
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

An Efficiency Hardware Design for Lane Detector
Systems

Duc Khai Lam
University of Information Technology, Ho Chi Minh City, Vietnam

Vietnam National University, Ho Chi Minh City, Vietnam

Abstract—The Hough Transform (HT) algorithm is a popular
method for lane detection based on the 'voting' process to extract
complete lines. The voting process is derived from the HT
algorithm and then executed in parameter space (ρ, θ) to identify
the 'votes' with the highest count, meaning that image points with
pairs of angle θ and distance ρ corresponding to those 'votes'
lie on the same line. However, this algorithm requires significant
memory and computational complexity. In this paper, we propose
a new algorithm for the Hough Space (HS) by utilizing parameter-
ization (Y-intercept, θ) instead of (ρ, θ) parameterization and lane
direction. This simplifies the inverse LHT operation and reduces
the accumulator's size and computational complexity compared
to the standard LHT. We aim to minimize processing time per
frame for real-time processing. Our implementation operates at
a frequency of 250MHz, and the processing time for each frame
with a resolution of 1024x1024 is 4.19ms, achieving an accuracy
of 85.49%. This design is synthesized on the Virtex-7 VC707
FPGA.

Keywords—FPGA; Hough transform; look up table; lane de-
tector; autonomous vehicle

I. INTRODUCTION

Lane detection is one of the crucial objectives in image
processing and computer vision, extensively applied in indus-
tries such as vehicle guidance and Advanced Driver Assistance
Systems (ADAS). It involves detecting white or yellow lane
markings. In some vision applications for Lane Departure
Warning Systems (LDWS), the Hough Transform algorithm is
widely utilized for lane detection due to its robust and effective
detection capability, even in environments with significant
noise or multiple non-contiguous lines [1]–[3]. This method
relies on the ’voting’ process and extracts complete lines.

Recent studies have focused on enhancing the Voting
method within the Hough Transform for real-time computa-
tion. In [4], the authors applied Parallel Voting on an FPGA,
utilizing a 2D array accumulator for line computation in the
Hough Space with parameter pairs (ρ, θ). By transforming the
array into a 1D array and partitioning the Hough Space into
parallel voting blocks, concurrent determination of lines and
parameter computation (ρ, θ) was achieved. This accelerated
the process, resulting in an average processing speed of 5.4ms
per frame at a frequency of 200MHz, making video processing
more feasible.

Similarly, subsequent authors proposed a hardware archi-
tecture for HT serving lane detection using the Parallel Voting
method, implemented on FPGA in the scientific study [5].
Based on θ, the values in the Hough Space were parallelized.
To detect edges of image frames in videos, computations of
(ρ, θ) were performed to extract the highest voting value in the

Hough Space to determine the lines. The achieved processing
speed was approximately 135 frames/s when deployed on the
FPGA kit, operating at a frequency of 50MHz, and the image
transmission protocol was VGA (640x480).

In the study [6], the authors developed a new algorithm for
the Hough Parameter Space (HPS), which significantly reduced
memory requirements compared to the standard Hough Trans-
form (HT) algorithm. This method also supported accelerated
Inverse Hough Transform (IHT) and reduced the accumulator
size for voting. The efficiency of the proposed architecture
was demonstrated through hardware-software co-simulation on
the Xilinx Virtex-5 ML505 platform. The architecture from
reference [4] allowed for a processing time of 1.47ms per
frame for an image size of 640x480 pixels and an operating
frequency of 200MHz.

The Angular Regions - Line Hough Transform (AR-LHT)
method, based on techniques from LHT, is a memory-efficient
approach for line detection in images. Utilizing the Hough
Parameter Space (HPS) with minimal dispersion reduces mem-
ory usage significantly, as reported in [7]. Authors employ
two smaller memories: a 1-bit Bitmap Region (RBM) and a
downsized HPS. RBM determines peak orientation precisely
after the voting process. Results show a 48% decrease in RAM
usage compared to standard LHT for images sized 1024x1024
pixels. FPGA processing time for one image is 9.03ms.

