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Abstract—The research tackles the complex problem of 

accurately predicting cooling loads in the context of energy 

efficiency and building management. It presents a novel 

approach that increases the precision of cooling load forecasts by 

utilizing machine learning (ML). The main objective is to 

incorporate a hybridization strategy into Radial Basis Function 

(RBF) models, a commonly used method for cooling load 

prediction, to improve their effectiveness. This new method 

significantly increases accuracy and reliability. The resulting 

hybrid models, which combine two powerful optimization 

techniques, outperform the state-of-the-art approaches and mark 

a major advancement in predictive modelling. The study 

performs in-depth analyses to compare standalone and hybrid 

model configurations, guaranteeing an unbiased and thorough 

performance evaluation. The deliberate choice of incorporating 

the Self-adaptive Bonobo Optimizer (SABO) and Differential 

Squirrel Search Algorithm (DSSA) underscores the significance 

of leveraging the distinctive strengths of each optimizer. The 

study delves into three variations of the RBF model: RBF, RBDS, 

and RRBSA. Among these, the RBF model, integrating the 

SABO optimizer (RBSA), distinguishes itself with an impressive 

R2 value of 0.995, denoting an exceptionally close alignment with 

the data. Furthermore, a low Root Mean Square Error (RMSE) 

value of 0.700 underscores the model's remarkable precision. The 

research showcases the effectiveness of fusing ML techniques in 

the RBSA model for precise cooling load predictions. This hybrid 

model furnishes more dependable insights for energy 

conservation and sustainable building operations, thereby 

contributing to a more environmentally conscious and 

sustainable future. 
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I. INTRODUCTION 

In the contemporary discourse surrounding global energy 
challenges, there exists an escalating emphasis on imperative 
energy conservation measures. This urgency is particularly 
salient within the purview of the global building sector, 
constituting a substantial fraction of overall energy 
consumption. Within this context, the imperative to optimize 
energy efficiency has prompted a meticulous examination of 
key metrics, where Cooling Load (CL) and Dynamic Air-
Conditioning Load assume pivotal roles in the paradigm of 

building design and operation [1], [2]. Of particular 
significance is the latter, as it intricately interfaces with the 
orchestration of heating, ventilation, and air conditioning 
(HVAC) systems, endowing a spectrum of advantages 
including expeditious cooling startups, precise management of 
peak demand, cost optimization, and heightened energy 
efficiency within cooling storage systems [3]. The Dynamic 
Air-Conditioning Load, as a multifaceted entity, stands as the 
linchpin for realizing energy and cost efficiency objectives 
across a diverse array of HVAC systems. It functions as a 
discerning orchestrator, facilitating seamless coordination and 
adjustment of HVAC operations in response to the dynamically 
evolving thermal requisites of a given structure [4]. This 
adaptability becomes instrumental in meeting the 
heterogeneous and evolving demands posed by residential, 
commercial, and industrial structures alike. Nevertheless, the 
realization of these efficiency goals is not bereft of challenges. 
The accurate prediction of building cooling loads remains a 
formidable task, characterized by the intricate interplay 
between the optical and thermal properties of the building and 
meteorological data [5]. The integration of these factors into 
the cooling load prediction process engenders a complex 
network that necessitates innovative solutions. The scientific 
pursuit of building cooling load prediction has endured for 
several years, embodying an enduring commitment to 
surmounting these challenges [6]. 

In the quest for precision, diverse methodological avenues 
have been explored. Engineering-based feature extraction 
techniques have surfaced as a valuable approach, probing into 
the intrinsic thermal properties of diverse building materials. 
By eliciting domain-specific insights from data, these 
techniques shed light on the nuanced ways in which distinct 
materials exert influence on the cooling load [7]. From 
concrete to glass, each material introduces a unique set of 
thermal dynamics that contributes to the overall cooling load 
profile. These insights not only enrich the comprehension of 
thermal intricacies but also facilitate the development of 
tailored solutions for augmented energy efficiency. Beyond 
engineering-based techniques, statistical feature extraction 
methods have assumed an integral role in the predictive 
arsenal. Employing mathematical approaches, these methods 
unearth pertinent information from the data, revealing patterns 
and relationships that may elude conventional scrutiny [8]. 
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This data-driven approach affords a comprehensive exploration 
of the intricate factors influencing cooling loads, offering a 
holistic perspective that transcends traditional analytical 
confines. Advancing the pursuit of precision, structural feature 
extraction methods have evolved to scrutinize the underlying 
data structure itself. These methods endeavour to uncover 
latent dependencies and patterns that might elude conventional 
analyses. By delving into the depths of data intricacies, 
structural feature extraction unveils critical insights that can 
significantly enhance the precision of cooling load predictions 
[9]. 

A multitude of techniques has been devised for optimizing 
HVAC systems, which can be broadly classified into three 
categories: artificial intelligence (AI), simulation, and 
regression analysis. Simulation tools like DOE-2, ESP-r [10], 
TRNSYS [11], EnergyPlus and ACO [12] are used to estimate 
CL when complete building data is accessible. Accurately 
measuring different building parameters, however, presents 
practical challenges [13]. There are different ways to simplify 
the process of building models, but it still takes a lot of time 
and labour to complete. Furthermore, the accuracy of simulated 
load results depends on the model's precision and the quality of 
the weather data. In real-time applications like online 
prediction or optimal operational control, the usefulness of 
simulation software is constrained [14]. 

