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Abstract—This research aims to develop computer vision
based predictive model for the three prominent kidney ailments
namely Cyst, Stone, and Tumor which are common renal disor-
ders that require timely medical intervention. This classification
model is tested and trained using the multi-class CT Kidney
Dataset which contains 12,446 images collected from PACS
(Picture Archiving and Communication System) from different
hospitals in Dhaka, Bangladesh. Initial models are build using
plain VGG16, ResNet50, and InceptionV3 deep neural nets.
Then after clip value filter of ADAM optimizer is applied which
results in marginally improved accuracy and at the last Adaptive
Gradient Clipping is applied as a replacement of batch norm
process and this produces overall best results. The Adaptive
Gradient Clipping based model achieves accuracy of 97.15% in
VGG16, 99.5% in ResNet50, and 99.23% in InceptionV3. Overall
classification metrics are best for ResNet50 and Inception V3 with
Adaptive Gradient Clipping technique.

Keywords—CT Kidney; VGG16; ResNet50; InceptionV3; gra-
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I. INTRODUCTION

Computer vision is emerging as one of the most promising
solution for early diagnosis and assisting doctors, medical
health professionals to reduce the work load and provide treat-
ment on need basis instead of first come first serve basis. Deep
learning models for medical image classification has gained
lot of popularity recently because of highly accurate results
generated by these models. Post COVID-19 the availability
of large image data sets has also gained popularity and this
promotes the deployment of deep neural nets for classification
purpose. But as discussed in [1] [1] the traditional way of
handling image datasets may not work well for handling the
large image datasets. This research work uses CT Kidney im-
age dataset [2], which is a collection of 12,446 images spread
across four categories of Normal, Cyst, Stone, and tumor, and
build convolutional neural net based multi-class classification
models for CT Kidney dataset using VGG16, ResNet50, and
InceptionV3 deep neural nets. The initial models are build
using plain versions of VGG16, ResNet50, and InceptionV3.
To build the second version the clip norm filter of Adam
Optimizer is used which is a floating value and is basically
used to individually clip the gradient of each weight so that the
norm of each weight remains less than or equal to this value.
To build the third version the Adaptive Gradient Clipping
techniques as discussed in [3] is used. Adaptive Gradient
Clipping is a replacement to batch norm technique when we
want to train models using larger batch sizes and increase the
learning rate of model.

A. Chronic Kidney Disease

Chronic Kidney Disease (CKD) is a condition in which the
kidneys are impaired and cannot filter blood as effectively as
they could. As a result, the body stores excess fluid and blood
waste, which can contribute to a variety of health problems
such as heart disease and stroke. CKD is also reported to
lead to Kidney Failure and is estimated to be present in 1
out of 10 adults [4]. CKD effects almost 1 billion people
worldwide [5] largely including women, older citizens, and
people suffering from diabetes and hypertension. CKD causes
premature morbidity and mortality and lowers quality of life;
it is also expensive [6] and becomes a big financial burden for
low and middle income countries.

Cysts, Tumor, and Stone are three different impairments
in Kidney. Round fluid-filled pouches called kidney cysts can
develop on or inside the kidneys, impairing their regular func-
tion. A growth or collection of abnormal cells that develops
on the kidney is called a kidney tumor. Malignant (cancerous)
or benign (not cancerous) terms might apply to these tumors.
Hard deposits of minerals and salts that accumulate inside the
kidneys are called kidney stones.

CKD meets all the four criteria that are required to be
recognize a disease as a public health issue [7] [8]. Early
detection of CKD may prevent death and disability but such
early detection is difficult [9] [10] depends on the availability
of nephrologists who are scarcely available in various geo-
graphic locations and specially in South Asia[11]. Delay in
detection of Kidney cysts, stones, and tumors increases the
possibility of renal failure [12]. All these condition pave way
for deployment of Deep Neural Net based models for timely
detection of Kidney related diseases.

