputs, thereby
improving model accuracy and computational speed.

III. MATERIALS AND METHODS

A. PVSL Dataset

The PVSL dataset, depicted in Fig. 1, was created to offer
the research community a diverse collection of sign language
words that are relevant for both research and real-world
applications. The dataset is designed to include sign language
words commonly used by the deaf-mute community in their
daily lives, covering topics such as family communication,
educational settings, healthcare, shopping services, and daily
communication.

We have involved the participants of the deaf-mute commu-
nity during dataset collecting periods. The participants include
sign language experts, teachers, and students learning sign
language at special schools. The participants were asked to
perform a set of pre-defined sign language words in front of
a camera. They must express sign language words naturally,
as they use them daily. Before data collection, we provided
training to ensure their understanding through experts and
guiding teachers, thus ensuring the accuracy and quality of the
PVSL dataset. Video data were collected from 12 participants
performing sign language gestures. All participants understood
sign language, including five who were deaf-mute. Videos were
captured at a resolution 1920x1080 with a frame rate of 30
FPS. The video frames were carefully trimmed at the beginning
and end to represent a sign language word accurately. The
detailed statistics of the dataset are presented in Table I.

B. Model Description

Our proposed MISA architecture, illustrated in Fig. 2, is
designed to combine several parallel language models with
a pre-trained image recognition model. The key challenge is
to establish a connection between images and text captions
to generate a multimodal interpretation that supports sign
language recognition. To overcome this challenge, we have
integrated two models: an image-to-text projection model and
a language model that facilitates sign language recognition. We
will now provide a detailed description of our model, outlining
the three architectural components: (i) A language model for
learning text features, (ii) An image-to-text transfer model, and
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Fig. 1. The illustrative images of the PVSL dataset depict variations in lighting conditions, different backgrounds, and signers with diverse appearances.

TABLE I. OVERVIEW OF WORD-LEVEL DATASETS IN OTHER LANGUAGES

Dataset #Signs #Videos #Signers Type Sign Language
CSL-Daily [14] 1,066 8,257 9 RGB Chinese

PHOENIX14T [37] 2,000 20,654 10 RGB German
PVSL (our dataset) 50 5068 12 RGB Vietnamese

(iii) A model that merges the two aforementioned components
(i) and (ii) into a prediction model.

The language processing model: We use a Transformer-
based encoding scheme to encode textual information in this
model. To do this, we first tokenize the text into vocabu-
lary units and then into token sequences x. Subsequently,
we embed these tokens into a D-dimensional space, which
captures contextual information (as shown in Eq. 1). These
token embeddings are then mapped with a mask to help
classify words based on their distributional properties. This
model plays a crucial role in helping us understand information
from videos that support sign language recognition.

e = WordEmbedding(x) (1)

The video processing model: The video is divided into
frames, denoted by f = fi

T
1 . Each frame is then processed by

an encoder to generate feature vectors, v = vi
T
1 , using Eq. 2.

We use the ViT encoder [10] with a resolution of 224x224 per
frame. Additionally, we incorporate a mapping between images
and image descriptions obtained from over 300 million image-
text pairs crawled from the internet. The encoder’s parameters
remain fixed throughout the experimentation process.

v1:T = Encoder(f1:T ) (2)

The integration of Language Processing Model and Video
Processing Model: The video features are turned into short
answer sentences using a language model. These answers
are obtained by mapping video features linearly through an
image-to-text projection. The answers are then combined with
previous texts and passed through the Transformer encoder to

improve sign language recognition results. In the Transformer
encoder section, we merge the question with the answer to
enhance the accuracy of sign language recognition on the
video. To achieve this, the model learns strong multi-modal
interactions while maintaining the Transformer’s encoding
weight sets. We normalize the preceding layer before passing it
through the self-attention layer, and each layer is directly fed
into the pre-encoder Transformer. As a result, the accuracy
of sign language recognition on the video is significantly
improved.

C. State Space Model (SSM)

The Structured State-Space Model (SSM), as shown in
Fig. 3, is a new type of sequence model in deep learning. It
encompasses recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and classical state-space models
combined with self-attention. These models are inspired by
a continuous system that maps a function or one-dimensional
sequence, xt ∈ R, to yt ∈ R, using an unknown hidden state
ht ∈ RN .

The structure of SSM independently maps each channel
(e.g., D = 5) of the input x to the output y through hidden states
of higher dimension h (e.g., N = 4). Previous SSMs avoided
realizing this large effective state (DN, multiplied by the batch
size B and sequence length L) through intelligent alternative
computational paths that require time-invariant parameters that
remain constant over time.

D. Loss Function

In the previous section, we discussed training a model
for sign language recognition. This is a difficult task be-
cause generating answers from videos is not a straightforward
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Fig. 2. The framework of the proposed MISA.

Fig. 3. Structured State Space Models (SSMs).

process, and real-world data can be hard to recognize. To
tackle this challenge, we used image-answer pairs from the
internet, which are relatively easy to collect and incorporate
into training. We trained the model using the parameters of
the image-to-text projection model and the combined and
coordinated model. To achieve this, we used a language model
objective function with a masked image. In this function, xm

represents segments of masked text that need to be predicted,
and the model must predict these segments along with the
corresponding image content. In terms of computation, we
constructed the loss function L(x, y) as follows Eq. (3):

L(x, y) = − 1

N
logp(x̂, y)xm

m (3)

where x̂ is the text-encoded sequence from the question, y
is the video frame sequence, p(x̂, y)xm

m is the probability for
the m-th token (masked) in x to be xm, and N is the number
of masks in the x̂ sequence.