In the study [8], the authors propose an HT architecture
that uses a Look Up Table (LUT) to store trigonometric values
and use the value of orientation θ calculated in the Sobel Edge
Detection algorithm instead of rotating small angles as the HT
standard. The processing time per 1024x1024 image resolution
frame is 6.17ms with an accuracy of 94%. This design is
synthesized on the FPGA Virtex-7 VC707.

In the study [9], [10], the authors implemented a real-
time single-camera lane detection. To address different lighting
conditions, they employed vital algorithms such as the Otsu,
Canny algorithms and the Hough transform for lane detection
to determine the Region of Interest and minimize computa-
tional complexity; detecting vanishing points is crucial.

The main contribution of [11] is to present an efficient
implementation of Hough Transform based on Gradient for
line detection, using Xilinx Virtex-7 FPGA with digital signal
processing (DSP) units and integrated RAM blocks. The
architecture is implemented with a working frequency of
260.061MHz and 2n + (

√
2 + 2)n + 232 clock cycles for a

grayscale image of size n * n.

For complicated conditions, such as rain and night il-
luminations, the new processing method, comprising four

www.ijacsa.thesai.org 1177 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

stages: Gaussian blur, grayscale conversion, Dark-Light-Dark
threshold (DLD) algorithm, edge extraction using correlation
filters, and Hough Transform according to [12], [13], has been
developed. It effectively addresses lane complexities including
arrows and text. Validation results demonstrate a maximum
detection rate of 97.2%.

In [14], the authors present an algorithm for simple and
user-friendly lane detection using the Line Segment Detector
(LSD). This system maintains a throughput performance of
60 frames per second (fps) for VGA images (640×480) on the
PYNQ-Z1 board with the Xilinx XC7Z020-1CLG400C FPGA.

To optimize the hardware resource for rho and theta calcu-
lations in the voting process of the line Hough Transform, the
authors [15] propose an efficient memory design. This design
is implemented in TSMC ASIC 90nm technology. It requires
only 4174 MB RAM.

In this work, we focus on presenting an efficient hard-
ware architecture design for the lane detection model to
achieve real-time processing for large-resolution videos. We
optimize hardware resources by reducing memory size and
computational complexity. The lane detection core employs the
Hough Transform algorithm. The proposed system includes the
preprocessing process using the Gray Scale algorithm, Sobel
Edge Detection, and the central processing algorithm - Hough
Transform, implemented on an FPGA kit. The architecture
focuses on accelerating hardware performance for the Hough
Transform and Inverse Hough Transform algorithms by uti-
lizing parameterization (Y-intercept, θ) in the Hough space
and significantly reducing hardware resources by applying
Region of Interest. Enhancements will concentrate on memory
optimization of modules within the design and simplifying
computational operations.

The rest of the paper is organized as follows. Section II
presents the proposed hardware design architecture. Section III
shows the evaluation and comparison results. Finally, Section
IV gives the conclusions of this paper.

II. PROPOSED HARDWARE DESIGN ARCHITECTURE

Fig. 1. Hough transform system.

Fig. 1 illustrates the architecture of the Lane Detection
System using the Hough Transform, with the input being pixel
values of an image and the output being the ρ and θ values
after being voted in the Hough Transform module.

The proposed lane detection system consists of three parts,
including the hardware architectures of the Gray Scale, Sobel
Edge Detection, and Hough Transform algorithms. The func-
tional blocks in this system are designed using the Verilog
language. The available blocks of Gray Scale are referenced
from the Masking module architecture, Gray Scale, Sobel Edge
Detection, and the Hough Transform module is referenced
from the study [6]. This paper will focus on utilizing the

Region of Interest (ROI) to reduce resources. The system’s ROI
is determined through experimental measurements, as depicted
in Fig. 2. The details of the improved and optimized functional
modules will be described below.

Fig. 2. Define the left and right lane boundaries’ region of interest (ROI).