B. Authors Contribution

Chronic Kidney Disease is recognised as a public health
issue but remains a less explored disease in the medical image
processing filed. In this article a reliable and automated Kidney
disease image processing model using advanced deep learning
models is build. Another contribution is to explore the two
different approaches for image classification: the traditional
way using data scaling and Batch Normalization, and the
novel way of using adaptive gradient clipping. The third
contribution is in comparing the performance of the three
most contemporary deep learning models namely VGG16,
ResNet50, and Inception V3.
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C. Article Organization

In Section 2, the most prominent and related work on
deep learning based image processing models are discussed
and the most prominent work in this field is summarized. The
preliminaries of the image processing field are discussed in
Section 3. In Section 4, the dataset, preprocessing methods, and
the proposed model is discussed. In Section 5 the experimental
results are discussed and comparative study of the different
approaches are done. The article concludes by summarizing
this research work and stating the future research prospects in
Section 6.

II. RELATED WORK

A nice survey on medical image analysis can be found in
[13]. Deep Learning methods have been tested on plethora
of data sets in many research articles in the last decade.
Main focus area in these research articles were radiology
findings and segmentation tasks. Convolutional Neural Net-
works (CNN) have dominated the image processing segment
[14], [15]. ResNet [14] has proved very helpful in building
efficient Deep Neural Net Models. Other Deep Neural Net
models prominently used are inception[15], and exception
[16]. Another recent Deep Learning model is EfficientNet [17].

Recent advancement in the Deep Learning field like trans-
fer learning is also proving very helpful in developing efficient
models. Transfer learning is profoundly used for Natural Lan-
guage Processing. Weights of a deep neural network pretrained
on a large generic dataset are used to initialize subsequent tasks
which can be solved with fewer data points, and less compute
[18] [19] [20]. Transformers were proposed in [21] for machine
translation and much recently they are deployed in image
processing applications also. Multiple works try combining
CNN-like architectures with self-attention [22] [23] [24], some
replacing the convolutions entirely [25] [26]. But in large-
scale image recognition, classic ResNetlike architectures are
still state of the art [27] [28] [29][30].

Models like Vision transformer [31] have produced won-
derful results as compared to Convolutional Neural Networks
but hybrid models [32] and CNN with novel optimization
techniques are expected to achieve much better results [33].
Deep neural nets use Gradient Descent as the basic technique
for learning and a comparison of the different implementations
of Gradient Descent is discussed in [34]. In all the models
ADAM optimizer is used which is combination of RMSprop
and Stochastic Gradient Descent with momentum. In [35]
Stochastic Gradient Descent (SGD) is stated to perform better
than ADAM, and RMS Prop optimizer using ResNet50. Class
Balancing is discussed as a future work in this article but [36]
discusses the meta-heuristic approaches that can be used for
balancing X-Ray image datasets.

Limitation of Batch Norm technique are discussed in [37]
for training large datasets and also discussed are the solution
in the form of an novel Robust Normalization technique which
provides all benefits of Batch Norm while mitigating the adver-
sarial attacks. The technique of Adaptive Gradient Clipping is
introduced in [3] as a replacement of Batch norm. Performance
of Swin Transformers is reported to excel CNN models in [2]
as it achieves accuracy of 99.30%. Vision Transformers are
compared with CNN in [31] and it is concluded then though

CNN are slower as compared to Vision Transformers because
of pooling operation but Vision Transformers require large data
sets for training. YOLOv8 is deployed on CT Kidney Dataset
for multi-class classification in [38] and it achieves an accuracy
of 82.52

III. PRELIMINARIES

The underlying concepts of Image Processing, various
classification techniques, and optimization techniques involved
in this research article are discussed in this section.

A. Medical Image Processing

Medical image processing is used by medical practitioners
to detect and diagnose diseases at early stages to increase
chances of curing the disease. Out of the several basic stages
of image processing Deep Learning is prominently applied for
Image Enhancement, Segmentation and classification stages.

Noise frequently deteriorates medical pictures because of
a variety of interference sources and this interfere with image
processing systems’ measuring procedures raising the require-
ment of Image Enhancement procedures [39]. The technique
of segmenting a picture involves breaking it up into areas with
similar texture, color, brightness, contrast, and gray level [40].
A segmented image become more meaning full and facilitates
classification. Image classification is the task of categorizing
an image into either of the given categories. Deep learning
excels in the tasks of Image Segmentation, Reconstruction,
and Classification [41]. Deep Learning models like RESNet
[42], VGG16 [43], Inception Net [44] have excelled in this
field achieving results that even surpass human abilities.

B. Image Classification Models

VGG16, ResNet50, and InceptionNetV3 are used for build-
ing the multi-class classification model.

