
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

Day Trading Strategy Based on Transformer Model,
Technical Indicators and Multiresolution Analysis

Salahadin A. Mohammed

Information and Computer Science Department,
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract—Stock prices are very volatile because they are
affected by infinite number of factors, such as economical, social,
political, and human behavior. This makes finding consistently
profitable day trading strategy extremely challenging and that
is why an overwhelming majority of stock traders loose money
over time. Professional day traders, who are very few in number,
have a trading strategy that can exploit this price volatility to
consistently earn profit from the market. This study proposes
a consistently profitable day trading strategy based on price
volatility, transformer model, time2vec, technical indicators, and
multiresolution analysis. The proposed trading strategy has eight
trading systems, each with a different profit-target based on the
risk taken per trade. This study shows that the proposed trading
strategy results in consistent profits when the profit-target is 1.5
to 3.5 times the risk taken per trade. If the profit-target is not
in that range, then it may result in a loss. The proposed trading
strategy was compared with the buy-and-hold strategy and it
showed consistent profits with all the stocks whereas the buy-and-
hold strategy was inconsistent and resulted in losses in half the
stocks. Also three of the consistently profitable trading systems
showed significantly higher average profits and expectancy than
the buy-and-hold trading strategy.

Keywords—Artificial neural network; saudi stock exchange;
machine learning; deep learning; transformer model; stock price
prediction; time series analysis; technical analysis; multiresolution
analysis

I. INTRODUCTION

In the context of this study, day trading is a business of
buying a number of shares on a trading day and selling them
all before the end of the same trading day for a profit or a loss.
Day trading is a business of probability. When a consistently
profitable day trader enters a trade, he is not sure whether the
trade will be a winner or a loser, but he is sure that after he
does many trades, he will end up profitable. For example, the
2023 US investment champion’s win rate was less than 35%
but he ended the year with more than 805% profit [1], [2]. This
is because he has a trading system with a positive expectancy.
Expectancy, Φ, is defined as show by Eq. (1).

Φ = AW ×WR−AL× (1−WR) (1)

where, AW is average win, AL is average loss, and WR is
win rate. For example, if a trader did a total of 1000 trades
and 400 of them were winners, his WR is 0.4. If his average
win is 500 dollars and his average loss is 200 dollars, then his
Φ is 80 = 0.4 × 500 − 0.6 × 200. This means he expects to
gain 80 dollars per trade.

To increase their winning rates many professional day
traders use technical indicators. Recently, systematic trading
using deep learning has emerged as a powerful tool for
predicting future stock prices [3]–[5]. In this study, a day
trading strategy with a positive expectancy is proposed. To
increase the win rate, the proposed trading strategy uses not
only technical indicators (TIs) but also transformer neural
network (TNN) and multiresolution analysis (MRA).

MRA was included in the proposed solution because many
researchers reported that they got better performance when
they combined MRA with their predictive model. For example,
MRA resulted in better model performance when combined
with each of ARIMA [6], descriptive statistical modeling [7],
ANN [8], [9], RNN [10], CNN [11], GRU [12], LSTM [13],
and stacked autoencoders [14].

TIs were also found to improve model performance by
many researchers [5]. The problem is, there are more than 100
technical indicators and each technical indicator (TI) may have
a number of parameters. Choosing the wrong combination of
TIs or assigning a TI a wrong parameter value can degrade
performance. So in this study, a systematic way of choosing
TIs and their parameter values is presented.

There are many possible deep learning architectures.
Choosing the wrong architecture can result in poor perfor-
mance. For the proposed day trading strategy, several deep
learning architectures were compared and the one that outper-
formed all of them was selected. The proposed deep learning
model takes as input a dataset which consists of nine features,
such as prices, volume, indices, and TIs. Some of these features
are decomposed using empirical wavelet transform (EWT)
before they are fed to the model. The model predicts the
highest and the lowest stock prices of a given trading day. The
proposed day trading strategy is based on these two predicted
prices and will be explained in Section V-G. The proposed day
trading strategy consists of eight trading systems; and unlike
many of the existing systems, they were tested in different
market conditions using ten randomly picked stocks listed in
the Saudi stock market. They were compared with the buy-
and-hold trading strategy and the experimental results show
that five of the proposed systems showed positive expectancy
consistently with all the ten stocks whereas the buy-and-hold
strategy was inconsistent and resulted in losses in half of the
stocks.

The main contributions of this work are:

1) A day trading strategy which combines TNN, TI,
EWT MRA, and time2vec [15]. To the best of our

www.ijacsa.thesai.org 1077 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

knowledge, this is the first study to do so.
2) The first consistently profitable day trading strategy

which uses TNN for Saudi stock market.
3) A trading strategy based on a systematic way of

choosing and combining TIs and their parameter
values.

4) A study which presents the impact of profit-target on
profitability.

The remainder of this paper is organized as follows. Section
II gives background information relevant to the proposed
solution. Section III presents related work. The proposed
framework is explained in Section IV. Section V discusses the
results and analysis of the proposed methodology, and Section
VI is the conclusion.

II. BACKGROUND

This section gives brief background information on some
topics used in this study. The covered topics include deep
learning models and wavelet transform.

A. Deep Learning

Deep learning is a subfield of machine learning based on
deep neural networks (DNN). A DNN is essentially an artificial
neural network (ANN) with more than three layers. These
multiple layers give a DNN massive computing power and
enables it to train on huge amounts of data with little human
intervention, which makes it different from the other classical
machine learning algorithms. Each DNN layer extracts certain
information from the data and redirects the learned information
to the next layer to perform another type of information
extraction. This hierarchy of information extraction enables
DNNs to perform better forecasting than the other classical
machine learning algorithms. There are several DNN models
but the most popular DNN models for time series data are,
Recurrent Neural Network, Long Short-Term Memory, Gated
Recurrent Unit, and transformers.

1) Recurrent neural network: A recurrent neural network
(RNN) is a special type of ANN. However, unlike the standard
feed-forward ANN, RNN networks have feedback connections
which enables output from a previous step to be fed as input
to the current step [16], [17]. RNNs also have the concept
of memory that enables them to store limited information
extracted from previous inputs which are then used to generate
subsequent output. Having memory and feedback loop makes
RNNs very popular for sequence data, such as time series,
where one data point depends on previous data points.

2) Long Short-Term Memory (LSTM): Long short-term
memory (LSTM) is a variant of RNN. It was proposed by
Hochreiter and Schmidhuber [18] to resolve the vanishing and
exploding gradient problems observed in the simple RNN,
enabling it to capture longer-term dependencies.

LSTM architecture consists of a sequence of neurons and
memory blocks known as cells, Fig. 1. The sequence of
neurons form three gates, namely input gate, forget gate, and
output gate. It uses these gates to control the flow of informa-
tion to and from its neurons and to select the information it
needs to discard or keep in its memory cells. The equations

Fig. 1. LSTM architecture [19].

that are computed by the different neurons inside LSTM are
as follows [20]:

it = σ(Wixt + Uiht−1 + Vict−1) (2)
ft = σ(Wfxt + Ufht−1 + Vfct−1) (3)
ot = σ(Woxt + Uoht−1 + Voct) (4)
c̃t = tanh(Wcxt + Ucht−1) (5)
ct = f it ⊙ ct−1 + it ⊙ c̃t (6)
ht = ot ⊙ tanh(ct) (7)

where, it, ot, ft and ct denote the input-gate, the output-
gate, the forget-gate, and the memory cells respectively. ht
represents a hidden state.

3) Gated Recurrent Unit (GRU): Gated recurrent unit
(GRU) is also another variant of RNN [21]. Its structure is
similar to LSTM but uses two gates, namely reset-gate and
update-gate, to control the retention and flow of information
(see Fig. 2). Its performance is comparable to that of LSTM
but it is faster to train due to its fewer equations. The equations

Fig. 2. GRU architecture [21].

www.ijacsa.thesai.org 1078 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

computed by GRU are as follows [22]:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (8)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (9)
zt = σ(Wzxt + Uzht−1 + bz) (10)
rt = σ(Wrxt + Urht−1 + br) (11)

where, rt and zt denote the reset-gate and update-gate, respec-
tively. ht and ht−1 represent the current and previous states,
respectively.