Against this backdrop, recent scholarship has spotlighted 
the substantial potential of cutting-edge Machine Learning 
(ML) techniques in transforming the landscape of cooling load 
predictions [15]. ML, with its adeptness in discerning complex 
patterns and adapting to evolving data dynamics, emerges as a 
potent ally in the pursuit of precision and efficiency. The 
infusion of ML not only refines extant models but also 
engenders novel approaches capable of navigating the intricate 
terrain of cooling load prediction with unprecedented 
precision. Concurrently, feature extraction methods have risen 
to prominence as indispensable tools within the ML-driven 
paradigm [16], [17]. These methods assume a pivotal role in 
harnessing historical data, ensuring that predictions remain not 
only precise but also computationally manageable. As the 
volume and intricacy of data burgeon, the symbiosis between 
ML techniques and feature extraction methods becomes 
increasingly critical, providing a robust framework to address 
the evolving challenges of building cooling load prediction 
[18]. Envisaging the trajectory ahead, these technological 
strides hold promise in ushering forth a new era of 
sustainability and energy efficiency in buildings. The 
amalgamation of ML techniques and feature extraction 
methods is poised not merely to refine predictive accuracy but 
also to lay the groundwork for more intelligent and adaptive 
HVAC systems. By bridging the lacuna between data insights 
and operational efficiency, these advancements contribute to a 
future where sustainable practices are not merely aspirational 
but intrinsic characteristics of contemporary infrastructure [19]. 

The study introduces a new method for improving cooling 
load predictions by integrating ML. It uses a hybridization 
technique to enhance the performance of Radial Basis Function 
(RBF) models, ensuring greater accuracy and reliability. The 
hybrid models, which combine two optimization techniques, 
show superior performance compared to conventional methods. 
A thorough evaluation was conducted to mitigate potential 
biases and provide a transparent assessment of the models' 
performance. The strategic choice of merging Self-adaptive 
Bonobo Optimizer (SABO) and Differential Squirrel Search 
Algorithm (DSSA) highlights the importance of each 
optimizer's strengths. This study demonstrates the effectiveness 
of ML and the benefits of using tailored hybrid models for 
improved cooling load predictions. The following section 
includes the methodology section, which details the study's 
approach, covering data collection, preprocessing, model 
development (including machine learning integration), and 
validation. Results present findings, including performance 
compared to existing methods, with quantitative data and 
visualizations. Discussion interprets results within the study's 
context, evaluating methodology strengths and limitations. The 
conclusion summarizes key findings, emphasizes research 
significance, and suggests future research directions. 

II. MATERIALS AND METHODS 

A. Data Gathering 

Table I provides a comprehensive overview of the 
statistical properties of the input variables contributing to the 
cooling load prediction models, as well as the resultant cooling 
load output. The variables under scrutiny encompass a range of 
crucial factors influencing building energy dynamics. The 
Relative Compactness category, denoting the building's surface 
area-to-volume ratio, exhibits a minimum value of 0.62 and a 
maximum value of 0.98. The average and standard deviation 
are reported as 0.76 and 0.105, respectively. Surface area, a 
pivotal input parameter, ranges from 514.5 to 808.5, with an 
average of 671.70 and a standard deviation of 88.086. Wall 
area, roof area, overall height, orientation, glazing area, and 
glazing area distribution, each with distinct roles in the 
prediction models, are similarly characterized by their 
minimum, maximum, average, and standard deviation values. 
Of particular significance is the Cooling output variable, which 
represents the anticipated cooling load. The reported statistics 
for this variable delineate its minimum, maximum, average, 
and standard deviation as 10.9, 48.03, 24.58, and 9.513, 
respectively. These values encapsulate the variability in 
cooling loads expected from the developed prediction models. 
The statistical summary provides insights into the range and 
central tendency of each input variable and the variability in 
cooling load output, which is crucial for understanding data 
distribution and ensuring the accuracy and reliability of cooling 
load predictions generated by developed models [20], [21]. 
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TABLE I.  STATISTICAL PROPERTIES OF THE INPUT VARIABLE OF COOLING 

𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 
 Indicators 

𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚 𝑴𝒊𝒏 𝑴𝒂𝒙 𝑨𝒗𝒈 𝑺𝒕. 𝑫𝒆𝒗. 

Relative Compactness Input 0.62 0.98 0.764 0.105 

Surface Area Input 514.5 808.5 671.708 88.086 

Wall Area Input 245 416.5 318.5 43.626 

Roof Area Input 110.25 220.5 176.60 45.165 

Overall Height Input 3.5 7 5.25 1.751 

Orientation Input 2 5 3.5 1.118 

Glazing Area Input 0 0.4 0.234 0.133 

Glazing Area Distribution Input 0 5 2.812 1.550 

Cooling Output 10.9 48.03 24.58 9.513 
 

B. Radial Basis Function (RBF) 

Ojo et al. [22] discusses the challenges associated with 
traditional path loss prediction models in wireless signal 
propagation and proposes the use of machine learning 
algorithms to address these issues. It highlights the trade-off 
between simplicity and accuracy in deterministic and empirical 
models. The paper introduces two machine learning-based path 
loss prediction models, namely the radial basis function neural 
network (RBFNN) and the multilayer perception neural 
network (MLPNN), developed using experimental data 
collected from drive tests in multi-transmitter scenarios. The 
RBFNN model is found to be more accurate than the MLPNN, 
exhibiting lower root mean squared errors (RMSEs) when 
compared to measured path loss. Furthermore, the proposed 
machine learning-based models are compared against five 
existing empirical models, with the RBFNN showing the most 
accurate results. Elansari et al .[23] presents a novel approach 
called Mixed Radial Basis Function Neural Network 
(MRBFNN) training using Genetic Algorithm (GA). This 
study focuses on optimizing the choice of radial basis 
functions, centers, radius, and weights of the output layer in 
RBFNNs. They formulate the optimization problem as a 
mixed-variable problem with linear constraints and employ a 
genetic algorithm-based approach to solve it. The numerical 
results validate the theoretical findings and demonstrate 
improved generalization compared to existing methods. Alitasb 
et al. [24] discuss the application of RBFNNs in model 
predictive control for a 4 × 3 Multiple-Input Multiple-Output 
(MIMO) biomass control system. The study aims to enhance 
the control performance of a biomass boiler by utilizing 
RBFNNs to improve the accuracy of the model. They develop 
a biomass boiler model using system identification techniques 
and implement the RBFNN model using MATLAB. 
Simulation results show that the RBFNN-based model 
predictive controller achieves shorter settling times and 
tolerable overshoots compared to a state space model-based 
controller, indicating superior performance in controlling boiler 
dynamics. Overall, these references demonstrate the versatility 
and effectiveness of RBFNNs in various applications, 
including pattern recognition and control systems, showcasing 
their potential to address complex problems in different 
domains. 