A. Sobel Edge Detection Module

The conventional structure is depicted in Fig. 3. In this
structure, the image passes through Shift Registers to store
the values of pixels in a row to form the matrix values of
the Gx and Gy masks in the Gx, Gy Operator module. Then,
it computes the orientation and edge intensity of the image
through the Vectoring Cordic Module. Fig. 3 illustrates the
architecture of this algorithm.

Fig. 3. Sobel edge detection.

However, utilizing Shift Registers as a First-In-First-Out
(FIFO) mechanism could result in resource consumption and
potentially suboptimal efficiency. As illustrated in Fig. 4,
the Registers typically employed for retaining pixel rows are
substituted with Memory components within the proposed
Sobel Edge Detection method. Leveraging Memory resources
on the FPGA offers the advantage of mitigating the routing
complexities inherent in the design, consequently enabling
elevated processing frequency within this module.

Fig. 4. Proposed Sobel Edge Detection.

www.ijacsa.thesai.org 1178 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

Fig. 5. Hough Transform module.

B. Hough Transform Module

In the conventional hardware design of the Hough Trans-
form module, the authors employed the conventional method of
Hough Transform computation, depicted in Fig. 5. This method
involves computing ρ (rho) using the formula:

ρ = x ∗ cos(θ) + y ∗ sin(θ) (1)

And utilizing the (ρ, θ) value system throughout cal-
culations and as results. However, this approach does not
include mechanisms for accelerating computations for the
Inverse Hough Transform, necessitating additional processing
steps after obtaining results from the hardware design. To
reduce computational complexity, cos and sine trigonometric
functions are computed via Look-Up Tables (LUTs) for both
functions, as illustrated in Fig. 6. Notably, Sin and Cosin LUTs
encompass data beyond the Region of Interest experimented
with, resulting in memory consumption to store unnecessary
values. Furthermore, the Voting module in the conventional
design uses a Dual Port RAM as an accumulator for each
image pixel identified as part of a straight line, as depicted
in Fig.7. Subsequently, the (ρ, θ) values are directed to the
Address generate block to furnish address values for the Voting
module, thereby facilitating the voting process.

Fig. 6. Sin LUT and Cos LUT.

Within the Voting Module, the Dual-port RAM performs
concurrent accumulation and voting tasks, leveraging its ver-
satile operational modes that seamlessly alternate between
reading and writing operations. This integrated functionality
optimizes resource utilization and enhances overall processing
throughput within the module.

Within the Voting Port A of the Dual-port RAM, its
functionality extends to retrieving the Accumulator value,
subsequently updating it by assigning the value A (ρ i, θ i)
= A (ρ i, θ i) + 1 into Port B. Activating wr en permits

the writing operation to Port B contingent upon detecting an
edge pixel within the Sobel Edge Detection module. Upon
completion of the mapping and accumulation stages for the
candidate (ρ, θ) pairs, the most prominent vote within the
accumulator ensemble is determined through a straightforward
comparison method characterized by its simplicity and mini-
mal computational overhead.

Upon surpassing predefined threshold criteria during the
voting process, the (ρ, θ) values garnered at the output undergo
comparison and are archived within a flip-flop, effectively
becoming the benchmark for comparison to ascertain the
maximum value among the addresses within the dual-port
RAM. This selection process culminates in the derivation
of the outcome. Notably, each Voting module functions au-
tonomously in delineating between the left and right lane lines.
Nevertheless, each Voting module is singularly capable of exe-
cuting voting operations for individual lane lines, necessitating
the deployment of two Voting modules to detect a single lane
line.

Fig. 7. Voting module.

Fig. 8. Allocation Dual Port RAM.

www.ijacsa.thesai.org 1179 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

Fig. 9. Proposed Hough Transform.

The dual-port RAM in the conventional design has a
memory space size from 0 to 179 * MaxRHO with MaxRHO
= 750 for an image size of 1024x1024, as shown in Fig. 8.
The memory space size of the dual-port RAM includes all
addresses from the smallest to the largest of the (ρ, θ) value
pairs and contains values that are not within the ROI, leading
to unnecessary resource consumption.