RNN, LSTM, and GRU are incredibly slow because their
training is difficult to parallelize. This is because inputs must
be sequentially fed and the next step relies on the analysis of
the previous step.

4) Transformer Neural Network (TNN): Transformer neu-
ral network (TNN) is a type of DNN which doesn’t rely
on recurrent connections [23]. Instead, it uses a mechanism
known as self-attention which enables it to handle long-range
dependencies and process input sequences in parallel for more
efficient computation [23]. A typical TNN consists of an
encoder and a decoder (see Fig. 3).

Fig. 3. TNN architecture [23].

The encoder is made up of multiple identical layers, and
each layer consist of two sub-layers, namely a multi-head self-
attention mechanism and a fully connected feedforward neural
network (FFNN) [24]. To improve the performance and train-
ing stability of the encoder, each of the above mentioned sub-
layers is followed by a residual connection and a normalization

step. The input data is augmented with positional encoding
[25] and processed through the stacked layers, sub-layers, and
steps of the encoder.

A decoder is also made of multiple identical layers. The
sub-layers of a decoder layer are similar to that of an encoder
but has an additional sub-layer known as an encoder-decoder
attention mechanism. This additional sub-layer enables the
decoder to selectively focus on different parts of the encoded
input sequence while generating the output. At each layer,
the decoder processes each sequence with multi-head self-
attention, position-wise FFNN, residual connections, and nor-
malization.

The self-attention mechanism allows a TNN to prioritize
the various input sequences according to their importance.
The input sequence is linearly projected into multiple sets of
queries, keys, and values, which are then used to compute
attention scores. The scores are used to weigh the values,
and the resulting weighted values are summed to produce
the output of the self-attention layer. This process is repeated
for each head, and the outputs are concatenated and linearly
transformed to create the final output.

Attention(Q,K, V) = softmax

(
QKT√
(dk

)
(12)

where, Q, K, and V are the query, key, and value matrices,
respectively, and Dk is the dimension of K.

TNN uses multi-head attention layer to concatenate the
attention weights of many single-head attention layers and
then apply a non-linear transformation with a dense layer.
Increasing the number of attention heads enables TNN to
capture long-distance dependencies.

Multihead(Q,K, V) = Concat (h1, h2, . . . , hn)W
0 (13)

where, hi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
TNN uses the position-wise FFNN to add non-linearity

and to identify complex patterns in the input sequence. FFNN
consists of two linear layers separated by a ReLU activation
function. The independent application of this sub-layer to every
part of the input sequence makes parallelism possible.

FFNN(x) = max (0, xW1 + b1)W2 + b2 (14)

where, x is a sequence, and Wi and bi are the weight matrix
and the bias vector at layer i, respectively.

B. Wavelet Transform

Time-series data can be decomposed using Fourier or
wavelet transforms. For analyzing non-stationary data, such
as financial time series, wavelet transform has been found
to outperform Fourier transform [7]. A wavelet transform is
the representation of a function by wavelets [26], [27]. A
wavelet is a waveform of a limited duration with an average
value of zero, Fig. 4. It is a mathematical function with two
basic parameters, namely scale (or dilation) and translation
(location). Scale defines how squished or stretched a wavelet

www.ijacsa.thesai.org 1079 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

is and translation defines where the wavelet is located in time
or space. A wavelet is mathematically defined as:

ψs,u(t) =
1√
|s|
ψ

(
t− u

s

)
, s, u ∈ IR, s ̸= 0 (15)

where, s and u are the dilation and the translation parame-
ters, respectively. These two basic parameters are related to
frequency as defined for waves. When the value of parameter
s is increased, a wavelet is squashed and it captures high-
frequency information, and when it is decreased, the wavelet
is stretched and it captures low-frequency information. The
parameter u defines the translation of the wavelet. Increasing
u will shift the wavelet to the right and decreasing it will shift
the wavelet to the left.

Fig. 4. Examples of wavelets.

The basic idea behind wavelet transform is to compute how
much of a wavelet is in a signal for a particular scale and
location. This is done by picking a wavelet of a particular
scale, slide this wavelet across the entire signal, and at each
time step, multiply the wavelet and the signal. The product of
this multiplication gives us a coefficient for that wavelet scale
at that time step. We then change the wavelet scale and repeat
the process.

To best match a particular signal, there are a wide variety
of prototype wavelets, called mother wavelets, to choose
from. Popular examples of mother wavelets are Daubechies,
Haar, Coiflets, Morlet, Symlets, Meyer, Mexican Hat and
Biorthogonal [28]. A particular episode of wavelet transform
uses one type of mother wavelet; the user decides which
type and size to use depending on the characteristics of the
signal to be analysed. Many time-series forecast applications
use Daubechies [28]. After transformation of a signal using a
particular mother wavelet, we end up with basis waveforms
consisting of a series of daughter wavelets. The daughter
wavelets are all compressed or expanded versions of their
mother wavelet, and each daughter wavelet extends across a
different part of the original signal. The important point is
that each daughter wavelet is associated with a corresponding
coefficient that specifies how much the daughter wavelet at
that scale contributes to the raw signal at that location. It is
these coefficients that contain the information relating to the
original input signal.

The two major wavelet transforms in wavelet analysis are
Continuous Wavelet Transform (CWT) and Discrete Wavelet
Transform (DWT). CWTs operate over every possible scale
and translation values; whereas DWTs use a finite set of
wavelets defined at a particular set of scales and locations
values.

DWT basis function at dyadic scaling m and time location
n is given by, [29],

ψm,n(t) = 2
−m
2 ψ(2−m · t− n) (16)

The inner product of a time-series data denoted by x(t) and
the basis function ψm,n, Eq. (17) returns the high frequency
information, also known as the detailed coefficients, contained
in the signal.

dm,n =

N−1∑
t=0

x(t)ψm,n(t) (17)

Decomposing a signal using mother wavelet can result in
infinite number of basis functions to accurately represent the
signal. In order to have a finite set of basis wavelet, an auxiliary
function ϕ(t), known as a scaling function or father wavelet, is
defined and associated with the mother wavelet to capture the
rest of the signal. Eq. (18) is a definition of a scaling function
at level m and translation n.

ϕm,n(t) = 2
−m
2 ϕ(2−m · t− n) (18)

The inner product of a signal x(t) and ϕm,n, as defined in
Eq. (19), returns the low frequency information, also known
as the approximation coefficients, contained in the signal.

am,n =

N−1∑
t=0

x(t)ϕm,n(t) (19)

An approximation of x(t) at level m can be computed from
am,n as shown in Eq. (20).

xm(t) =
∑
n

am,nϕm,n(t) (20)

Given dm,n at levels 1, 2, ..,m0 and am0,n, the final multires-
olution representation of x(t) can be computed as shown by
Eq. (21).

x(t) =
∑
n am0,nϕm0′n(t) +

∑m0

m=1

∑
n dm,nψm,n(t) (21)

1) Empirical Wavelet Transform: Empirical wavelet trans-
form (EWT) is a technique to decompose a signal using an
adaptive subdivision scheme [30]. EWT starts by dividing
the signal spectrum into N continuous segments where each
segment can be defined as Λn =

[
ωn−1, ωn

]
, where each

ωn (ω0 = 0andωN = π) denotes a boundary of a segment. The
empirical wavelet is regarded as wavelet filters of each Λn

The empirical scaling function ϕ̂n(ω) and the empirical
wavelet function ψ̂n(ω) are computed according to Eq. (22)
and Eq. (23):

ϕ̂n(ω) =

1 if |ω| ≤ (1− γ)ωn
K if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0 otherwise

(22)

www.ijacsa.thesai.org 1080 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

ψ̂n(ω) =

1 if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

M if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

N if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0 otherwise

(23)

where:
K = cos

[
π
2β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

,

M = cos
[
π
2β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

,

N = sin
[
π
2β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

,
β(x) = x4(35− 84x+ 70x2 − 20x3),
γ ≤ γ ≤ minn

[
ωn+1−ωn

ωn+1+ωn

]
, and

γ is restricted between 0 and 1 to insure ϕ̂n(ω) and ψ̂n(ω)
is a tight frame of L2 (R) .