1) Network architecture for RBF: A RBF neural network 

consists of three distinct layers: the input layer, hidden layer, 

and output  layer, as its fundamental structure. The input 

vector x in the hidden layer, which is made up of each unique 

input, x1, x2, x3, . . . . , xn is practical to all neurons. The hidden 

layer of an RBF network consists of n RBF that have direct 

connections to each component of the output layer. More 

information about RBF  networks can be found in academic 

sources, including references. An RBF network's hidden layer 

nodes increase their output as the input pattern they represent 

approaches each node's centre. The output of these nodes 

decreases with increasing distance from the middle if 

symmetric basis functions are applied. Therefore, neurons 

with centres near a given input pattern will produce non-zero 

activation values when that pattern is present, amplifying the 

input. The neurons' receptive field function, which controls 

how they react to outside stimuli, is what causes this behavior 

[23], [25], [26]. The jth covered−up hub's theoretical basis is 

often represented by a Gaussian exponential function, which 

can be written as follows: 

𝑝𝑗 = 𝑝(𝜔𝑗) = 𝑒 (−
𝜔𝑗

2

2𝜑𝑗
2)         (1) 

The thickness of the 𝑗𝑡ℎ neuron, signified by 𝜑𝑗 , and 𝜔𝑗 , 

this is typically computed as the Euclidean distance between 
the input vector and the neuron center. 

𝜔𝑗(𝑥) = ‖𝑥 − 𝑐𝑗‖ = √∑(𝑥𝑖

𝑤

𝑖=1

− 𝑐𝑖,𝑗)2    , 𝑖 = 1,2, . . . . , 𝑤 

(2) 

Let and  𝑥 = [𝑥1, . . . . , 𝑥𝑤]𝐹   𝑐𝑗  be the centres of the 𝑗𝑡ℎ 

𝑅𝐵𝐹 parts, which are vectors having the same dimensions as 
the 𝑗𝑡ℎ neuron's input [27]. The network's output, represented 
by the letter 𝑀, is the sum of the weights of all the premise 
capacities in the hidden layer. The following formula can be 
used to determine the output node value: 

𝑀𝑟 = ∑ 𝑠𝑗𝑠𝑝𝑗

𝑢

𝑗=1

 (3) 

A weighted sum of the output signals from the nodes in the 
hidden layer yields the output of the 𝑟 th node in the output 
layer, which is denoted by 𝑀𝑟 as the 𝑘𝑡ℎ component of 𝑀. 𝑠𝑗𝑠 

is a representation of the weights connected to the link between 
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the 𝑗𝑡ℎ neuron in the hidden 𝑙𝑎𝑦𝑒𝑟 and the sth neuron in the 
𝑜𝑢𝑡𝑝𝑢𝑡  layer. The algorithm additionally takes into account 
the output 𝑝𝑗 of the jth node in the hidden layer. In essence, the 

hidden layer nodes calculate a linear combination of basic 
functions that define the network's output. 

2) RBF network training and testing principles neural 

system 𝑅𝐵𝐹  operates in two distinct modes: testing and 

training. The network necessity calculates the ideal number of 

her RBFs, identifies the centres for each, and constructs the 

output layer weight matrix during the training phase. 

Minimizing the total squared error, or (R), is the goal [28] al 

[28]: 

𝑅 =
1

2
∑ ∑{𝑞𝑓

𝑖 − 𝑚𝑓
𝑖 (𝑋𝑖)}2

𝑛

𝐹

𝑟

𝐼=1

 (4) 

Here 𝑞𝑓
𝑖  is the apparent framework control in the event that 

an input vector 𝑋𝑖  is 𝑅  is the number of cases under 
preparation that is shown to the organizer. In RBF networks, 
node centers are positioned during training, and the network's 
capacity to generalize is greatly influenced by the output of the 
kernel function. Numerous methods may be used to determine 
the center of the 𝑅𝐵𝐹 node in the hidden layer; the most 
popular method utilized in this research was 𝑝 − means 
clustering. The algorithm's objective is to find a set of 𝐹 cluster 
centers that minimizes 𝐸, which is the sum of the Euclidean 
distances between each cluster center (𝑦𝑗) and the train points 
assigned to that cluster. 

𝐸 = ∑ ∑ 𝐺𝑖𝑗‖𝑦𝑗 − 𝑋𝑖‖

𝑁

𝐼=1

𝑁

𝑗=1

 (5) 

The membership matrix was given to the network, signified 
as 𝐺𝑖𝑗  with dimensions of 𝑚 × 𝑁 , where 𝑁  represents how 

many training examples there are. There is only one 1 in each 
column of this binary matrix; all other values are 0𝑠 . After 
establishing the 𝑅𝐵𝐹  unit centre, each 𝑅𝐵𝐹  unit width is 
calculated with a parameter named 𝑧 , which regulates the 
amount of overlap between adjacent nodes and the 𝑅𝑜𝑜𝑡 −
𝑀𝑒𝑎𝑛 − 𝑆𝑞𝑢𝑎𝑟𝑒  distance to the closest 𝑅𝐵𝐹  node. The 
𝑆 − fold cross-validation approach may be used to find the 
value of 𝑧. Eq. (6) provides the breadth of the 𝑗 − 𝑡ℎ  𝑅𝐵𝐹 
unit, which is represented as 𝜍𝑗. 