1) VGG16: VGG16 [43] has become popular because of its
proficiency in image classification tasks. It is a 16 layer Convo-
lutional Neural Network (CNN) which has shown impressive
performance on various image classification benchmarks. Its
structure includes multiple convolutional and pooling layers
followed by fully connected layers as shown in figure. It
has a deep architecture to learn hierarchical features and
the use of small 3x3 convolutional filters enables capturing
fine-grained details in images. VGG16 has been employed
in numerous studies for diabetic retinopathy and kidney cyst
classification tasks, achieving high accuracy and demonstrating
its potential as a reliable model in computer vision-based
prediction. Structure of VGG16 classifier model is shown in
Fig. 1.

2) ResNet50: ResNet50, short for Residual Network with
50 layers, is variant of a powerful CNN architecture introduced
in [42] that addresses the challenge of training very deep
neural networks. It introduces skip connections, or residual
connections, which enable the network to learn residual map-
pings, making it easier to optimize and alleviate the vanish-
ing gradient problem. ResNet50 has demonstrated superior
performance on various image classification tasks, including
diabetic retinopathy and kidney cyst classification. It’s deep
architecture allows for capturing intricate features, leading to
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Fig. 1. Structure of VGG16.

Fig. 2. Structure of ResNet50.

accurate predictions. The inclusion of residual connections
makes ResNet50 particularly effective in handling complex
visual patterns and has been widely adopted in computer
vision research. The architecture of ResNet50 is shown in
Fig. 2. cfg[3,4,6,3] refers to (3x3=9), (3x4=12), (3x6=18), and
(3x3=9) summing to 48 layers (9+12+18+9) with one input
layer and one fully connected layer increasing the count to
50. Structure of ResNet50 classifier is shown in Fig. 2.

3) InceptionV3: InceptionV3 is an advanced CNN archi-
tecture that incorporates the concept of “Inception modules”
introduced in [44] These modules use different filter sizes and
perform parallel convolutions, using which the features are
captured by network at multiple scales. InceptionV3 strikes a
balance between depth and computational efficiency, achieving
high accuracy while maintaining a manageable model size.
It has been successfully applied in various image classifi-
cation tasks, including diabetic retinopathy and kidney cyst
classification. InceptionV3’s ability to capture both global and
local features, along with its efficient architecture, makes it
a valuable tool in computer vision-based prediction tasks.
Structure of InceptionV3 classifier is shown in Fig. 3.

C. Normalization Techniques

To enhance the contrast of image and to make image
features more visible the contrast is increased by performing
min max scaling of images which scales the pixel values to a
specific range.

Batch normalization [45] is frequently used for training
deep neural networks with several benefits as discussed in [46]
[47] [48] [49] [50]. But batch normalization comes with a
major drawback of higher memory and time overheads and a
mismatched behavior of training model and interference model
[51] [52]. Another important limitation of Batch Normalization
is that they break the interdependence between training exam-
ples. Other limitations of batch normalization are discussed
in [53] [54] [55] [56] [57].As a result Normalization Free
ResNets (NFRN) were developed and discussed in [46] [47]
[58] and these NFRN were made more efficient by using
additional regularization mechanisms as discussed in [46] [47].

Gradient Clipping: Gradient Clipping technique was in-
troduced in [59], and the related benefits are demonstrated
in [60] which uses gradient clipping to stabilize training in
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Fig. 3. Structure of InceptionV3.

Algorithm 1 Adaptive Gradient Clipping

1: Input:
2: Model parameters: θ
3: Rate of learning: α
4: Clipping threshold: ϵ
5: Scaling factor: γ
6: Initialization:
7: Set the model’s initial values(parameter) θ
8: Set the initial scaling factor γ (it is usually set to 1.0)
9: Repeat for every training iteration::

10: Compute gradients of the loss function concerning
model parameters: ∇θloss

11: Compute the norm of the gradients: ||∇θloss||
12: if ||∇θloss|| > ϵ then
13: Update the scaling factor γ: γ = ϵ

||∇θ loss||
14: end if
15: Clip gradients: ∇θloss = γ · ∇θloss
16: Update model parameters using the clipped gradients:

θ = θ − α · ∇θloss

Large Language Models. Gradient clipping is mainly used
to counter the Exploding Gradient and Vanishing gradient
problems. Before propagating the erroneous derivatives back
through the network, gradient clipping entails capping them.
Smaller weights are the consequence of updating the weights
using capped gradients. Clipping can be done on the values of
gradients or on the norm of gradients. Both the clip value and
clip norm options are available in optimizers like ADAM.