Even and odd voting blocks are used alternately, with the
Even Voting performing the voting while the Odd Voting is
in the reset process for the next voting round, and vice versa.
This allows the voting process to be carried out continuously
without interruption to reset the accumulator values. Therefore,
four voting modules are required to perform the Voting and
reset the accumulator values alternately to continuously obtain
the output of the left and right lane lines. In the conven-
tional formula Eq. (1) of the Hough Transform algorithm,
the processing of the inverse transformation, Inverse Hough
Transform, has not been performed and needs to be processed
to obtain the equation of the line:

b = x ∗m+ y (2)

In the proposed design, the computation of ρ will be
replaced by b:

m = cotθ (3)

b = ρ/sin(θ) (4)

(2), (3), (4) → b = cot(θ) ∗ x+ y (5)

Using this method, the hardware design also accelerates
the Inverse Hough Transform. The proposed Hough Transform
algorithm is described in Fig. 9. Compared to the conventional
design, the Hough Transform module computes the value of b
according to formula Eq. (5) to jointly enter the selection by
pairs of values (b, θ) for the line. The design can compute for
the process of Inverse Hough Transform with the final output
being a linear equation Eq. (2). After selecting the line, the θ
value is used to retrieve the (b, m) pair of results from the Dual
port ROM of the COTAN trigonometric function to output. The
final output value will be in the format of a linear equation.
Moreover, the COTAN trigonometric function will only utilize
1 LUT instead of both Sin and Cosine trigonometric functions.

Furthermore, ROI will be utilized to reduce the resource
usage of Cotan LUT, as shown in Fig. 10. The values stored
inside the Cot LUT are limited to those experimented in the
conventional design. The LUT will compute the values of θ
from 30 degrees to 53 degrees and 130 degrees to 153 degrees

Fig. 10. Cotan LUT.

to optimize resources and eliminate unnecessary values outside
the ROI.

In the proposed hardware design of the Hough Transform,
the Voting module is reduced to 2 Voting modules: Voting
even and Voting odd. Each Voting module can perform Voting
for the left and right lane lines by adding a condition to
differentiate the peak values for the left and right lanes. This
is illustrated in Fig. 11.

In the proposed Voting module, a comparison operation is
added to compare the rotation angle of the pixel. If the pixel
has a rotation angle greater than 90 degrees, then it belongs
to the left side, otherwise if it is less than 90 degrees, then it
belongs to the right side of the lane. This way, each Voting
module will handle both the right and left lanes, reducing the
number of Voting Modules needed by half.

Fig. 11. Proposed voting module.

After changing from the Hough Space (ρ, θ) to the parame-
ter space (b, θ), the maximum value in the space also changes,

www.ijacsa.thesai.org 1180 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

Fig. 12. Size of the proposed Dual Port RAM.

with the max being 1550. However, when applying ROI to the
Hough Transform Module, the b value will range from -860 ≤
b ≤ 400 based on formula Eq. (5). The offset needs to be added
to max = 400 to obtain the computation address 860, and the
upper limit of b is 1260. Therefore, the Dual-port ram in the
proposed design will have a memory region size of ((53-30)
* (bmax+boffset) + ((153-130) * (bmax+boffset)) as shown in
Fig. 12 and eliminate unused address regions outside the ROI.

The amount of memory used by the Hough Transform will
be reduced to only 2% compared to the conventional design,
and in the HOUGH TRANSFORM Module of the proposed
design, only 2 VOTING modules are required. This reduces
the overall RAM size of the proposed design to approximately
1.044% compared to the conventional design.

III. VERIFICATION

A. Synthesized Result

The architecture is synthesized on the Virtex-7 VC707
FPGA platform using the Vivado Design Suite program based
on the proposed architecture method. Table I shows the re-
source consumption for the proposed hardware architecture of
the Hough Transform, benefiting from method simplification,
transforming the Hough Space into (b, θ), and applying ROI
rigorously. The architecture utilizes 0.82% LUT and 482 Kbit
memory (approximately 0.37%) for the Cotan Look-up table.
BRAM usage accounts for about 3.5% of the Voting process.