𝜍𝑗 = (
1

𝑧
∑‖𝑐𝑗 − 𝑐𝑜‖

2
𝑧

𝑜=1

)

1/2

 (6) 

After the centers of the nodes near node 𝑗 are determined as 
(𝑐1, . . . . 𝑐𝑧)  the 𝑅𝐵𝐹  neural network is considered fully 
determined. Afterwards, Eq. (1) through Eq. (3) can be used to 
represent a newly provided, easily navigable input vector. The 
RBF flowchart is displayed in Fig. 1 [29]. 

 
Fig. 1. Flowchart of RBF. 

C. Self-adaptive Bonobo Optimizer (SABO) 

A detailed argument is presented regarding an improved 
version of Bonobo Optimizer (BO), acknowledged as SABO 
with repulsion and a memory-based learning strategy for 
parameter upgrading. There are four types of mating behaviors 
found in it: consort ship, extra-group mating, promiscuous 
mating, and restrictive mating. A few changes have been made 
to this optimizer to improve performance. In addition, SABO 
has three additional memorized populations that are distinct 
from the current population, and the members of these 
populations mate to give birth to modern bonobos. The 
SABO's controlling criteria are based on a repulsion-based 

learning approach [30]. Other than these, 𝑝𝑡ℎ-bonobo choice in 
SABO is planned extraordinarily. In this case, the estimate of 
the subgroup is determined by the calculation taking into 
account the input obtained during the search procedure. To 
improve the efficiency of the search process, boundary control 
technology has also been modified in SABO as opposed to BO. 
Below is a detailed explanation of each of these key 
components of the suggested SABO. 

1) Memory and its updates: The three populations that 

make up the proposed SABO are 𝑜𝑙𝑑𝑝𝑜𝑝 , 𝑤𝑜𝑟𝑠𝑒𝑝𝑜𝑝 , and 

𝑏𝑎𝑑𝑝𝑜𝑝 , as was previously mentioned. These populations 

initially match the 𝑆𝐴𝐵𝑂′𝑠 the original population. Later, with 

every iteration, these are revised and updated. Consider that 𝑁 

and 𝑑 , respectively, are population size and number of 

decision variables. 

a) Oldpop: At any time, 𝑖𝑡ℎ-new bonobo found superior 

to the 𝑖𝑡ℎ-parent bonobo is accepted in the current population 

position. Furthermore, the 𝑖𝑡ℎ -parent bonobo is remembered 

within the 𝑖𝑡ℎ-position of oldpop. 

b) Worsepop: If 𝑖𝑡ℎ-new bonobo turns out to be worse 

than 𝑖𝑡ℎ-parent bonobo in fitness value comparison; it is stored 

in  𝑖𝑡ℎ-worse position than the current population. 

c) Badpop: The selection process of this 𝑁  size 

population is choosing from mixed populace 𝑤𝑜𝑟𝑠𝑒𝑝𝑜𝑝 and 

𝑏𝑎𝑑𝑝𝑜𝑝  in size 2𝑁 . The unique solutions named l, 

distinguished by objective values, display mixed populations. 
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If 𝑙 realized that be less than 𝑁, then 𝑙 number copied to the 
𝑏𝑎𝑑𝑝𝑜𝑝. If 𝑙 realized that be less than 𝑁, then 𝑙 number copied 
to the 𝑏𝑎𝑑𝑝𝑜𝑝. Also, if 𝑙 found to be greater than or equal to 
𝑁, 𝑏𝑎𝑏𝑝𝑜𝑝 is chosen from 𝑙1 (l1≥N), and it is between 𝑁2 and 
1, Eq. (7) calculates 𝑁1. 

𝑁2 = 𝑐𝑒𝑖𝑙(𝑑𝑓 ×N) (7) 

𝑑𝑓, diversity factor, is in the range of [(𝑑𝑓𝑚𝑖𝑛 , 𝑑𝑓𝑚𝑎𝑥) = 
(1.2, 1.8)]. 

2) Repulsion-based learning: First, using repulsion-based 

learning, two controlling variables are identified: phase 

probability (𝑝𝑝)  and sharing co-efficient (𝑠𝑐) . Both of this 

parameter's range are between 0 and 1. If a good solution's 

number appears superior to predetermined solutions (called 

𝑁1) then 𝑁1 solution with the highest change in fitness value 

will be considered. Eq. (8) calculates the 𝑁1. 

𝑁1 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓(5, 𝑐𝑒𝑖𝑙(𝑁 × 0.08)) (8) 

By taking after a comparative strategy, one can get a worse 
value that is not upgraded fitness-wise, named 𝑝𝑝𝑤𝑜𝑟𝑠𝑒 . 
Considering 𝑝𝑝𝑤𝑜𝑟𝑠𝑒 and 𝑝𝑝𝑏𝑒𝑡𝑡𝑒𝑟 repulsion; their value 

directions shift in the reverse direction. 𝑝𝑝𝑏𝑒𝑡𝑡𝑡𝑒𝑟 
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 

 determined 

by Eq. (9). 

𝑃𝑃𝑏𝑒𝑡𝑡𝑒𝑟
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= 𝑃𝑃𝑏𝑒𝑡𝑡𝑒𝑟 ±
𝜎 × 𝑃𝑃𝑏𝑒𝑡𝑡𝑒𝑟 × 𝑃𝑃𝑤𝑜𝑟𝑠𝑒

𝑒(𝑃𝑃𝑏𝑒𝑡𝑡𝑒𝑟−𝑃𝑃𝑤𝑜𝑟𝑠𝑒)
2  (9) 

3) Mating strategies: There are four mating strategies in 

the proposed 𝑆𝐴𝐵𝑂. There are also conceptions of the positive 

phase (𝑝𝑝) and negative phase (𝑁𝑃). Phase probabilities (𝑝𝑝) 

are probabilities that 𝑃𝑃 or 𝑁𝑃 use to update the solution at 

each iteration. Furthermore, in 𝑃𝑃, applying a promiscuous or 

restrictive mating strategy will generate a new bonobo with a 

probability of 0.5. The probability of mating outside the group 

is called 𝑝𝑥𝑔𝑚  which is in the range of ( 𝑝𝑥𝑔𝑚
𝑚𝑖𝑛 , 𝑝𝑥𝑔𝑚

𝑚𝑎𝑥)  and 

calculates as follows: 