III. RELATED WORK

Publications related to stock price prediction using TNN
started in the last few years, and as a result, existing trading
systems based on TNN are very limited, and this section
summarizes most, if not all, of them. This section also presents
some existing work on TNN based stock price prediction
techniques.

Malibari et al. [31] proposed a stock price prediction
technique using TNN. Their proposed TNN architecture was
influenced by a vision transformer (ViT) [32]. They used it to
predict the next day closing values of four Saudi stock market
indices, namely TASI, TBNI, TMTI, and TTSI. They used
MAE, MSE, MAPE, and RMSE performances matrices and
found out that their proposed model can predict closing prices
with a probability higher than 90%. Stock price prediction
using TNN and time2vec was proposed by Muhammad et al.
[33]. Their model predicts the next day and the next week
closing prices of eight stocks listed in Dhaka Stock Exchange.
They used the closing prices of eight previous days to predict
that of the next day and they used the closing prices of the
previous eight weeks to predict the closing price of the next
week. They used MAE and RMSE to measure the performance
of their model. For the daily solution, the MAE was less than
0.083 and the RMSE was less than 0.11, and for the weekly,
the MAE was less than 0.3 and the RMSE was less than 0.33.

A number of researchers compared the stock price predic-
tion accuracy of TNN with other models. For example, Anass
[34] compared the accuracy of LSTM and TNN in predicting
the next day values of Nasdaq, S&P, and Dow. He used the
value of trading day t to predict the value of trading day
t+1. He compared them using accuracy, MAE, MSE, RMSE,
and execution time. He found out that TNN consistently
outperformed LSTM. Also the comparison of LSTM and TNN
was done by Lin et al [35]. They compared the performance
of TNN and LSTM to predict the next minute and then next
day stock prices. They used the historical data of Shanghai
Stock Index. The daily trading data spans from December
17, 2002 to December 17, 2022 and minute-level data spans
from 9:30 on December 23, 2019 to 15:00 on December
23, 2022. They compared them using MAE and MSE and
they reported that LSTM outperformed TNN consistently in
all the measures. Similarly Saeed [36] proposed using the

stock prices of the previous ten days to predict the next
day price. He used the historical prices of Yahoo, Facebook,
and JPMorgan from January 1, 2017, to September 2017. He
compared the performance of TNN with ARIMA, LSTM, and
Random Forest using MAE, RMSE, and MAPE. He reported
that TNN consistently outperformed all of them. Performance
comparison of TNN, ARIMA and LSTM using the average
daily prices of eight stocks listed in the Brazilian Ibovespa was
illustrated by Lorenzo et al. [37]. They used 2008 historical
prices totaling 80 values per share. TNN outperformed both
ARIMA and LSTM obtaining the lowest RMSE in 60% of
the tests, followed by LSTM in 22% and, finally, ARIMA in
18%. Wang et al. [38] compared TNN with LSTM and Hidden
Markov model (HMM) using historical prices of Shanghai
and Shenzhen CSI new energy stock index from June 17,
2019 to June 17, 2022. They used MAE, RMSE, and MSE,
R2 to compare them. They reported that TNN consistently
outperformed both of them in all the above mentioned four
performance measures. Stock price predicting model consisting
of BiLSTM and MTRAN-TCN was proposed by Wang et al.
[39]. BiLSTM is a bidirection LSTM, MTRAN is a modified
TNN, and TCN is a time conventional network. They used
BiLSTM to capture bidirectional information in sequences and
TCN to identify sequence dependencies. They used five index
stocks and 14 Shanghai and Shenzhen stocks and measured
the performance of their proposed model using MAE, RMSE,
and MSE, and R2. They reported that the combination of
BiLSTM and MTRAN-TCN consistently outperformed any
of its subset components with all the datasets and all the
above mentioned four performance measures. TNN and LSTM
were also compared using LOB (Limit Order Book) data of
cryptocurrency by Bilokon and Qiu [40]. They compared them
using three financial time series prediction tasks, namely LOB
mid-price prediction, LOB mid-price difference prediction, and
LOB mid-price movement prediction of cryptocurrency LOB
data. They reported that TNN outperformed LSTM by a large
margin in terms of the limited metrics for mid-price prediction;
whereas LSTM outperformed TNN in the other two tasks.
They concluded that LSTM-based models are generally better
in financial time series prediction for electronic trading.

A limited number of researchers proposed one or more
trading systems based on TNN. For example, Aman [41]
compared two trading systems, one based on LSTM and the
other on TNN. He used the data of four stocks listed in Nifty
50 of the Indian stock market. He collected data of 21 years
ranging from January 1, 2000 to December 31, 2020. Using a
sliding window of size four years, he divided the data into 17
overlapping windows. The data of each window was then split
into two: the data of the first three years was used for training
and that of the last year for testing. He took both long and
short trades. The average daily returns of the trading system
based on LSTM was 2.22%. For long trades, the TNN based
system gave better returns than that of LSTM. For short trades,
the TNN results were inconsistent. Four trading systems based
on TNN, RNN, CNN, and LSTM were proposed by Wang et
al. [42]. They used data of four global indices namely, the
Shanghai and Shenzhen 300 Index (CSI 300) in China, the
Standard & Poors 500 Index (S&P 500) in the US, the Nikkei
225 Index (N225) in Japan, and the Hang Seng Index (HSI)
in Hong Kong. The collected data that spans 11 years, from
January 1, 2010 to December 31, 2020. The trading strategy

www.ijacsa.thesai.org 1081 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

proposed is as follows: if the predicted value yt+1 is higher
than the last observed value yt, then a long position is entered;
and if yt+1 is lower, then a short position is entered, other wise
no position is taken. According to the performance measures
MAE, MSE, and MAPE, TNN consistently outperformed the
other three and gave better trading returns with all the above
mentioned four global indices. A trading system based on
TEANet, which is a model consisting of TNN and LSTM,
was proposed by Zhang et al. [43]. Input to TEANet are tweet
corpus and historical prices. The TNN component of TEANet
takes as input tweets and feeds its output to LSTM. The LSTM
also takes as input normalized historical prices. To evaluate the
performance of TEANet, the researchers used a standard profit
method and adopted a market simulation strategy proposed by
Ding et al. [44]. The trading strategy is as follows: if TEANet
predicts the price of a stock to rise, then a long position is
entered and if it predicts the price to fall, then a short position
is entered. The size of each position is $10,000. A long position
is sold if a 2% profit is achieved, otherwise it is sold at the
closing price at the end of the day. Similarly, a short position
is sold if a 1% profit is achieved, otherwise it is sold at the
closing price at the end of the day. The proposed trading
system was tested using data of 44 trading days collected from
12 randomly selected stocks. The returns of TEANet were
compared to the returns of a system known as CapTE [45].
TEANet outperformed CapTE and showed an average return
of 22.31% compared to 20.18% of CapTE.

IV. FRAMEWORK OF THE PROPOSED TRADING SOLUTION

The framework of the proposed trading solution can be
summarized as follows:

1) Ten out of 223 stocks listed in the Saudi stock market
are randomly selected. Then ten datasets, one from
each selected stock, are collected. The selected stocks
and their selection criteria are discussed in Section
V-B.

2) From each dataset nine features are selected. These
features are four daily stock prices, namely open (O),
low (L), high (H), and close (C), the daily volume
traded (V), the Saudi market index TASI (T), sector
index (S), and two TIs, namely Bollinger Bands (BB),
and average true range (ATR).

3) Six performance measure are selected and used in
this study and they are presented in Section V-C.

4) Out of more than 100 TIs, 10 are selected based on
literature survey. Then for each selected TI, its best
parameter values are identified. These selected TIs
are further filtered and combined based on their per-
formance. The details of TIs selection, best parameter
value identification, filtration, and combination are
discussed in Section V-D.

5) The 10 datasets are preprocessed. One of the features
is converted into log returns and decomposed using
EWT, and the remaining eight features are scaled.
Then all of them are reshaped and split into training
and testing. The data preprocessing of the datasets
is detailed in Section V-E and EWT is explained in
Section II-B1.