TABLE I. RESOURCE CONSUMPTION OF THE PROPOSED ARCHITECTURE

Resource Synthesis Implementation
Board Virtex-7 VC707 Virtex-7 VC707
LUTs 2498/303600 (0.82%) 2483/303600 (0.82%)
LUTRAM 482/130800 (0.37 %) 482/130800 (0.37 %)
FF 3243/607200 (0.53%) 3222/607200 (0.53%)
BRAM 36 /1030 (3.5%) 36/1030 (3.5%)
DSP 1/2800 (0.04%) 1/2800 (0.04%)
IO 89/700 (12.71 %) 89/700 (12.71 %)
BUFG 1/32(3.13%) 1/32(3.13%)

The achieved processing speed after synthesis (see Table II):

• Image resolution: 1024x1024

• Processing frequency: 250 MHz

• Processing speed (ms/frame): 4.19 ms

Table III illustrates a detailed comparison of resource uti-
lization between our FPGA implementation system and other
studies. Although our architecture utilizes different devices
compared to other studies, overall, the hardware resources
of LUTs we use are relatively small. The architecture of [4]
employs a small FPGA generation, with 0.8% LUTs, 9.36%
memory, and 3.72% DSP. In [5], resource usage comprises
17% LUTs, 49% memory, and 3% FF. However, it utilizes
more resources for DSP, at 59.77%. Authors in the study [6]
implement the Hough space using (Y-intercept, θ) and require
6.9% LUTs, 5.6% memory, and 15.54% slices without using
DSP. Additionally, 5.18% LUTs, 9.34% slices, and 3.71% FF
of resources are utilized in [7]. This system uses a significant
number of resources for BRAM, at 66.67%. In [8], 5.83%, 3%
slices, and 0.75% memory are utilized. Regarding BRAM, it
uses 31%, 0.67% FF, and only 0.07% DSP.

B. Verification and Evaluation

To validate the hardware design of the Hough Transform
system, a simulation model was implemented using the Verilog
hardware description language, and the Hough Transform IP
was simulated on the Vivado Design Suite, as shown in Fig. 13.
The evaluation results will be based on the same validation

Fig. 13. Verification model.

Fig. 14. Precision and recall.

dataset used in the study [8]. The videos are processed and
converted into text files, then simulated using the Vivado
Design Suite application. The resulting data is saved in text
files, and Python processes the output values. These output
values will be used to draw the lane lines.

This paper utilizes the Precision, Recall, and F1-score
evaluation systems to ensure comprehensive and objective

www.ijacsa.thesai.org 1181 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

TABLE II. RESULTS OF OUR WORK COMPARISON WITH DIFFERENT ARCHITECTURES

[4] [5] [6] [7] [8] Our architecture
Image Resolution 1024x768 640x480 640x480 1024x1024 1024x1024 1024x1024

Fmax (MHz) 200 50 200 145 170 250

Processing Speed (ms/frame) 5.4 7.4 1.47 9.03 6.17 4.19

Normallized Speed (ns/pixel) 6.8 24.08 4.78 8.61 5.88 4

TABLE III. RESOURCE REQUIREMENTS OF OUR SYSTEM COMPARISON WITH DIFFERENT ARCHITECTURES

Resource usage [4] [5] [6] [7] [8] Our architecture

Device Altera Stratix IV Cyclone II FPGA Virtex-5 ML505 Xilinx xc7z001-1 Virtex-7 VC707 Virtex-7 VC707

LUTs 1459 5460 1996 911 4551 2483

Slices 5115 – 1119 411 2275 1200

Memory (Kbit) 1604 1985 1625 – 986 482

BRAM – – – 40 320 36

FF – 5781 – 1307 4215 3222

DSP 48 52 0 0 2 1

TABLE IV. THE ACCURACY RESULTS OF THE SIMULATION

[8] Our work

Road type Number of frame Precision Recall F-score Precision Recall F-score
Normal 1260 96.65% 98.46% 97.55% 93.14% 90.67% 90.54%