𝐼0 =

∑
𝑆𝐷𝑗

(𝑉𝑚𝑎𝑥𝑗
− 𝑉𝑚𝑖𝑛𝑗

)
𝑑
𝑗=1

𝑑
 

(10) 

𝐼1 = 0.1 × 𝐼0 (11) 

𝑃𝑥𝑔𝑚
𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 (𝐼1,

1

𝑑
) 

(12) 

𝑝𝑥𝑔𝑚
𝑚𝑎𝑥 = 2 × 𝐼1 (13) 

In initial population, 𝑆𝐷𝑗  represents the standard deviation 

of 𝑗𝑡ℎ-variable; 𝑗 is in the range of 1 to 𝑑, and 𝑑 is the decision 
variable number in the problem. The maximum and minimum 

merits of 𝑗𝑡ℎ-variable called 𝑣𝑚𝑎𝑥𝑗
 and 𝑣𝑚𝑖𝑛𝑗

. 𝑝𝑥𝑔𝑚
𝑚𝑖𝑛  𝑎𝑛𝑑 𝑝𝑥𝑔𝑚

𝑚𝑎𝑥  

are determined by 𝐼0 and 𝐼1. Fig. 2 shows a detailed flowchart 
of the suggested SABO. 

 
Fig. 2. Flowchart of suggested SABO.
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D. Differential Squirrel Search Algorithm (DSSA) 

Manoj et ao et al. introduced an innovative optimization 
approach referred to as DSSA, which integrates two distinct 
algorithms, namely the squirrel search algorithm (SSA) and 
differential evolution algorithm (DE). Squirrels are observed to 
update their location in the context of the Simulated Squirrel 
Algorithm (SSA) by closely monitoring the positions of other 
squirrels living in the hickory or acorn tree. That means that to 
improve their search strategies, the top squirrels have modified 
their updating mechanisms. Adding a crossover operation that 
draws inspiration from Differential Evolution (DE) improves 
exploration potential. This exposition provides a mathematical 
model of the various foraging strategies that are included in the 
Decision Support System for Agriculture (DSSA). 

1) Initialization of position and the evaluation of fitness: 

Initially, the squirrels are arranged at random within the 

exploratory domain. Following the squirrels' positions, the 

fitness levels of each are evaluated by inserting the position 

mentioned earlier into the fitness function. This indicates the 

nutritional value of the food source that each squirrel obtained 

within its position. The values of fitness are subsequently 

subjected to a sorting process to obtain the most optimal 

squirrel, denoted as 𝑃𝑆ℎ𝑡 , that currently inhabits the hickory 

tree. The subsequent 3  optimal function values signify the 

locations of the squirrels inhabiting the acorn tree 𝑃𝑆𝑎𝑡 (1:3). 

In addition, they are deemed to be a step towards achieving an 

optimal location in the next iteration. Thus far, the remaining 

individuals belonging to the squirrel population are denoted as 

𝑃𝑆𝑛𝑡
𝑝1

 have yet to discover a viable nourishment source 

occupying typical locations within the tree habitat. 

2) Update of the position: When a squirrel colonizes a tree 

that provides acorns, it updates its position and moves towards 

the best source by following the current best path or 𝑃𝑆ℎ𝑡 in 

the absence of a predator. By mimicking the movements of the 

squirrels living in the hickory or acorn tree, the squirrels in the 

regular tree can track where they are. The observed 

phenomenon is that when faced with the possibility of 

predation, squirrels tend to change their foraging route 

randomly. The following can be used to express the 

mathematical models that were used to update the squirrel's 

position. Now, as the others adjust their position, the squirrels 

in the acorn trees do the following: 

𝑃𝑆𝑎𝑡
𝑛𝑒𝑤

= {
𝑃𝑆𝑎𝑡

𝑜𝑙𝑑 + 𝑑𝑔. 𝐺𝑐(𝑃𝑆ℎ𝑡
𝑜𝑙𝑑 − 𝑃𝑆𝑎𝑡

𝑜𝑙𝑑 − 𝑃𝑎𝑣𝑔),   𝑟1 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(14) 

𝑃𝑎𝑣𝑔  is the mean of whole squirrels' positions in the 

available population. 

The crossover mechanism is incorporated into the DE 
algorithm to reduce the likelihood of local minima, thereby 
increasing the diversity of the squirrel population being 
evaluated. The crossover operation, which was derived from 

Eq. (15), was applied to the current position and its 
corresponding new position. 

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑐𝑟 =

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑛𝑒𝑤 ,   𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟) 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑜𝑙𝑑 ,   𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑟) 𝑜𝑟 𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑

,

𝑗 = 1,2,3, … , 𝐷 

(15) 

𝑖 =  1, 2, 3, . . . , 𝑁𝑃 

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑛𝑒𝑤  and 𝑃𝑆𝑎𝑡,𝑖,𝑗

𝑜𝑙𝑑  are new and old squirrels' locations 

normal, or are acorn trees. 

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑐𝑟  are the squirrels' positions after the operation of the 

crossover. 

NP shows the population size. 

Cr indicates the rate of crossover, and it is equal to 0.5. 

D shows the dimension of the problem. 

𝑗𝑟𝑎𝑛𝑑  𝜖 [1, 𝐷] is a randomly generated index 

𝑟𝑎𝑛𝑑𝑗  𝜖 [1, 𝐷] is the 𝑗 − 𝑡ℎ  random numbers' assessment 

uniformly developed in the distinct range. 

According to Eq. (16), some of the squirrels that live in 
typical trees move to new areas by following the squirrels that 
live in acorn trees. 