6) Seven deep learning models are compared and the one
with the best performance is selected for the proposed

solution, Section V-F. The architecture of each of the
seven compared models is shown in Fig. 5

Fig. 5. Architecture of the proposed model.

7) The selected model is further optimized by choosing
the best possible hyper-parameters. The list of the se-
lected hyper-parameters and optimizers are presented
in Section V-F.

8) A day trading strategy which consists of eight trading
systems is proposed. The trading strategy is based on
the open price and two predicted daily stock prices,
namely the daily high and the daily low, Fig. 6. The
details of the trading strategy is presented in Section
V-G.

Fig. 6. Trading methodology.

9) At last, the proposed solution is evaluated, analyzed
and compared, Section V-H.

V. RESULTS AND ANALYSIS

To study the performance of the proposed trading strategy,
six sets of experiments were conducted. The first set of

www.ijacsa.thesai.org 1082 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

experiments was done to choose the best possible deep learning
model. The second set was done to identify the best possible
hyperparameter values for the selected model. The third set
was done to select the most relevant TIs. The fourth set was
done to identify the best possible parameter values for each
selected TI. The fifth set was done to choose the best possible
combination of TIs. The last set of experiments was done
to study the performance of the proposed trading strategy.
But before the results and analysis of the above mentioned
experiments are presented, let us discuss the experimental
environment, the datasets, and the performance measures used
in this study.

A. Experimental Machines and Tools

All the experiments were conducted on a Windows 10
machine with Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 and
2.81 GHz, and a 16 GB RAM.

The datasets were downloaded using TickerChart [46]
and preprocessed using Amibroker Formula Language (AFL)
[47] , Python, and Matlab. The deep learning models were
implemented in Python using Keras open-source package with
TensorFlow back-end [48]. EWT was implemented using EWT
MATLAB toolbox.

B. Dataset Selection, Collection, and Features

The experimental datasets were collected from 10 out of the
223 stocks listed in the Saudi Stock exchange. These stocks are
Bahri, Al-Rajhi, STC, Maaden, Tawuniya, Jarir, Jabel Omer,
Budget, Sharqiya, and Mouwasat. These datasets were chosen
because they exhibit different characteristics such as, they
belong to different sectors, they have different number of free
shares, they have been in the market since 2009 so they have
enough data for training and testing, and for bull, bear, and
side way markets, they are liquid enough to minimize errors
due to slippage when entering and exiting positions, and so
on. The datasets were downloaded using TickerChart . Table
I shows some characteristics of the datasets.

TABLE I. THE DATASETS

Dataset Stock Symbol Sector Free Shares Range Standard
(in Millions) Deviation

D1 Alrajhi 1120 Banks 3908.1 18.17 - 117.40 19.1
D2 Maaden 1211 Materials 807.7 4.87 - 57.76 9
D3 Mouwasat 4002 Healthcare 65.0 6.88 - 129.7 28.4
D4 Bahri 4030 Energy 380.4 5.71 - 30.28 5.15
D5 Jarir 4190 Retail 110.7 4.3 - 22.5 4.69
D6 Jabel Omar 4250 Real estate 929.2 11.0 - 88.75 18.85
D7 Budget 4260 Transportation 71.1 9.18 - 54.5 11.44
D8 Sharqiya 6060 Food & Beverages 7.5 8.49 - 52.59 8.49
D9 STC 7010 Telecommunication 1800.0 13.2 - 55.92 11
D10 Tawuniya 8010 Insurance 92.7 22.48 - 106.0 22.86

Each dataset contains nine features. These features are
based on the daily time frame and they are: the daily open
(O), high (H), low(L), and close (C) prices of a stock, the daily
Volume (V) of shares traded, the sector index value (S), the
TASI (T) which is the Saudi stock market index value, and two
technical indicators, namely the Bollinger Bands (BB) and the
average true range (ATR) which will be discussed in Section
V-D.

Each dataset contains daily data from January 1, 2010
to December 31, 2022, which consists of 3244 observations.

TABLE II. THE FEATURES

Symbol Name Description
O Open Daily open price
L Low Daily Lowest price
H High Daily highiest price
C Close Daily close price
V Volume Daily traded shares
T TASI Saudi market Index
S stock specific Sector index
BB Bollinger Bands TI
ATR Average True Range TI

Table II contains the description of the above mentioned nine
features.

According the proposed trading strategy, an open trade is
closed when its stock price reaches a profit-target or a stop-
loss, otherwise it is closed at the end of the trading day. A
trade is a winner, if the intraday price of its stock reaches
the profit-target before it hits the stop-loss; and it is a loser if
the intraday price reaches first the stop-loss. The data in the
above ten datasets is based on daily time frames or price-bars,
meaning, the values of O, L, H, and C are daily prices. They
don’t include prices of lower time frames, such as hourly, 15-
minute or 5-minute. From daily price-bars, it is impossible to
know if a trade entered on day t is a winner or a loser if
the price-bar covers both the predicted high and the predicted
low. To avoid mistakes that can be created by such price-bars,
supplementary datasets were collected from each of the above
mentioned stocks. These datasets contain the highest and the
lowest stock prices of 5-minute time frames from January 1,
2020 to December 31, 2022. These datasets are only used
during trading and not used for training or testing the proposed
model. If a 5-minute price-bar covers both the profit-target and
the stop-loss of a trade, then the trade is ignored. Fortunately,
the number of such 5-minute price-bars is so insignificant that
there is no need to use price-bars of a lesser time frame.

C. Performance Measures

To study the performance of the proposed solution, six
performance measures, namely, Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), coefficient
of determination (R2), and Expectancy (Φ) were used. These
measures were chosen because they are frequently used in
related works. A good model must have RMSE, MAE, and
MAPE close to 0, R2 close to one, and a positive Expectancy.
Expectancy is defined in Eq. (1), but the other five measures
are mathematically defined as follows:

MSE =
1

n

n−1∑
t=0

(yt − ŷt)
2 (24)

RMSE =

√√√√ 1

n

n−1∑
t=0

(yt − ŷt)2 (25)

MAE =
1

n

n−1∑
t=0

|yt − ŷt| (26)

www.ijacsa.thesai.org 1083 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

MAPE =

n−1∑
t=0

|yt−ŷtyt
|

n
× 100% (27)

R2 = 1−
∑n−1
t=0 (yt − ŷt)

2∑n−1
t=0 (yt − ȳ)2

(28)

where, yt and ŷt represent the actual and forecast values at
step t for 0 ≤ t < n, respectively, and ȳ =

∑n−1
t=0 yt/n.

D. Selecting TIs, TI Parameters, and TI Combination

There are more than 100 TIs and each TI has a number
of parameters. Some TI parameters have infinite number of
possible values. Hence, selecting the best TIs with their best
parameter values is very challenging. In this study, a four step
filtering process was adopted to choose a set of TIs and their
parameter values. In Step 1, based on literature survey, the top
10 most frequently used TIs were identified (see Table III).

TABLE III. MOST FREQUENTLY USED TECHNICAL INDICATORS IN THE
SURVEYED LITERATURE

TI Frequency
MA 35
RSI 34
Williams R% 28
Stochastic %K 25
MACD 22
ROC 19
Momentum 16
Bollinger Bands 15
ATR 14
CCI 14

In Step 2, the most frequently used TI parameter values are
identified. Then each TI and each of its most frequently used
parameters value were used to predict the next day high and
low prices using the proposed model which will be defined
shortly. If a TI and its best parameter doesn’t improve the
prediction performance of the proposed architecture, then it
is dropped. This step is done after normalizing the TI values
using min-max normalization. In Step 3, The least relevant
TIs are identified and eliminated. This is done using recursive
feature elimination [49]. Table III shows the TIs and the
parameter values that were selected after the above three steps.