IV. EXPERIMENTS

A. Experimental Setup

MISA model: We employed a parallel language model
with 370 million parameters, Mamba [35], trained with the
MLM objective on a 160G text corpus and tokenized using
SentencePiece [36] with a vocabulary size of V = 128,000.
The input of the MISA model consists of a question about
sign language recognition and a video. The task is to find
the correct answer from a vast vocabulary set A comprising
approximately 2,000 answers. The answers are all concise,
meaning that most answers consist of only one or two words of
sign language recognition. A token [CLS] and a token [SEP]
are added respectively at the beginning and end of each text
sequence. Meanwhile, [MASK] represents the sign language
word being sought. We design the following prompt:
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“[CLS] Question: <Question>? Answer: The action of
sign language is <Answer Candidate> [MASK]. Subtitles:
<Subtitles> [SEP]”

Datasets:To conduct our training, we utilized the publicly
available WebVid10M dataset [42], comprising 10 million
pairs of video-text, where video annotations are derived from
available alternative descriptions. Additionally, we generated
20 thousand pairs of video-text from two datasets: CSL-Daily
[14] and PHOENIX14T [37] leveraging Image Captioning
technology [38]. We evaluated the outcomes on a subsequent
dataset encompassing various text and video domains, namely
PVSL (our dataset).

Evaluation Metric: We use Word Error Rate (WER) as the
evaluation metric, as shown in Eq. 4. Note that the lower WER,
the better accuracy.

WER =
sub+ ins+ del

ref
(4)

In which, sub represents substitution, ins represents inser-
tion, and del represents deletion. These operations are essential
for transforming the predicted sentence into the reference
sentence. Hence, ref denotes the reference sentence.

B. Experimental Results

Our empirical study in this subsection is designed to answer
three key research questions (RQs).

• RQ1. How does the MISA model improve the per-
formance of sign language recognition compared to
current state-of-the-art methods?

• RQ2. How does each scenario in MISA contribute to
correct deep learning?

• RQ3. How can deep learning (DL) be visualized,
including t-SNE plots of features and distribution plots
of predicted scores from the MISA model?

1) Comparison With State-of-the-Art Approaches (RQ1):
Table II compares our MISA model and other state-of-the-
art methods comprehensively. We evaluated five different
methods for the sign language recognition task on videos.
Our observations indicate that MISA outperforms other state-
of-the-art methods across all three datasets. This superior-
ity is achieved through the attention mechanism within the
MISA model, which focuses on the different body gestures
of participants. The ability to reduce noise between frames
in the video through a propagation or selective forgetting
mechanism along the sequence length also contributes to
this outperformance. Additionally, MISA demonstrates faster
processing speed compared to competitive methods due to
its rapid inference capability (processing speed up to five
times faster than the traditional Transformer model) and linear
scalability with sequence length. The MISA model exhibits
significant performance improvements on real-world datasets,
even on longer sequences, without incurring additional training
costs.

2) Applicability to Fringe Scenarios (RQ2): We initialize
the parameter set from a pre-trained language model and fine-
tune it with the scenarios outlined in Table III. We have
observed that leveraging pre-trained weights from previous
successful language models plays a crucial role in our proposed
architecture. The model initialized solely for video recognition
of sign language (line 1 - the first scenario) exhibits inferior
performance compared to the model initialized with combined
weights (lines 2 and 4). Notably, the model trained in the
second scenario, combining the language and video processing
models, outperforms the variant in the third scenario and falls
slightly behind the fourth scenario. This observation suggests
that integrating video and text as input for the model can yield
significant effectiveness. Additionally, the combination in the
third scenario (line 3) demonstrates favorable outcomes when
integrating the video processing model with the state space
model. Ultimately, our proposed MISA model (line 4 - the
fourth scenario) illustrates that amalgamating multi-input and
self-attention in the state space is the most effective approach
for video sign language recognition.

3) Qualitative Study (RQ3): In order to showcase the
effectiveness of our method, we used t-SNE [43] to create
a visualization of the recognition results obtained from the
MISA model on the PVSL test set. The original data from the
test set was processed through the MISA model to create a
new data dimension. The feature vector size, in our case, was
12288. Next, the data was passed through the MISA model
corresponding to the 50 primary training labels, after which
t-SNE was used to project and visualize the reduced features
in a 2D space. The resulting Fig. 4 provides strong evidence
of the superior performance of the combined features with our
MISA model.

V. CONCLUSIONS

This paper introduces the MISA model, a framework for
extending the language model that combines multi-data and
self-attention in the state space model (SSM). We trained this
model on our self-collected dataset PVSL and data collected
from multiple sources. We aimed to address the sign language
recognition problem for the deaf-mute community in the
context of Video Question Answering (VideoQA). We also
conducted an in-depth analysis to demonstrate the effectiveness
of our MISA model, which enhances accuracy on three popular
sign language datasets.

However, our study has some limitations. First, MISA is
quite large, making it impractical for deployment on mo-
bile devices. Second, our model is unable to handle videos
with multiple individuals performing sign language. In the
future, we aim to enhance the model’s efficiency based on
unsupervised learning and implement dimensionality reduction
methods for video data, which will enable better learning and
higher-quality results.
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