𝑃𝑆𝑛𝑡
𝑛𝑒𝑤 = {

𝑃𝑆𝑛𝑡
𝑜𝑙𝑑 + 𝑑𝑔. 𝐺𝑐(𝑃𝑆𝑎𝑡

𝑜𝑙𝑑 − 𝑃𝑆𝑛𝑡
𝑜𝑙𝑑),   𝑟2 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

r2 conforms to a uniform distribution across the interval of 
[0, 1]. 

The squirrels that are still in traditional trees align with the 
current optimal location, and their updated locations are 
expressed as follows: 

𝑃𝑆𝑛𝑡
𝑛𝑒𝑤 = {

𝑃𝑆𝑛𝑡
𝑜𝑙𝑑 + 𝑑𝑔. 𝐺𝑐(𝑃𝑆ℎ𝑡

𝑜𝑙𝑑 − 𝑃𝑆𝑛𝑡
𝑜𝑙𝑑),   𝑟3 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (17) 

The application of a crossover operation on squirrels 
residing in ordinary trees is as follows: 

𝑃𝑆𝑛𝑡,𝑖,𝑗
𝑐𝑟 =

𝑃𝑆𝑛𝑡,𝑖,𝑗
𝑛𝑒𝑤 ,   𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟) 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑃𝑆𝑛𝑡,𝑖,𝑗
𝑜𝑙𝑑 ,   𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑟) 𝑜𝑟 𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑

,

𝑗 = 1,2,3, … , 𝐷 

(18) 

One way to speed up the convergence rate is to allow the 
squirrel in the hickory tree to move about the average of the 
squirrels' positions inside the tree, as shown by Eq. (19): 

𝑃𝑆ℎ𝑡
𝑛𝑒𝑤 = 𝑃𝑆ℎ𝑡

𝑜𝑙𝑑 + 𝑑𝑔. 𝐺𝑐(𝑃𝑆ℎ𝑡
𝑜𝑙𝑑 − 𝑃𝑆𝑎𝑡

𝑎𝑣𝑔
) (19) 

𝑃𝑆𝑎𝑡
𝑎𝑣𝑔

 represents the average of whole squirrel's locations 

in the acorn trees. 

To determine who gets to participate in the next 
development population, the best hybrid positions and their 
unused positions are compared with the historical positions in 
the determination handle. Algorithm 1 explains the procedural 
instructions involved in DSSA. 
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Algorithm 1: DSSA Pseudocode 

𝑰𝒏𝒑𝒖𝒕 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝑁𝑃, 𝑃𝑑𝑝, 𝑠𝑓, 𝐺𝑐, 𝑢𝑏, 𝑎𝑛𝑑 𝑙𝑏 
Initialize the flying squirrels^' location haphazardly using Eq.(14) 

Compute the fitness value utilizing the represented fitness function 

employing Eq.(15) 

𝑾𝒉𝒊𝒍𝒆 𝑖𝑡𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 𝒅𝒐 

Sort of all functions of squirrels^' fitness and recognize the 

current best,〖PS〗_ht,positions of squirrels in acorn tree,〖PS〗
_at (1:3) 

and the position of squirrel in the normal tree,〖PS〗_nt (1:NP-4) 

𝐷𝑒𝑣𝑒𝑙𝑜𝑝 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑞𝑢𝑖𝑟𝑟𝑒𝑙𝑠 𝑏𝑦  
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑐𝑜𝑟𝑛 𝑡𝑟𝑒𝑒𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 

 𝑣𝑖𝑎 𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝐸𝑞. (14) 𝑎𝑛𝑑 𝐸𝑞. (15) 
𝐷𝑒𝑣𝑒𝑙𝑜𝑝 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑞𝑢𝑖𝑟𝑟𝑒𝑙𝑠 𝑏𝑦  
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙  
𝑡𝑟𝑒𝑒𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑣𝑖𝑎 𝑢𝑡𝑖𝑙𝑖𝑧𝑖𝑛𝑔 𝐸𝑞𝑠. (16) − (18) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑞𝑢𝑖𝑟𝑟𝑒𝑙𝑠 𝑏𝑦  
𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 

hickory trees achieved via utilizing Eq.(19) and old positions. 

Update the population with the best position achieved so far 

𝑬𝒏𝒅 𝑾𝒉𝒊𝒍𝒆 
𝑹𝒆𝒕𝒖𝒓𝒏 𝑃𝑆ℎ𝑡 

E. Performance Evaluation Methods 

The models are evaluated in this article using some metrics, 
such as the BIAS mentioned earlier, the correlation coefficient 
(R2), the Mean Square Error (𝑀𝑆𝐸) , the Symmetric Mean 
Absolute Percentage Error (𝑆𝑀𝐴𝑃𝐸) , and the root mean 
square error (RMSE). A high R2 value indicates that the 
algorithm performed exceptionally well during the training, 
validation, and testing phases. Lower RMSE and MAE values, 
on the other hand, are preferred because they demonstrate less 
model error. Eq. (20 − 24) are used to calculate these metrics. 

Coefficient of Correlation. 

𝑅2 = (
∑ (ℎ𝑖−ℎ̅)(𝑙𝑖−𝑙)̅𝑊

𝑖=1

√[∑ (ℎ𝑖−ℎ)2𝑊
𝑖=1 ][∑ (𝑙𝑖−𝑙)̅2𝑊

𝑖=1 ]

)

2

               (20) 

Root Mean Square Error. 

𝑅𝑀𝑆𝐸 = √
1

𝑊
∑ (𝑙𝑖 − ℎ𝑖)

2𝑊
𝑖=1                   (21) 

Mean Square Error. 

𝑀𝑆𝐸 =
1

𝑊
∑ (𝑙𝑖 − ℎ𝑖)

2𝑤
𝑖=1                  (22) 

Symmetric Mean Absolute Percentage Error. 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑊
∑

2×|𝑙𝑖−ℎ𝑖|

|𝑙𝑖|+|ℎ𝑖|
𝑊
𝐼                  (23) 

BIAS. 