Adaptive Gradient Clipping (AGC): In [61] authors dis-
cussed that clipped gradient also converges faster than non-
clipped gradients for general nonconvex problems. AGC [3]
improves the convergence of gradient clipping by selecting
an adaptive learning rate inversely proportional to the gradient
norm, and ignoring the gradient’s scale thus facilitating training
with large batch sizes and strong data augmentations. AGC
technique is also suggested as a replacement of Batch Norm
process which enhances memory utilization and increases
learning efficiency of Deep Neural Nets. Algorithm 1 describes
the AGC process.

IV. PROPOSED MODEL AND METHODOLOGY

For the purpose of image classification Normalization
methods can be combined with popular convolutional neural
network (VGG16, ResNet50, and Inception V3). To achieve
this, the CT kidney dataset is subjected to nine different
models.

Three different setups for CT Kidney image classification
are build using three different deep neural nets i.e. VGG16,
ResNet50, and InceptionV3 in each setup. First setup is build
using Min Max normalization with Batch Norm technique. In
second setup the Clip Value (CV) filter of ADAM optimizer
is used, and in the third setup Adaptive Gradient Clipping
(AGC) is used as a replacement of Batch Norm. Fig. 4 shows
the complete experimental setup.

A. Dataset Description

The CT Kidney dataset is a collection of 12,446 distinct
jpeg images of which 3,709 are related to cysts, 5,077 to
normal, 1,377 to stones, and 2,283 to tumors. The Picture
Archiving and Communication System (PACS) was used to
collect the dataset of patients who had previously been diag-
nosed with kidney tumors, cysts, normal findings, or stones at
different hospitals in Dhaka, Bangladesh. The initial collection
was of DICOM (Digital Imaging and Communications in
Medicine) images which contain multiple monochrome images
along with patient information and other meta data. These
images were converted to lossless JPEG image format and the
patient information and meta data were removed. Few sample
images from the four classes of the dataset are shown in Fig.
5, 6, 7, and 8.
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Fig. 4. Proposed model.

Fig. 5. Sample images for normal class of CT kidney dataset.

Fig. 6. Sample images for cyst class of CT kidney dataset.

B. Dataset Preprocessing

Images were initially resized to 150 by 150 pixels. The
dataset is then normalized using min max normalization. The
models are evaluated using a scheme where 80% of the images
were taken to train the model and 20% to test the data. This
resulted in 9,960 training image set and 2,491 test image set
spread across 4 labels.

C. Classification Performance Metrics

A multiclass confusion matrix is used to calculate all the
classification performance metric. All the classification models
applied on CT Kidney dataset generates a multiclass confusion
matrix from which the True Positive (TP), True Negative

TABLE I. CLASSIFICATION PERFORMANCE METRICS

S.No. Metric Formula
1. Accuracy {(TP+TN)}/{(TP+TN+FP+FN)}
2. Recall/Sensitivity {TP}/{(TP+FN)}
3. Precision {TP}/{(TP+FP)}
4. F1-score {(Recall*Precision)}/{(Recall+Precision)}

(TN), False Positive (FP), and False Negative(FN) values are
calculated for each class.

The TP, TN, FP, FN values taken from confusion matrix
help us calculate the following metrics tabulated in Table I.
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Fig. 7. Sample images for stones class of CT kidney dataset.

Fig. 8. Sample images for tumor class of CT kidney dataset.

Additionally for the multiclass dataset the Macro F1 score
and the weighted F1 score are also calculated. The class-wise
F1 scores acquired are simply averaged to get the macro-
averaged F1 score of a model. The weighted F1 score is the
average of the class-wise F1 scores, with the weights assigned
based on the quantity of samples in each class.

Another powerful classification metric is Area Under Re-
ceiver Operating characteristics (AU-ROC) curve. The AU-
ROC is also plotted but owing to the high accuracies achieved
across the models AUROC score of 1 is achieved for all the
classification models. Precision, recall, and f1-scores are used
primarily for comparing the model’s performance.

V. RESULTS AND DISCUSSIONS

The experimental results of three distinct models are shown
and discussed in this section. All three models used three
different deep neural net VGG16, ResNet50, and InceptionV3
creating total of nine combinations. All the nine different
combinations used the same hyperparameters for doing a fair
comparison.