TABLE IV. SELECTED TIS AND THEIR SELECTED PARAMETER VALUES

TI Name Parameters
STO Stochastic 15, 3, 3
MACD Moving Average Convergence Divergence 12, 26, 9
RSI Relative Stength Index 14
BB Bollinger Bands 20, 2
ATR Average True Range 14

In Step 4, the selected TIs were combined in all the possible
ways and the best combination was selected (see Table IV).
Since there are five selected TIs, the maximum number of
combinations is 32, including the one with no TIs used. Table
V shows the performance of each set of TI combination. Each

TABLE V. PERFORMANCE MEASURES OF TI COMBINATIONS

ATR MACD BB STO RSI E

0 0 0 0 0 2.31
0 0 0 0 1 1.38
0 0 0 1 0 1.74
0 0 0 1 1 1.66
0 0 1 0 0 1.59
0 0 1 0 1 2.31
0 0 1 1 0 2.64
0 0 1 1 1 1.24
0 1 0 0 0 1.51
0 1 0 0 1 1.55
0 1 0 1 0 2.68
0 1 0 1 1 1.39
0 1 1 0 0 3.98
0 1 1 0 1 1.42
0 1 1 1 0 2.09
0 1 1 1 1 1.16
1 0 0 0 0 2.12
1 0 0 0 1 1.12
1 0 0 1 0 1.68
1 0 0 1 1 1.47
1 0 1 0 0 1.09
1 0 1 0 1 1.31
1 0 1 1 0 2.21
1 0 1 1 1 1.20
1 1 0 0 0 1.94
1 1 0 0 1 2.28
1 1 0 1 0 4.98
1 1 0 1 1 1.88
1 1 1 0 0 2.17
1 1 1 0 1 1.99
1 1 1 1 0 2.11
1 1 1 1 1 2.18

measurement is based on the average of the predicted high and
low prices of each stock.

Each row of the table represents a unique combination of
TIs. In each of the first five columns, a 0 value represents the
absence of the corresponding TI from the combination, and
a 1 represents its presence. For example, in the row before
the last, all TIs except RSI were in the combination. The last
column, E, was computed using Eq. (29).

Ei =
̂1− r2i + ̂rmsei + m̂aei + m̂apei (29)

where, i represents ith row of Table V, r2i , rmsei, maei, and
mapei are the r2, RMSE, MAE, and MAPE values of row i,
respectively, and x̂ represents the normalized value of x using
min-max, Equation 30. The best combination is the one with
the lowest E. According the results in Table V, the lowest E is
1.09 and corresponds to the combination of BB and ATR; and
is the combination that was selected for the proposed model.

Nearly all the normalization operations in this study were
done using min-max. It is one of the most popular techniques
and is frequently used by similar studies. If X = x1, x2, . . . xn,
then scaling xi using min-max is mathematically defined as:

x́i =
xi −min(X)

max(X)−min(X)
(30)

where, xi is the ith value in X , x́i is the normalized value of
xi, and min(x) and max(x) are the lowest and the highest
values in X , respectively.

E. Data Preprocessing

Data processing is done in five phases. In Phase 1, L or H
is converted to log returns. If the proposed model is going to
predict the next day highest price, then H is converted to log

www.ijacsa.thesai.org 1084 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

returns and if it is going to predict the next day lowest price,
then L is converted to log returns. If X = x1, x2, . . . Xn is a
time series data, then the log return of xt is mathematically
defined as:

x́t = log(xt/xt−1) (31)

where, xt is the value at time t, xt−1 is the value at time t−1,
and x́t is the log return of xt. Converting stock prices into log
returns increases the stationarity of the dataset.

In Phase 2, the log returns generated in Phase 1 are
decomposed using the EWT algorithm proposed by Jérôme
Gilles [30] as explained in Section II-B1. Decomposition
results in building better forecasting models, because it enables
the identification and the removal of noisy and irrelevant
parts of a time series data. EWT was chosen because it
is an adaptive wavelet subdivision scheme which performs
wavelet decomposition without prior information about the
data, produces a small number of coefficients to pack the
signal information, and results in a higher resolution of time-
frequency which simplifies the analysis of time-series data.

In Phase 3, all the remaining eight features are scaled
between 0 and 1 using the min-max formula. This phase may
not be important because TNNs can handle unscaled data.

In Phase 4, each one-dimensional time series data of size
N observations is reshaped into a two dimensional array of
size N − k by k + 1 using a sliding window of size K + 1.
This is done to predict the stock price on day t, pt, using
pt−1, pt−2, . . . , pt−k. Finding the best possible value of k is
explained in Section V-F.

In Phase 5, the data is split into training and testing. The
data from January 1, 2010 to December 31, 2019 was used
for training and the data from January 1, 2020 until December
31, 2022 was used for testing.

F. Deep Learning Model Selection

To find the best deep learning model for the proposed solu-
tion, seven models namely, simple or vanilla LSTM (VLSTM),
Stacked LSTM (SLSTM), Bidirectional LSTM (BLSTM) [50],
GRU, Stacked GRU (SGRU), and Bidirectional GRU (BGRU)
were compared. Fig. 5 shows the architecture of the proposed
model that was selected after trying many other architectures.
A number of experiments were conducted to choose the deep
learning model that can best predict the next day high and low
stock prices. The data was reshaped so that the previous 16
days are used to predict the price of the next day. Each model
was experimented using different hyperparameter values and
its performance was measured using RMSE, MAE, MAPE,
and R2. Table VI shows the average performance measures of
all the experiments.

To choose the best performing model for the proposed
solution, a normalized sum, E, was used, Eq. (29). The model
with the lowest E has the best performance and thus selected
for the proposed solution. As shown in Table VI, TNN has the
lowest E, hence selected as the model of the proposed solution.
Fig. 7 shows the architecture of the proposed model. As can
be seen from the figure, the architecture contains two levels
of TNNs. The TNNs in the first level are labeled as TNN1

and the one in the second level is labeled as TNN2. Since
each TNN in the proposed model is used for the prediction

TABLE VI. THE PERFORMANCES OF THE SEVEN DEEP LEARNING
MODELS

Model RMSE MAE MAPE r2 E

VLSTM 77.13597 46.23983 0.07594 0.97639 3.506
SLSTM 14.06473 10.01123 0.04511 0.99002 0.087
BLSTM 14.38421 19.35125 0.05318 0.97971 1.099
GRU 82.98782 51.12156 0.07823 0.97214 4.000
SGRU 14.17115 10.16732 0.04569 0.99013 0.104
BGRU 15.66173 18.72891 0.05408 0.98895 0.643
TNN 13.86754 9.88712 0.04436 0.99115 0.000

Fig. 7. The architecture of the proposed deep learning model.

of a continuous value, it doesn’t need a decoder. It only uses
encoders similar to the architecture of the popular BERT [51].
It also includes some dense layer, dropout layers, a global
average pooling layer, and an output layer which consists of a
single neuron that emits the predicted continuous value.

To train the model for the prediction of the next day high
price, the following steps were taken. H is first converted
into log returns and then the log returns are decomposed into
multiple levels using EWT. Each level is then reshaped into
input sequences of size 16 each, encoded with time2vec, and
fed into a Level 1 TNN. Similarly, each of the input features O,
L, C, V, S, T, BB, and ATR are scaled between 0 and 1 using
using the min-max. Then these scaled values and the output
of all Level 1 TNNs are reshaped into input sequences of size
16, encoded with time2vec, and fed to the Level 2 TNN. The
output of the Level 2 TNN is the predicted value. The same
steps were taken to train the model for the prediction of the
next day low price, except L and H exchange places in the
model. A TNN requires a notion of time when processing stock
prices. Without time encoding, a TNN will be oblivious to the
temporal order of stock prices. In order to overcome this, the
proposed model uses Time2Vec [15], a time encoding layer.
Many experiments were conducted to arrive at the proposed
model and Table VII summarizes the selected parameters and
hyperparameters.

www.ijacsa.thesai.org 1085 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

TABLE VII. THE PROPOSED MODEL HYPERPARAMETERS AND OTHER
PARAMETERS

Parameter TNN1 TNN2

time embedding time2vec time2vec
sequence size 16 16
number of heads 3 4
ff dimension 32 64
encoder blocks 3 4
dropout rate 0.2 0.2
loss function MSE MSE
optimizer Adam Adam
learning rate 0.0001 0.0001
epochs 150 200
batch size 64 64

G. Proposed Trading Strategy

As was mentioned before, day trading is a business of
probability. When a day trader enters a position, he is not
sure if it will be a winner or a loser. Most consistently
profitable traders have a win rate between 40% and 60%. They
are consistently profitable because their average win is much
higher than their average loss. They do that by cutting their
losers short and letting their winners run. They decide the
amount they will risk per trade, denoted as R, before they
enter a position. Most of them limit R to be less than 2% of
their trading capital. This way, they can survive a number of
consecutive losers.