Poor condition 1802 97.31% 98.12% 97.65% 87.18% 98.53% 91.50%

Urban road 1810 83.61% 96.44% 88.41% 63.55% 96.37% 74.43%

Total 4872 92.53% 97.67% 94.54% 81.29% 95.19% 85.49%

evaluation. Precision, known as positive predictive value, mea-
sures the accuracy of the positive predictions. Recall, also
referred to as sensitivity in binary classification, measures the
proportion of actual positives that are correctly identified. F1-
score is the harmonic mean of Precision and Recall (assuming
both values are non-zero). Its value ranges from 0 to 1 and is
defined as follows:

Precision =
TN

TN + FN
(6)

Recall =
TP

TP + FN
(7)

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(8)

where, True Positive (TP) is the result where the model
correctly predicts the positive class, True Negative (TN) is the
result where the model correctly predicts the negative class.
FP (False Positive) results in the model incorrectly predicting
the positive class. FN (False Negative) is the result where the
model incorrectly predicts the negative class. Fig. 14 illustrates
an example of Precision and Recall results.

The evaluation results performed on the dataset including
three videos, are depicted in Table IV. Testing results were
conducted on multiple videos under various lighting and road
conditions, including urban streets, highways, road conditions,
coverage, poor road markings, day and night scenes. By
comparing images, it is evident that the successfully deployed
architecture accurately detects straight lanes.

The results evaluated on the dataset from study [6], consist-
ing of 3 videos, are presented in Table IV. The testing results
on multiple videos with varying lighting and road conditions,

including urban streets, highways, road conditions, coverage,
poor road markings, day and night scenes, were conducted.
By comparing images, it can be observed that the successfully
deployed architecture detects straight lanes. The comparative
results indicate that the conventional architecture accurately
detects straight lanes under different lighting and road con-
ditions using metrics derived from these four results. Their
average accuracy rates are approximately 92.53%, 97.67%, and
94.54%, respectively. Our hardware architecture’s accuracy
rates are 81.29%, 95.19%, and 85.49%, respectively. It is noted
that there is a significant decrease in accuracy in our proposed
architecture.

IV. CONCLUSIONS

This paper introduces a lane detection system for au-
tonomous vehicles. The algorithm utilizes Gray Scale, Sobel
Edge Detection, and Hough Transform methods. The hardware
architecture is designed using the Verilog hardware description
language. The proposed architecture implements a rigorous
Region of Interest (ROI) approach to reduce hardware resource
usage and algorithmic enhancements to reduce processing load
for Inverse Hough Transform. The research aims to achieve
fast processing speed through ROI implementation, which
is capable of processing approximately 4.19ms per frame
with a resolution of 1024x1024 and a frequency of 250MHz.
When synthesized on the Virtex-7 VC707 FPGA board, the
system achieves an accuracy of 85.49%. Although the real-time
processing speed is achieved, the detection rate is relatively
low. Therefore, we will explore how to improve the detection
rate by applying the learning machine in our system for the
future work.

www.ijacsa.thesai.org 1182 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

ACKNOWLEDGMENT

This research is funded by Vietnam National University Ho
Chi Minh City (VNU-HCM) under grant number DS2023-26-
02.

REFERENCES

[1] Yam-Uicab, R., Lopez-Martinez, J.L., Trejo-Sanchez, J.A. et al. A fast
Hough Transform algorithm for straight lines detection in an image
using GPU parallel computing with CUDA-C. J Supercomput 73,
4823–4842 (2017). https://doi.org/10.1007/s11227-017-2051-5.

[2] D. Qiu, M. Weng, H. Yang, W. Yu and K. Liu, ”Research on Lane
Line Detection Method Based on Improved Hough Transform,” 2019
Chinese Control And Decision Conference (CCDC), Nanchang, China,
2019, pp. 5686-5690, doi: 10.1109/CCDC.2019.8833139.

[3] S. Luo and X. Zhao, ”Application of improved Hough transform in
lane line detection,” 2022 IEEE 10th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), Chongqing,
China, 2022, pp. 1717-1721, doi: 10.1109/ITAIC54216.2022.9836543.