A. Experimental Setup

All the models were executed on Jupyter notebook, in-
stalled on Windows 10 platform with i9 (12th gen) processor
running at 3.19 GHz and having 64 GB of RAM and 1 TB
hard Disk Drive space.

The various Python libraries used were Keras, TensorFlow,
Numpy, os, Sci-kit Learn, and Matplotlib. The hyperparameters
are commonly used across all nine models and are tabulated
in Table II.

Additionally for all the Clip Value (CV) based models
clipvalue=0.6 is used and for all Adaptive Gradient Clipping
(AGC) based models decay rate of 0.95 is used with initial Clip
Norm value = 1.00. The clip norm value is updated adaptively
by AGC algorithm during the run time.

TABLE II. PARAMETER TUNING IN ALL MODELS

SNo Parameter Value
1 No. of Epocs 15
2 Learning Rate 0.01
3 Drop Out 0.5
4 Loss Function Categorical Cross Entropy
5 Optimizer ADAM
6 Batch Size 32
7 Activation Function ReLU and Softmax
8 Regularization Early Stopping from Keras
9 Preprocessing Label Encoder/One Hot Encoding
10 Padding ’Same’

B. Performance Analysis of CT Kidney Dataset using VGG16

VGG16 is evaluated first on the CT Kidney dataset. The
multi-class confusion matrix are shown in Fig. 9 and the
classification metrics are displayed in Table III which displays
the results of Plain VGG16, VGG16 with applied Clip Value
(VGG16-CV), and VGG16 with Adaptive Gradient Clipping
(VGG16-AGC).

In plain VGG16 classification accuracy of 96.9% is
achieved which becomes 96.8% with CV model and 97.1%
with application of AGC. The highest value of Macro and
weighted f1-Score are also achieved with Adaptive Gradient
Clipping technique i.e. 96.1% and 97.2% respectively. The
highest values of precision are recorded in the plain model
except for Class1 where the CV and AGC based models
achieve higher precision values. Plain VGG16 achieves best
Recall for Class0 and Class1 and AGC model achieves best
Recall for Class1 and Class3.
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Fig. 9. Confusion Matrix for (i) Plain VGG16, (ii) VGG16-CV, (iii) VGG16-AGC.

TABLE III. CLASSIFICATION REPORT OF VGG16 MODELS

Plain VGG16 VGG16-CV VGG16-AGC
Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

Class 0(Cyst) .987 .962 .974 .981 .953 .967 .986 .955 .970

Class 1(Tumor) .933 .993 .962 .950 .991 .970 .983 .964 .973

Class 2(Stone) .900 .951 .925 .861 .968 .911 .871 .964 .916

Class 3(Normal) .992 .969 .980 .997 .969 .969 .984 .991 .987

Accuracy .969 .968 .971

Misclassification .031 .032 .029

Macro f1 .960 .958 .961

Weighted f1 .969 .968 .972

C. Performance Analysis of CT Kidney Dataset using
ResNet50

Next the performance of ResNet50 on the CT Kidney
dataset is discussed. The three multi-class confusion ma-
trix are shown in Fig. 10 and the classification metrics are
displayed in Table IV, which contains the results of plain
ResNet50, ResNet50 with applied Clip Value (ResNet50-CV),
and ResNet50 with Adaptive Gradient Clipping (ResNet50-
AGC).
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Fig. 10. Confusion Matrix for (i) Plain ResNet50, (ii) ResNet50-CV, (iii) ResNet50-AGC.

TABLE IV. CLASSIFICATION REPORT OF RESNET50 MODELS

Plain ResNet50 ResNet50-CV ResNet50-AGC
Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

Class 0(Cyst) .984 .983 .984 .992 .986 .989 .994 .995 .994

Class 1(Tumor) .978 .964 .971 .993 .979 .986 .993 .993 .993

Class 2(Stone) .945 .965 .955 .961 .971 .966 .989 .979 .984

Class 3(Normal) .988 .990 .989 .989 .998 .993 .998 1 .999

Accuracy .980 .988 .995

Misclassification .020 .012 .005

Macro f1 .975 .984 .993

Weighted f1 .980 .988 .995

Fig. 11. Confusion Matrix for (i) Plain InceptionV3, (ii) InceptionV3-CV, (iii) InceptionV3-AGC.
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TABLE V. CLASSIFICATION REPORT OF INCEPTION V3 MODELS