𝐵𝐼𝐴𝑆 =
𝑙 ̅

ℎ̅
                            (24) 

 In these equations, ℎ𝑖  and 𝑙𝑖  refer to the predicted and 
experimental values, respectively. 

 The mean values of the experimental samples and 

predicted are represented by ℎ̅ and 𝑙.̅ 

 Otherwise, 𝑊  denotes the number of samples being 
considered. 

III. RESULTS 

The results of the created 𝑅𝐵𝐹 models are shown in Table 
II. It includes an aggregate evaluation that covers all phases 
and a detailed summary of performance metrics for each of the 
three phases: training, validation, and testing. Based on RMSE, 
R2, MSE, SMAPE, and BIAS, the RBF models RBSA, RBDS, 
and the generic RBF are assessed. The RBSA model performs 
well during the training phase, as evidenced by its low RMSE 
of 1.007, high R2 of 0.989, and minimized MSE of 1.040. The 
accuracy of the model in capturing the subtleties of the training 
dataset is demonstrated by the SMAPE value of 0.00005 and 
the insignificant BIAS of -0.020. In the same way, RBDS 
performs admirably during training, showing an RMSE of 
1.343, an R2 of 0.980, and an MSE of 1.844. When the models 
move on to the validation stage, RBSA continues to perform 
well, with a lower RMSE (0.800) and a higher R2 (0.994), 
indicating that it can generalize far beyond the training set. The 
RBDS model, on the other hand, shows a little increase in 
RMSE (1.172) and a lower R2 (0.987), but it still retains a 
respectable degree of accuracy during validation. The generic 
RBF model, on the other hand, shows higher RMSE (1.410) 
and lower R2 (0.981) values, indicating a relatively lower fit 
during the validation phase. When the models are tested, the 
models' performance is evaluated once more, and RBSA 
continues to perform well, with a minimum RMSE of 0.700, a 
high R2 of 0.995, and an MSE of 0.489. During testing, both 
the generic RBF model and RBDS perform satisfactorily, with 
R2 values of 0.984 and 0.976 and 𝑅𝑀𝑆𝐸 values of 1.208 and 
1.486, respectively. With an overall RMSE of 0.938 and an R2 
of 0.990 when all phases are considered, RBSA performs 
remarkably well, proving its dependability across a range of 
datasets. In contrast, the generic RBF model and the RBDS 
model have higher overall RMSE values of 1.623 and 1.299, 
respectively. In Fig. 3, the metrics' radar plot is displayed. 

These findings show how the RBF models' effectiveness 
varies depending on the phase, with RBSA constantly showing 
higher predictive accuracy. The extensive assessment metrics 
highlight the potential of the RBSA model in producing 
accurate and trustworthy predictions for cooling loads and 
offer insightful information about the models' generalization 
ability. 

In Fig. 4, a scatter plot is used to compare the hybrid 
models' performance over the 3  train, validation, and test 
phases. R2 quantifies the degree of agreement between 
observed and expected values, whereas RMSE shows the 
prediction error or dispersal. The data points are closely 
clustered around the centerline of the RBSA model, which 
shows exceptional accuracy across all three phases. There is 
little variation between the expected and actual values and a 
high degree of agreement. The RBF and RBDS models, on the 
other hand, featured data points that were further from the 
centerline and comparable performance levels. In comparison 
to the RBSA model, this broader dispersion predicts a slightly 
lower precision and a higher inaccuracy. 
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TABLE III.  THE OUTCOME OF THE DEVELOPED 𝑅𝐵𝐹 MODELS 

𝐌𝐨𝐝𝐞𝐥 𝐏𝐡𝐚𝐬𝐞 
Index values 

𝐑𝐌𝐒𝐄 R2 𝐌𝐒𝐄 𝐒𝐌𝐀𝐏𝐄 𝐁𝐈𝐀𝐒 

RBSA 

Train 1.007 0.989 1.040 0.00005 -0.020 

Validation 0.800 0.994 0.640 0.00019 0.044 

Test 0.700 0.995 0.489 0.00018 0.038 

All 0.938 0.990 0.896 0.00003 -0.001 

RBDS 

Train 1.343 0.980 1.844 0.00007 0.002 

Validation 1.172 0.987 1.373 0.00027 0.073 

Test 1.208 0.984 1.460 0.00026 -0.077 

All 1.299 0.981 1.716 0.00004 0.001 

RBF 

Train 1.692 0.970 2.863 0.00011 -0.093 

Validation 1.410 0.981 1.989 0.00043 0.134 

Test 1.486 0.976 2.209 0.00047 0.174 

All 1.623 0.972 2.634 0.00007 -0.019 

 

 

Fig. 3. Radar plot for comparison between the developed models based on metrics. 

The study's line plot in Fig. 5 shows the error percentages 
associated with the models, with the RBSA model being the 
most prominent due to its low error rate. The majority of error 
values cluster within the 12.08% range. The RBF and RBDS 
models show greater variability, with a higher frequency of 

values exceeding the 23.66% and 17.35% thresholds. Both 
models display a right-skewed distribution, indicating the 
presence of specific data points with greater proportions of 
errors. 
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Fig. 4. Scatter plot of the dispersion of evolved hybrid models. 

 

Fig. 5. Error percentage of the models based on the line plot. 
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Fig. 6. Half-box plot errors of proposed models.

In Fig. 6, the study displays a half-box plot that shows the 
three models' respective error percentages. The RBSA model 
performed remarkably well, with errors kept below 10% and 
little dispersion. Dispersion was seen in all phases of the RBF 
model, with a uniform normal distribution and a maximum of 
25%. During the assessment stage, the RBDS model exhibited 
the highest degree of discrepancy among the models, with one 
outlier data point representing more than 18% of the dataset. 
The RBF model's Gaussian distribution revealed more 
dispersion and fewer instances of near-zero frequency. 