[4] Guan, Jungang, Fengwei An, Xiangyu Zhang, Lei Chen, and Hans
Jürgen Mattausch. 2017. ”Real-Time Straight-Line Detection for XGA-
Size Videos by Hough Transform with Parallelized Voting Procedures”,
Sensors, vol. 17, no. 2: 270. https://doi.org/10.3390/s17020270.

[5] Guan, J., F. An, X. Zhang, Lei Chen and H. Mattausch.
“Energy-Efficient Hardware Implementation of Road-Lane Detec-
tion Based on Hough Transform with Parallelized Voting Proce-
dure and Local Maximum Algorithm.”, IEICE Transactions on In-
formation and Systems, 2019. vol. E102.D, no. 6, pp. 1171-1182.
https://doi.org/10.1587/transinf.2018EDP7279.

[6] El Hajjouji, Ismaı̈l Mars, Salah Asrih, Zakariae El Mourabit, ”A novel
FPGA implementation of Hough Transform for straight lane detection,”
International Journal of Engineering Science and Technology, 2019, vol.
23, https://doi.org/10.1016/j.jestch.2019.05.008.

[7] D. Northcote, L. H. Crockett and P. Murray, ”FPGA Implementation of
a Memory-Efficient Hough Parameter Space for the Detection of Lines,”
2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351115.

[8] Lam, D.K., Dinh, P.T.L., Ngoc Diem Nguyen, T. (2023). Hardware-
Based Lane Detection System Architecture for Autonomous Vehicles.
In: Dao, NN., Thinh, T.N., Nguyen, N.T. (eds) Intelligence of Things:
Technologies and Applications. ICIT 2023. Lecture Notes on Data
Engineering and Communications Technologies, vol 188. Springer,
Cham. https://doi.org/10.1007/978-3-031-46749-3 4.

[9] Y. Kortli, M. Marzougui, B. Bouallegue, J. S. C. Bose, P. Ro-
drigues and M. Atri, ”A novel illumination-invariant lane detection
system,” 2017 2nd International Conference on Anti-Cyber Crimes
(ICACC), Abha, Saudi Arabia, 2017, pp. 166-171, doi: 10.1109/Anti-
Cybercrime.2017.7905284.

[10] Y. Wang, L. Shi, J. Lausanne and D. Zhong, ”Straight lane
line detection based on the Otsu-Canny algorithm,” 2022 IEEE
6th Information Technology and Mechatronics Engineering
Conference (ITOEC), Chongqing, China, 2022, pp. 27-30, doi:
10.1109/ITOEC53115.2022.9734320.

[11] X. Zhou, Y. Ito and K. Nakano, ”An Efficient Implementation of
the Gradient-Based Hough Transform Using DSP Slices and Block
RAMs on the FPGA,” 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, Phoenix, AZ, USA, 2014, pp. 762-
770, doi: 10.1109/IPDPSW.2014.88.

[12] Zhang, Z.C. and Ma, X., ”Lane Recognition Algorithm Us-
ing the Hough Transform Based on Complicated Conditions,”
Journal of Computer and Communications, vol.7, pp. 65-75,
https://doi.org/10.4236/jcc.2019.711005.

[13] A. Istiningrum, U. Salamah and N. P. Taufik Prakisya, ”Lane Detec-
tion With Conditions of Rain and Night Illumination Using Hough
Transform,” 2022 5th International Conference on Information and
Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2022,
pp. 429-434, doi: 10.1109/ICOIACT55506.2022.9972068.

[14] T. Manabe et al., ”Autonomous Vehicle Driving Using the Stream-Based
Real-Time Hardware Line Detector,” 2019 International Conference on
Field-Programmable Technology (ICFPT), Tianjin, China, 2019, pp.
461-464, doi: 10.1109/ICFPT47387.2019.00093.

[15] K. V. Pachkor and V. Arunachalam, ”Memory Efficient ASIC Imple-
mentation of Line Hough Transform,” 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information & Commu-
nication Technology (RTEICT), Bangalore, India, 2018, pp. 718-723,
doi: 10.1109/RTEICT42901.2018.9012298.

www.ijacsa.thesai.org 1183 | P a g e