The proposed trading strategy uses stop-loss and is based
on two predicted values, namely, ĥt and l̂t, where, ĥt and
l̂t are the predicted highest and lowest prices of a stock on
a trading day t, respectively. These predictions are based on
the proposed deep learning model, shown in Fig. 7, and are
computed on the morning of the trading day and before the
market opens.

The proposed trading strategy consist of four buying and
three selling rules. The four buying rules are:

1) B == ot+ψ, where, B is the buying price per share,
ot is the open price on day t, and ψ is the minimum
allowed bid-ask spread value.

2) The risk (R) per trade must be no more than 1% of
the total capital. R = B − l̂t − ψ∗N , where N is the
number of shares bought. For example, for a trading
capital of 10000 dollars, R must be no more than 100
dollars.

3) ĥt−B
× N ≥ n×R for n in (1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5).

4) n × R > F , where F is amount of fees and
commissions paid to enter and exit a position.

The first rule is a conditional buy and is needed to make
sure that a position is entered only when the stock price is
trending towards the profit-target ĥt. The second rule limits
the maximum risk taken on a trade. The third rule is there
to make sure that the potential reward (profit) of a trade is
significantly higher than the potential risk taken. The fourth
rule is needed to ensure that the potential profit of a trade
exceeds the fees paid to enter and exit the trade. When the
above four rules are meet, a 10,000 Saudi riyals position is
entered.

An open position is closed when any of the following three
conditions is true.

1) If the intraday loss on a trade reaches R. This is done
by using a predefined stop-loss price.

2) If the intraday profit on a trade reaches a
prespecified profit-target, n × R, for n in
(1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5).

3) If none of the above conditions is met, then the
position is sold at the closing price of the day.

To study the performance of the proposed solution, eight
trading systems were created. These systems satisfy the above
mentioned buying and selling conditions but they differ in their
profit-target. Table VIII shows these trading systems and their
corresponding profit-targets.

TABLE VIII. THE EIGHT TRADING SYSTEMS OF THE PROPOSED
TRADING STRATEGY

Trading System TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8
Profit-target 1.5R 2R 2.5R 3R 3.5R 4R 4.5R 5R

H. Trading Results and Analysis

A number of experiments were conducted to study the
profitability of each of the eight trading systems. The trades
included in this study cover three year period, from January
1, 2020 to December 31, 2022, a total of 749 trading days.
Each trading system was used with each dataset and the stats,
such as the number of trades executed, the number of winning
trades, the average profit of a wining trade, the average loss
of a losing trade, etc was collected. Table IX shows some of
the stats obtained by trading Alrajhi shares. The table shows
that 138 positions were entered using TS1. As was mentioned
before, the size of each position is 10,000 riyals. 90 of the 138
positions were winners and the rest were losers. A breakeven
position is considered to be a loser because of the fees paid
and the resources wasted to execute the position. The average
profit per a winning trade is 140.23 riyals and the average loss
is 63.89 riyals. The gross and net profits of all the positions are
12620 and 4999 riyals. The amount of fees and commissions
paid to execute the trades was 4554 riyals. The expectancy, Φ,
of trading Alrajhi stocks using TS1 is 36.23 riyals. The table
also shows the stats of the other seven trading systems. TS2
is more profitable and TS3 has the best expectancy. TS2 was
more profitable than TS3 because more trades were executed
using TS2. The results also show that five of the eight trading
systems were winners and the rest were losers. TS8 was the
worst loser with 36.24% loss. The table also shows that the
fees paid to execute trades are significant, between 30% and
61% of the gross profits.

TABLE IX. TRADING STATS OF ALRAJHI SHARES

Trading System TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8
positions entered 138 130 117 106 105 99 91 82
Winners 90 78 69 58 46 40 35 29
Average win 140.23 171.19 183.32 191.88 208.83 201.15 178.02 151
Average loss 63.89 70.71 74.66 77.84 80.23 82.34 83.93 87.64
Gross profit 12620 13352 12649 11129 9606 8046 6230 4379
Loss 3066 3676 3583 3736 4733 4858 4700 4644
Fees 4554 4290 3861 3498 3465 3267 3003 2706
Net profit 4999 5385 5204 3894 1407 -79 -1472 -2971
Φ 36.23 41.43 44.48 36.74 13.41 -0.80 -16.18 -36.24

The percentage profits and losses obtained by trading
Alrajhi shares are shown in Fig. 8. The figure shows that TS6,
TS7 and TS8 resulted in losses. This is mainly due to the

www.ijacsa.thesai.org 1086 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

following two reasons. First, there are fewer trades with 4R
or more profit-targets; and second, the probability of hitting
the stop-loss before the profit-target is higher when the profit-
target is greater than or equal to 4R.

Fig. 8. Percentage profits and losses obtained by trading Alrajhi stock.

Stats, similar to that of Alrajhi stock trades, were also
collected from the trades of the other nine stocks. Since these
stats are too large in number and it is unnecessary to list
them all, only their summaries are presented and discussed.
Tables X shows percentage of profits and losses obtained
by the proposed trading systems. As can be seen from the
table, trading systems TS1, TS2, TS3, TS4, and TS5 were
consistently profitable. TS7 and TS8 were consistent losers
and TS6 showed inconsistent results. The results of TS6, TS7,
and TS8 are inconsistent and poor because there are fewer
trades with 4R or more profit-targets, and the probability of
hitting the stop-loss before hitting the profit-target is higher.

TABLE X. PERCENTAGE OF PROFITS AND LOSSES OBTAINED BY THE
PROPOSED TRADING SYSTEMS

Trading TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8
System
D2 50.11 48.72 46.57 37.97 22.84 10.11 -8.19 -23.92
D3 53.37 51.10 48.38 28.71 22.10 13.58 -1.0 -16.58
D4 48.48 54.24 44.92 23.18 22.95 20.74 -3.80 -23.83
D5 42.30 41.14 42.24 40.94 22.81 13.09 -1.20 -17.32
D6 28.11 30.10 30.79 27.45 17.20 2.19 -16.30 -45.25
D7 42.01 43.76 39.77 28.94 15.20 -12.46 -16.96 -38.32
D8 54.37 56.60 57.10 46.08 37.54 19.90 -13.46 -41.59
D9 48.52 52.81 46.65 29.66 18.96 15.91 -7.38 -16.36
D10 59.44 61.11 63.86 51.00 26.51 5.23 -12.05 -42.89

Fig. 9 shows expectancies obtained by trading Alrajhi
shares. Again the trading systems with profit-targets between
1.5R and 3.5R showed positive expectancy and the rest were
negative. TS3 showed the best expectancy of 44.48 riyals and
TS8 was the worst with -36.24. The expectancies obtained
by the other nine stocks are listed in Table XI. As can be
seen from the table, the expectancies of all the trading systems
with profit-targets of less than 4R were positive. TS6 results
were inconsistent and TS7 and TS8 consistently resulted in
negative expectancies. The negative results of the trading
systems with higher profit-targets is due to the two reasons
that were discussed before. The table also shows that TS2 has
the highest expectancy when trading the stocks of D4, D7, and

D9; TS3 has the highest expectancy when trading D1, D2, D3,
D5, D6, D8, and D10. On the average, TS3 resulted in the best
expectancy with 31.35 riyals.

Fig. 9. Expectancy obtained by trading Alrajhi shares.

