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Abstract—Breast cancer is a leading cause of death among 

women worldwide, making early detection crucial for saving lives 

and preventing the spread of the disease. Deep Learning and 

Machine Learning techniques, coupled with the availability of 

diverse breast cancer datasets, have proven to be effective in 

assisting healthcare practitioners worldwide. Recent 

advancements in image classification models, such as Vision 

Transformers and pretrained models, offer promising avenues 

for breast cancer imaging classification research. In this study, 

we employ a pretrained Vision Transformer (ViT) model, 

specifically trained on the ImageNet dataset, as a feature 

extractor. We combine this with Principal Component Analysis 

(PCA) for dimensionality reduction and evaluate two classifiers, 

namely a Multilayer Perceptron (MLP) and a Support Vector 

Machine (SVM), for breast mammogram image classification. 

The results demonstrate that the transfer learning approach 

using ViT, PCA, and an MLP classifier achieves an average 

accuracy, precision, recall, and F1-score of 98% for the DSMM 

dataset and 95% for the INbreast dataset, considering the same 

metrics which are comparable to the current state-of-the-art. 

Keywords—Breast cancer; vision transformer; transfer 

learning; PCA; machine learning 

I. INTRODUCTION 

Breast cancer, as defined by the World Health Organization 
(WHO) [39], encompasses a spectrum of diseases. It can 
manifest as a slow progression without symptoms, or it can 
take on an aggressive form, invading surrounding tissues and 
potentially spreading to nearby lymph nodes or other organs. 
Early identification of breast cancer is of utmost importance to 
prevent adverse outcomes. As per the National Cancer Institute 
(NIH) [26], breast cancer ranks as the second most common 
cause of mortality in the United States. The screening process 
is essential for the early detection of breast cancer cases prior 
to the manifestation of symptoms, with mammography being 
the predominant screening method. Aside from mammography, 
there are several other techniques available for detecting breast 
cancer, such as breast ultrasound, breast magnetic resonance 
imaging (MRI), and biopsy [5]. 

Classical mammographic images, as seen in the DDSM 
dataset (Heath et al., 1998), have inherent limitations in terms 
of image contrast and quality when compared to alternative 
techniques such as Magnetic Resonance Imaging (MRI). The 
problem is more noticeable in samples obtained from young 
women, as their breast tissue density is higher [4]. 

In order to overcome these constraints, alternative 
mammographic techniques, such as full-field digital 
mammography (FFDM), have been developed and are 
employed to extract information to be used in datasets such as 
INbreast [27]. The benefits of employing this technique 
encompass aspects such as patient satisfaction, simplicity of 
image manipulation, enhanced display contrast, superior 
detection efficiency, and minimal vulnerability to noise. One 
significant benefit is that these images can be employed for 
computer-aided diagnosis (CAD) tools [25]. 

Among these techniques, the availability of public datasets, 
particularly those derived from diagnostic mammograms or 
breast MRI, has facilitated the application of diverse Machine 
Learning and Deep Learning models for the identification and 
classification of breast cancer across different stages of the 
disease. In Tsochatzidis et al. [38], for instance, the researchers 
used a modified CNN with U-Net-derived image segmentation 
and evaluated it using the DDSM dataset. In terms of the AUC 
metric, the authors' diagnostic performance was 0.898. Min et 
al. [24] employed a Mask R-CNN for mass detection and 
segmentation using the INbreast dataset in a different study. 
The average true positive rate that the researchers were able to 
obtain in this study was 0.9. Readers interested in the 
utilization of these datasets through the application of 
Convolutional Neural Networks (CNNs) are encouraged to 
examine the research conducted by Zhu et al. [40]. 