IV. DISCUSSION 

A. Advantages of the Present Study 

The novel approach introduced in the study aims to 
revolutionize the prediction of cooling loads, offering fresh 
insights and innovative solutions to longstanding challenges in 
energy efficiency and building management. By harnessing the 
power of machine learning techniques and hybridization 
strategies, the proposed methodology endeavors to elevate the 
accuracy and dependability of cooling load predictions beyond 
the capabilities of conventional methods. Through rigorous 
comparative analyses, the research delves into intricate 
examinations, juxtaposing the proposed methodology with 
state-of-the-art approaches. These comparisons yield 
invaluable insights into the efficacy and superiority of the 
novel methodology, shedding light on its potential to 
outperform existing techniques in predicting cooling loads with 
precision and reliability. The practical implications of 
successfully implementing the study's findings are substantial, 
encompassing a wide array of benefits ranging from optimized 
energy consumption in buildings to tangible cost reductions 
and advancements in sustainability initiatives. Furthermore, the 
study's contribution to the academic literature is profound, 
marking a significant advancement in predictive modeling 
techniques within the realm of cooling load prediction. By 

pushing the boundaries of knowledge and innovation, the study 
paves the way for future research endeavors and opens new 
avenues for exploration in the pursuit of energy-efficient 
building management practices. 

B. Limitations 

The effectiveness of the proposed methodology could face 
constraints due to data availability and quality, which might 
hinder the reliability of predictions if the data is insufficient or 
inaccurate. Moreover, the implementation of machine learning 
algorithms and hybridization strategies adds complexity to the 
modeling process, potentially necessitating specialized 
expertise for development and interpretation. Additionally, the 
study's findings might have limited generalizability to various 
contexts or building types, as factors like geographical 
location, building design, and occupancy patterns could 
influence the applicability of the methodology. Validating the 
proposed approach poses challenges, particularly in ensuring 
robustness and reliability across diverse scenarios and 
conditions. Furthermore, ethical considerations surrounding 
data privacy, bias, and transparency must be meticulously 
addressed due to the use of machine learning techniques and 
optimization algorithms. These ethical concerns underscore the 
need for responsible and transparent research practices 
throughout the study. 

C. Future Study 

For future studies, researchers may explore refining the 
methodology, analyzing long-term performance, integrating 
advanced technologies, validating in real-world settings, 
considering external factors' impact, conducting sensitivity 
analysis, integrating with building automation systems, and 
engaging users for feedback. These avenues aim to advance 
cooling load prediction, enhance energy efficiency, and 
promote sustainable building management practices. 
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D. Comparison with Published Papers 

Table III shows the comparison between the presented and 
published papers. From the comparison, it can be observed that 
the presented study falls within the range of RMSE and R2 
values reported in the published articles. While the RMSE 
value of the present study (0.938) is higher than that of Roy et 
al. (0.059) and Gong et al. (0.1929), it is lower than that of 
Afzal et al. (1.4122). Similarly, the R2 value of the present 
study (0.990) is slightly lower than that of Moradzadeh et al. 
(0.9993) but higher than that of Gong et al. (0.9882) and Afzal 
et al. (0.9806). Overall, the presented study demonstrates 
competitive performance in terms of both RMSE and R2 
compared to the published articles, indicating its effectiveness 
in predicting cooling loads. 

TABLE IV.  COMPARISON BETWEEN THE PRESENTED AND PUBLISHED 

ARTICLES 

Articles 
Index values 

RMSE R2 

Moradzadeh et al. [31] 0.4832 0.9993 

Roy et al. [9] 0.059 0.99 

Gong et al. [32] 0.1929 0.9882 

Afzal et al. [14] 1.4122 0.9806 

Present Study 0.938 0.990 

V. CONCLUSION 

As a result of the significant influence that the global 
building industry has on total energy consumption, efforts must 
be made to precisely forecast cooling loads in the context of 
energy conservation and building operations. The study 
established a multimodal investigation to improve cooling load 
prediction models by applying cutting-edge techniques and 
creative ideas. Initially, the emphasis was on important metrics 
like Dynamic Air-Conditioning Load (DACL) and Cooling 
Load (CL), which highlighted the critical role these parameters 
play in HVAC system optimization. Several different 
approaches have been adopted to improve prediction accuracy 
because of the complex interactions that have been identified 
between the optical and thermal properties of buildings and 
meteorological data. The process of extracting detailed insights 
from the data required the application of feature extraction 
techniques, such as engineering-based, statistical, and 
structural methods. These techniques, which combined 
mathematical and domain-specific viewpoints, made it easier 
to comprehend the thermal dynamics present in different types 
of construction materials. The rapidly changing field of 
machine learning (ML) has the potential to transform the 
precision and effectiveness of cooling load forecasts 
completely. The combination of machine learning and feature 
extraction techniques demonstrated the potential to improve 
current models and introduce new ones that can more 
accurately predict cooling load with never-before-seen levels 
of detail. The development and assessment of the RBF models 
RBSA, RBDS, and generic RBF represented the culmination of 
these efforts. The thorough statistical characteristics of the 
input variables served as a fundamental point of reference, 
allowing for an in-depth analysis of the models' performance 

during the training, validation, and testing stages. With the 
Self-adaptive Bonobo Optimizer (SABO) integrated, RBSA 
proved to be an exceptional performer, exhibiting superior 
accuracy in every phase. RBSA is a strong and dependable 
model for cooling load prediction because of its exceptional 
performance during testing, reduced RMSE and increased R2, 
and ability to generalize far beyond the training set. These 
findings have wider ramifications that go beyond the 
immediate setting and provide a promising path towards more 
environmentally friendly and energy-efficient structures. By 
incorporating advanced modelling techniques, predictive 
accuracy is improved, and the foundation for intelligent, 
adaptive HVAC systems is laid. The combination of state-of-
the-art machine learning, research methodologies, and feature 
extraction techniques could lead to the intelligent response of 
buildings to environmental demands in the future, resulting in a 
more sustainable and environmentally conscious global 
infrastructure. 
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