TABLE XI. EXPECTANCY OF THE PROPOSED TRADING SYSTEMS

Stock TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8
D2 16.59 17.91 19.09 17.18 10.93 5.40 -4.76 -23.92
D3 18.53 18.93 20.07 12.54 10.28 6.56 -0.5 -8.87
D4 35.39 42.71 36.82 20.33 21.65 20.53 -3.92 -26.19
D5 38.11 38.45 44.46 46.00 26.53 15.59 -1.51 -22.50
D6 13.85 16.01 18.00 16.95 11.95 1.62 -12.44 -37.09
D7 19.82 22.44 22.22 17.43 9.81 -8.96 -13.90 -34.22
D8 18.62 21.77 25.15 22.26 19.97 10.76 -7.92 -25.83
D9 44.11 52.29 48.10 35.31 22.84 21.50 -9.84 -24.78
D10 27.52 31.34 35.09 29.83 15.97 3.51 -8.86 -33.25
Average 26.88 30.33 31.35 25.46 16.33 7.57 -7.57 -27.29

Each of the eight trading systems was compared with the
buy-and-hold trading strategy. Tables XII shows profits and
losses obtained by the buy-and-hold strategy. The best winning
trade gave a profit of 192.81%, whereas the worst losing trade
had a loss of -39.71% (see Fig. 10). Consistency in trading
is very important for a trader. The buy-and-hold strategy has
inconsistent results. Half of the positions taken were losers.
Unlike the buy-and-hold strategy, TS1, TS2, TS3, TS4, and
TS5 were consistently profitable. Also TS1, TS2, and TS3
showed significantly better average profits than the buy-and-
hold strategy, (see Fig. 11). In summary, TS1, TS2, and TS3
showed consistency, better expectancy, and significantly better
average profits than the buy-and-hold strategy.

TABLE XII. PROFITS AND LOSSES OBTAINED BY THE BUY-AND-HOLD
STRATEGY

Stock Open price Last price PnL PnL (%)
D1 40.82 75.2 8389.34 83.89
D2 14.72 43.15 19280.86 192.81
D3 44 104.5 13717.00 137.17
D4 21.34 19.67 -815.57 -8.16
D5 16.54 15 -964.08 -9.64
D6 27.25 16.52 -3970.61 -39.71
D7 36.35 45.65 2525.46 25.25
D8 19.7 18.9 -439.09 -4.39
D9 40.64 36.6 -1027.09 -10.27
D10 76.4 80.5 503.65 5.04

www.ijacsa.thesai.org 1087 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

Fig. 10. Inconsistent profits of the buy-and-hold strategy.

Fig. 11. Average profits of the proposed trading systems and the
buy-and-hold trading strategy.

VI. CONCLUSION

In this study, a trading strategy based on two predicted
stock prices using TNN, TIs, MRA, and time2vec was in-
vestigated. The proposed trading strategy consists of eight day
trading systems, each with a different profit-target n×R, where
R is the risk taken per trade and for n in (1.5, 2, 2.5 . . . 5).
To enter a position, the strategy requires four conditions to
be simultaneously true, and to close a position, any of three
conditions must be true. To choose the best deep learning
model, seven architectures were investigated. TNN gave the
best performance and hence it was selected. To improve the
accuracy of the proposed model, some of the raw stock prices
were converted to log returns and decomposed using MRA. To
further improve its accuracy, a number of TIs were carefully
analyzed and their best possible parameter values identified.
Then the selected TIs were combined and the combination
of TIs with the best performance was used. A number of
experiments were also conducted to select the best TNN
hyper-parameters such as, number of encoders, heads, epochs,
learning rate, etc. Deep learning models are fast to overfit and
to prevent that dropout layers were used.

The proposed trading strategy was tested using the data
of ten randomly selected stocks listed in the Saudi Stock Ex-
change. The experimental results showed that trading systems
with profit-target between 1.5R and 3.5R showed consistent
profits. Those with profit-targets of 4R or more can result
in losses. This is mainly due to the following two reasons:
first, there are fewer trades with 4R or more profit-targets; and
second, the probability of hitting the stop-loss before the profit-
target is higher when the profit-target is greater than or equal to
4R. The eight trading strategies were also compared with the
buy-and-hold strategy. On the average, trading systems TS1,

TS2, and TS3 outperformed the buy-and-hold strategy. Another
weakness of the buy-and-hold strategy is its inconsistency. For
one stock it gave a profit of 192.81%, and for another stock it
resulted in a loss of -39.71%. Traders prefer trading systems
with consistent results, such as TS1, TS2, and TS3, hence
recommended.

There are four main ideas that can enhance the profitability
of the proposed work and are planned as future works. First, to
find a technique that can predict whether an intraday price will
first hit the profit-target or the stop-loss. This can significantly
enhance the profitability of the proposed strategy because most
of the losing trades were due to the intraday price reaching
the stop-loss before the profit-target. Second, to investigate
different buying points instead of always buying using the open
price. Third, day trading incurs significant amount of fees and
commissions. As can be seen from the posted results, between
30% and 61% of the gross profits were paid as fees. To reduce
the amount of fees paid, swing and positional trading strategies
can be investigated. They require fewer trades and thus less
fees. Fourth, to study the impact of price volatility, market
and sector trends, news, and sentiments on the profitability of
the proposed trading strategy.

ACKNOWLEDGMENT

The author would like to thank King Fahd University of
Petroleum and Minerals (KFUPM), Saudi Arabia, and KFUPM
Interdisciplinary Research Center for Intelligent Secure Sys-
tems for the support during this work.

REFERENCES

[1] N. Zadeh, “Financial competitions,” https://financial-competitions.com/,
2024, last accessed 02 February, 2024.

[2] R. Moglen and G. Gajjala, “+805% trading champion of 2023 reveals
his powerful day trading setups,” https://www.youtube.com/watch?v=
10pHBNVi4Jc, 2024, last accessed 02 February, 2024.

[3] A. Thakkar and K. Chaudhari, “A comprehensive survey on deep
neural networks for stock market: The need, challenges, and
future directions,” Expert Systems with Applications, vol. 177, p.
114800, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417421002414

[4] Z. Hu, Y. Zhao, and M. Khushi, “A survey of forex and stock price
prediction using deep learning,” Applied System Innovation, vol. 4,
no. 1, 2021. [Online]. Available: https://www.mdpi.com/2571-5577/4/
1/9

[5] K. A. Althelaya, E.-S. M. El-Alfy, and S. Mohammed, “Evaluation of
bidirectional lstm for short-and long-term stock market prediction,” in
2018 9th International Conference on Information and Communication
Systems (ICICS), 2018, pp. 151–156.

[6] M. T. Ismail and A. Dghais, “Multiresolution analysis of bursa malaysia
klci time series,” in AIP Conference Proceedings, vol. 1847, 05 2017,
p. 020020.

[7] D. K. Kılıc and O. Ugur, “Multiresolution analysis of s & p500 time
series,” Annals of Operations Research, vol. 260, no. 1-2, pp. 197–216,
2018.

[8] S. Bekiros and M. Marcellino, “The multiscale causal dynamics
of foreign exchange markets,” Journal of International Money
and Finance, vol. 33, pp. 282–305, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0261560612002069

[9] B.-L. Zhang, R. Coggins, M. Jabri, D. Dersch, and B. Flower, “Multires-
olution forecasting for futures trading using wavelet decompositions,”
IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 765–775,
2001.

[10] A. Aussem and F. Murtagh, “Combining neural network forecasts on
wavelet-transformed time series,” Connection Science, vol. 9, 03 1997.

www.ijacsa.thesai.org 1088 | P a g e

https://financial-competitions.com/
https://www.youtube.com/watch?v=10pHBNVi4Jc
https://www.youtube.com/watch?v=10pHBNVi4Jc
https://www.sciencedirect.com/science/article/pii/S0957417421002414
https://www.sciencedirect.com/science/article/pii/S0957417421002414
https://www.mdpi.com/2571-5577/4/1/9
https://www.mdpi.com/2571-5577/4/1/9
https://www.sciencedirect.com/science/article/pii/S0261560612002069

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 4, 2024

[11] L. Di Persio and O. Honchar, “Artificial neural networks architectures
for stock price prediction: Comparisons and applications,” International
Journal of Circuits, Systems and Signal Processing, vol. 10, pp. 403–
413, 01 2016.