In their study Samee et al. [32] used the INbreast and mini-
MAIS datasets to demonstrate the efficacy of a breast cancer 
detection system. The system employed image pre-processing 
techniques, specifically contrast-limited adaptive histogram 
equalization (CLAHE) and pixel-wise intensity adjustment, to 
generate pseudo-colored images. Transfer learning was utilized 
in conjunction with various deep learning models, including 
AlexNet, VGG, and GoogleNet, to leverage pre-trained 
features. Additionally, Logistic Regression and Principal 
Component Analysis (PCA) were employed to extract the most 
informative features. The authors applied PCA to mitigate 
multicollinearity issues that could arise from synthetic image 
generation. The proposed approach resulted in 23 principal 
components. Multiple machine learning methods, such as 
Support Vector Machines (SVM), decision trees, and 
Convolutional Neural Networks (CNN), were utilized as 
classifiers. Notably, the CNN classifier achieved the best 
performance, attaining an accuracy of 98.8% for the MIAS 
dataset and 98.62% for the INbreast dataset. 
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Al-Tam et al. [1] used various deep learning models that 
were employed for both a two-class classifier (benign and 
malignant) and a three-class classifier that included a normal 
state as an additional class. The Curated Breast Imaging Subset 
of DDSM (CBIS-DDSM) and the Digital Database of 
Screening Mammography (DDSM) datasets were utilized for 
evaluation. The authors utilized pre-trained models such as 
VGG16, ResNet50, and ImageNet. Furthermore, they 
compared the performance of these pre-trained models with a 
CNN trained from scratch and a hybrid model combining 
ResNet50 with a Vision Transformer (ViT). Notably, the 
proposed approach achieved exceptional results with 100% F1-
Score, accuracy, and AUC for the binary classification task. 
However, it is important to consider that these results might be 
influenced by the quality of information available in the CBIS-
DDSM dataset. In the multiclass scenario, the performance 
metrics decreased to 96% on the validation set and 95% on the 
test set. The authors acknowledged the need for further 
evaluation using additional datasets such as INbreast and 
MAIS to assess the generalizability of their proposed approach. 

In their study, Houssein et al. [14] introduced an enhanced 
version of the Marine Predators algorithm (MPA) called the 
Improved Marine Predators algorithm (IMPA). This algorithm, 
which incorporates Opposition-based Learning (OBL), was 
utilized for hyperparameter optimization of various CNN 
models on the DDSM and MIAS datasets. Specifically, the 
authors applied IMPA to optimize the hyperparameters of a 
ResNet50 model, which employed transfer learning and data 
augmentation techniques. Notably, the proposed approach 
achieved compelling results on both datasets. For the CBIS-
DDSM dataset, the ResNet50 model attained an accuracy of 
98% and an F1-score of 97%. Similarly, on the MAIS dataset, 
the model achieved an accuracy of 98% and an F1-score of 
97%. However, the authors recognized certain limitations of 
their approach, e.g., the computational cost associated with 

IMPA was relatively high. Additionally, the proposed 
architecture was specifically tailored to the tested datasets, 
which may limit its generalizability. 

In Table I, we have summarized the mentioned studies 
along with others, considering their methodology. 

Our main contribution lies in the design of a transfer 
learning-based Vision Transformer (ViT) that incorporates 
PCA for feature reduction, addressing the challenge posed by 
the large number of features extracted from images. This 
approach is combined with a simple machine learning 
technique to aid in the classification of breast cancer image 
samples. The ViT serves as a feature or characteristic extractor 
from images in our design, and we reduce their dimensionality 
using PCA to overcome processing time complexity. PCA is 
commonly used as a pre-processing technique to enhance the 
efficiency of Machine Learning models [21] by removing 
unnecessary or irrelevant data [29]. Furthermore, it has 
demonstrated favourable results in the categorization of breast 
mammograms [28]. Following this, a simple and non-
computationally expensive machine learning technique is 
employed, with the hypothesis that it will produce accurate 
results considering the DSSM and INBreast breast cancer 
image datasets that are comparable to the existing literature. In 
summary, we aim to leverage the feature extraction capabilities 
of a state-of-the-art model, such as ViT, and subsequently 
reduce the dimensionality of these features using PCA. 
Considering the advantages mentioned before of this 
dimensionality reduction technique, we then plan to employ 
computationally non-costly machine learning models like MLP 
and SVM. Moreover, our current work contributes a proof-of-
concept showing how cutting-edge models, like ViT, can be 
combined with traditional techniques like PCA and machine 
learning models to produce reliable classification results for 
breast cancer diagnosis that are on par with those documented 
in the literature. 

TABLE I. RELATED WORKS AND THEIR METHODOLOGY 

Authors Methodology 

Tsochatzidis et al. [38] Employs a modified CNN architecture that incorporates a U-Net for image segmentation during input. 

Min et al. [24] 
Grayscale images are converted into pseudo-color and the masses are amplified for utilization in a Mask R-CNN that utilizes transfer 

learning. 