Plain InceptionV3 InceptionV3-CV InceptionV3-AGC
Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score

Class 0(Cyst) .996 .991 .993 .946 1 .972 .984 .996 .990

Class 1(Tumor) .978 .996 .987 .996 .956 .976 .993 .979 .986

Class 2(Stone) .989 .975 .982 .989 .914 .950 .989 .989 .989

Class 3(Normal) .991 .991 .990 .993 .993 .993 .999 .997 .998

Accuracy .990 .978 .992

Misclassification .010 .022 .008

Macro f1 .988 .973 .991

Weighted f1 .990 .978 .992

Fig. 12. All AUROC for VGG16 Setup.
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Fig. 13. All AUROC for ResNet50 Setup.
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Plain ResNet50 achieved classification accuracy of 98%
which increases to 98.8% with ResNet50-CV and 99.5% in
ResNet50-AGC model. With AGC the highest scores of Macro
F1, Weighted F1 are achieved. CV model produces marginally
better results as compared to plain model but AGC model
scores the highest precision, and recall values across all the
classes giving the best results.

D. Performance Analysis of CT Kidney Dataset using Incep-
tion V3

In the last setup Inception V3 is used to build the
multiclass classification models. The resultant confusion
matrix are shown in Fig. 11 and the classification metrics are
displayed in Table V for plain Inception V3, Inception V3
with applied Clip Value (Inception V3-CV), and Inception
V3 with Adaptive Gradient Clipping (Inception V3-AGC).
Plain InceptionV3 achieved classification accuracy of 99%
which decreased to 97.8% for the CV model and increased
to 99.2% with AGC model. The Clip Value model performs
marginally better for Class3 but in the remaining classes
it stays behind the plain model. AGC model excels in
precision in Class1 and Class3 and in Recall in Class0
and Class3. Overall AGC model marginally stays ahead of
Plain model with highest score of Macro F1, and Weighted F1.

The AUROC for all the nine models are also plotted in
Fig. 12, 13, and 14. The AUROC score remains same across
all models because of high accuracy achieved.

VI. SUMMARY AND FUTURE WORK

Two different techniques of Clip Value(CV) and Adaptive
Gradient Clipping(AGC) are put to test on the CT Kidney
Dataset in this article and their performances are compared
with the plain models of VGG16, ResNet50, and Inception
V3 models. Using clip value feature of optimizer brings
marginal advantages in the VGG16 and ResNet50 models but
fails to create much notable improvements. But with AGC
model, a notable improvement is observed with VGG16 and
ResNet50 setup, and marginal improvement with Inception V3
setup. AGC not only improves classification metrics but also
improves the learning rates of the models. It was noted that
during the training the AGC models quickly crossed the 90%
and the 95% accuracy marks as compared to the plain models
and the CV based models which took more epochs to reach
90% and 95% accuracies.

These results can be compared with the results in [62]
and [2] in which authors have build classifiers for CT Kidney
dataset. In [62] authors achieve accuracy of 95.29%, 99.48%
and 97.38% using the MobileNetV2, VGG16, and InceptionV3
deep neural nets. In article [2] authors achieve accuracies of
98.20% using VGG16, 73.80% using ResNet50, and 61.60%
using Inception V3. The results produced by the AGC based
model achieves higher value of accuracy in VGG16, ResNet50,
and Inception V3 as compared to these papers (Table VI). AGC
is a promising technique that can be further tested on much
larger datasets like Diabetic Retinopathy dataset in which the
parameters of batch size and learning rates can altered to see
the effect of AGC on larger batch sizes and higher learning
rates. Still the existing results have proven that AGC technique
can be a helpful method for training image datasets where it

is difficult or time consuming to decide the clipping threshold
for regularizing the train dataset.

TABLE VI. ACCURACY COMPARISON OF THE PROPOSED AGC BASED
CLASSIFICATION METHOD

Research Contribution Method Accuracy

M. H. K. Mehedi et al., 2022, [62]
MobileNetV2
VGG16,
InceptionV3

95.29%
99.48%
97.38%

M. N. Islam et al., 2022, [2]
Resnet
VGG16
Inception v3

73.80%
98.20%
61.60%

AGC (Proposed)
Resnet
VGG16
Inception v3

99.5%
97.1%
99.2%
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