[12] D. Zhang, G. Lindholm, and H. Ratnaweera, “Use long short-term
memory to enhance internet of things for combined sewer overflow
monitoring,” Journal of Hydrology, vol. 556, 11 2017.

[13] H. Yan and H. Ouyang, “Financial time series prediction based on deep
learning,” Wireless Personal Communications, vol. 102, no. 2, pp. 683–
700, 2018.

[14] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for
financial time series using stacked autoencoders and long-short
term memory,” PLoS ONE, vol. 12, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:37606221

[15] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur,
S. Wu, C. Smyth, P. Poupart, and M. Brubaker, “Time2vec: Learning
a vector representation of time,” 2019.

[16] K.-L. Du and M. Swamy, Recurrent Neural Networks, 12 2014, pp.
337–353.

[17] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735—-1780, nov 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[19] C. Olah, “Understanding lstm networks,” http://colah.github.io/posts/
2015-08-Understanding-LSTMs/, 2015, last accessed 13 February,
2024.

[20] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5, pp. 602–610, 2005.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[22] R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, and J. Wang, “Machine
health monitoring using local feature-based gated recurrent unit net-
works,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2,
pp. 1539–1548, 2018.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, pp. 6000–6010.

[24] M. Sazli, “A brief review of feed-forward neural networks,” Commu-
nications Faculty Of Science University of Ankara, vol. 50, pp. 11–17,
01 2006.

[25] J. Zheng, S. Ramasinghe, and S. Lucey, “Rethinking positional
encoding,” ArXiv, vol. abs/2107.02561, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:235742682

[26] A. Grossmann and J. Morlet, “Decomposition of hardy functions
into square integrable wavelets of constant shape,” SIAM Journal on
Mathematical Analysis, vol. 15, pp. 723–736, 07 1984.

[27] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[28] S. Mallat and S. Mallat, A Wavelet Tour of Signal Processing. Aca-
demic Press, 01 1999.

[29] P.-H. Chiang, S. P. V. Chiluvuri, S. Dey, and T. Q. Nguyen, “Fore-
casting of solar photovoltaic system power generation using wavelet
decomposition and bias-compensated random forest,” in Proceedings
of the IEEE 9th Annual Green Technologies Conference (GreenTech),
2017, pp. 260–266.

[30] J. Gilles, “Empirical wavelet transform,” IEEE Transactions on Signal
Processing, vol. 61, no. 16, pp. 3999–4010, 2013.

[31] N. Malibari, I. Katib, and R. Mehmood, “Predicting stock closing prices
in emerging markets with transformer neural networks: The saudi stock
exchange case,” International Journal of Advanced Computer Science
and Applications, vol. 12, 01 2021.

[32] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all
you need for video understanding?” 2021.

[33] T. Muhammad, A. B. Aftab, M. Ibrahim, M. M. Ahsan, M. M.
Muhu, S. I. Khan, and M. S. Alam, “Transformer-based deep learning
model for stock price prediction: A case study on bangladesh
stock market,” International Journal of Computational Intelligence
and Applications, vol. 22, no. 03, Apr. 2023. [Online]. Available:
http://dx.doi.org/10.1142/S146902682350013X

[34] A. Meddah, “American stock index forecasting using transformers
model,” Al Akhawayn University, Tech. Rep., 2023.

[35] Z. Lin, “Comparative study of lstm and transformer for a-share
stock price prediction,” in Proceedings of the 2023 2nd International
Conference on Artificial Intelligence, Internet and Digital Economy
(ICAID 2023). Atlantis Press, 2023, pp. 72–82. [Online]. Available:
https://doi.org/10.2991/978-94-6463-222-4 7

[36] T. S. Mian, “Evaluation of stock closing prices using transformer
learning,” Engineering, Technology and Applied Science Research,
vol. 13, no. 5, p. 11635–11642, Oct. 2023. [Online]. Available:
https://etasr.com/index.php/ETASR/article/view/6017

[37] L. Costa and A. Machado, “Prediction of stock price time series
using transformers,” in Anais do II Brazilian Workshop on Artificial
Intelligence in Finance. Porto Alegre, RS, Brasil: SBC, 2023,
pp. 85–95. [Online]. Available: https://sol.sbc.org.br/index.php/bwaif/
article/view/24955

[38] Q. Wang and Y. Yuan, Stock Price Forecast: Comparison of LSTM,
HMM, and Transformer. Atlantis Press, 07 2023, pp. 126–136.

[39] S. Wang, “A stock price prediction method based on bilstm and
improved transformer,” IEEE Access, vol. 11, pp. 104 211–104 223,
2023.

[40] P. Bilokon and Y. Qiu, “Transformers versus lstms for electronic
trading,” 2023.

[41] S. Aman, “Forecasting stock price movements for intra-day trading
using transformers and lstm,” International Journal of Computing and
Artificial Intelligence, vol. 2, no. 1, pp. 45–52, 2021.

[42] C. Wang, Y. Chen, S. Zhang, and Q. Zhang, “Stock market
index prediction using deep transformer model,” Expert Systems
with Applications, vol. 208, p. 118128, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422013100

[43] Q. Zhang, C. Qin, Y. Zhang, F. Bao, C. Zhang, and P. Liu, “Transformer-
based attention network for stock movement prediction,” Expert Systems
with Applications, vol. 202, p. 117239, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422006170

[44] Q. Ding, S. Wu, H. Sun, J. Guo, and J. Guo, “Hierarchical
multi-scale gaussian transformer for stock movement prediction,”
in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed. International
Joint Conferences on Artificial Intelligence Organization, 7 2020, pp.
4640–4646, special Track on AI in FinTech. [Online]. Available:
https://doi.org/10.24963/ijcai.2020/640

[45] J. Liu, H. Lin, X. Liu, B. Xu, Y. Ren, Y. Diao, and L. Yang,
“Transformer-based capsule network for stock movement prediction,”
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
201626326

[46] Tickerchart, “Tickerchart,” https://www.tickerchart.com/en/, 2023, last
accessed 22 March, 2023.

[47] Amibroker, “Amibroker formula language,” https://www.amibroker.
com/index.html, 2024.

[48] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[49] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for

cancer classification using support vector machines,” Machine Learning,
vol. 46, no. 1, pp. 389–422, 2002.

[50] Y. Fan, Y. Qian, F.-L. Xie, and F. K. Soong, “TTS synthesis with bidi-
rectional LSTM based recurrent neural networks,” in Fifteenth Annual
Conference of the International Speech Communication Association,
2014.

[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

www.ijacsa.thesai.org 1089 | P a g e

https://api.semanticscholar.org/CorpusID:37606221
https://doi.org/10.1162/neco.1997.9.8.1735
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://api.semanticscholar.org/CorpusID:235742682
http://dx.doi.org/10.1142/S146902682350013X
https://doi.org/10.2991/978-94-6463-222-4_7
https://etasr.com/index.php/ETASR/article/view/6017
https://sol.sbc.org.br/index.php/bwaif/article/view/24955
https://sol.sbc.org.br/index.php/bwaif/article/view/24955
https://www.sciencedirect.com/science/article/pii/S0957417422013100
https://www.sciencedirect.com/science/article/pii/S0957417422006170
https://doi.org/10.24963/ijcai.2020/640
https://api.semanticscholar.org/CorpusID:201626326
https://api.semanticscholar.org/CorpusID:201626326
https://www.tickerchart.com/en/
https://www.amibroker.com/index.html
https://www.amibroker.com/index.html
https://github.com/fchollet/keras

	Introduction
	Background
	Deep Learning
	Recurrent neural network
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Transformer Neural Network (TNN)

	Wavelet Transform
	Empirical Wavelet Transform

	Related Work
	Framework of the Proposed Trading Solution
	Results and Analysis
	Experimental Machines and Tools
	Dataset Selection, Collection, and Features
	Performance Measures
	Selecting TIs, TI Parameters, and TI Combination
	Data Preprocessing
	Deep Learning Model Selection
	Proposed Trading Strategy
	Trading Results and Analysis

	Conclusion
	References