Samee et al. [32] 
Images are improved through the application of contrast-limited adaptive histogram equalization (CLAHE). A CNN model, selected 
from AlexNet, VGG, or GoogleNet, is used to extract features, while a Logistic Regression model with PCA is employed for 

classification. 

Al-Tam et al. [1] 
The authors employed VGG16, ResNet50, and Imagenet for both binary and multiclass classification. For the final test, they utilized a 

ResNet50 model that was trained from scratch, in addition to a ViT model. 

Samee et al. [33] 

The authors utilized pre-trained convolutional neural network (CNN) models, specifically AlexNet, GoogleNet, and VGG-16. The 

authors utilized pre-trained convolutional neural network (CNN) models, specifically AlexNet, GoogleNet, and VGG-16. The 

researchers used several feature selection methods, such as Pearson Correlation Coefficient, Cosine Coefficient (mostly used for 
texts), Euclidean Distance (though Liu and Zhang (2016) warned that it might not be the best way to represent data characteristics, 

which could lead to poor learning), and Mutual Information. The chosen characteristics were subjected to classification using an 

ensemble of learners utilizing Discriminant Analysis, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Naive 
Bayes. Nevertheless, it is still uncertain whether they employed a combination of machine learning models or determined which one 

produced the most optimal outcomes. 

Jabeen et al. [19] 

The authors utilized a haze-reduced local-global image enhancement technique. The images were subjected to augmentation, and a 
pre-trained EfficientNet-b0 model was used as a feature extractor, excluding the last three layers. The process of selecting features was 

conducted utilizing the Equilibrium-Jaya controlled Regula Falsi algorithm. An ensemble of K-nearest neighbors (EKNNs) was 

utilized for classification. 

Our Proposal 
The ViT model is utilized as a feature extractor, PCA is employed for dimensionality reduction, and MLP and SVM are used as 
classifiers for the purpose of comparison. 
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We have organized our work into the following sections: 
Section II provides an overview of Transfer Learning and 
Vision Transformers, covering the relevant theoretical aspects. 
In Section III, we outline our methodology, describing the 
algorithms used to guide our procedures; we also had the 
experimental setup conducted on two breast cancer datasets. 
Section IV presents the key findings and results obtained from 
our models. In Section V, we engage in a comprehensive 
discussion of the results, drawing comparisons with relevant 
studies that have also explored breast cancer classification. 
Finally, we conclude our article with a summary of the main 
insights and conclusions derived from this study in Section VI. 

II. BACKGROUND 

A. Breast Cancer Datasets: DDSM and INbreast 

Multiple Breast Cancer Datasets are available, with some 
being freely accessible and others requiring permissions for 
use. This study will employ the DDSM and INbreast datasets, 
which will be briefly described. 

1) DDSM dataset: This dataset is a well-known collection 

of digitized copies derived from images taken during a 

screening exam. Furthermore, it includes carefully selected 

images curated by professionals, displaying an accurate 

representation of both benign and malignant instances of 

breast cancer. An inherent concern with this dataset, despite 

its widespread utilization throughout the years, is the existence 

of anomalies in certain images, such as the occurrence of dust 

or scratches, which necessitate careful consideration [13]. 

2) The INbreast Dataset was obtained from a university 

hospital in Portugal and consists of samples from both breast 

cancer patients and healthy individuals. This dataset offers 

several benefits, such as including samples obtained from 

patient screenings, diagnoses made based on abnormalities, 

and follow-up cases of individuals who underwent some type 

of treatment. Furthermore, the dataset contains a wide range of 

observations that can be identified during breast exams, 

including asymmetries, calcifications, distortions, masses, and 

nodules. The images were acquired using FFDM equipment, 

which offers superior image quality in comparison to their 

DDSM equivalent [27]. 

B. Transfer Learning 

Transfer learning is a technique that enables a model to use 
the knowledge acquired during the training of a previous model 
rather than starting the training process from scratch. The 
fundamental idea is that if a model has learned useful 
representations or variations on a dataset P1, those 
representations can be transferred or adapted to improve the 
learning of a new task P2 [10]. 

To illustrate this concept, let's consider the ResNet model. 
This model is often pre-trained on a large dataset such as 
ImageNet, which contains a vast number of images from 
various categories. When pre-training ResNet, the model learns 
to recognize general features and patterns in the images. The 
later layers of the model, which are responsible for making 
specific predictions, can be replaced with new layers that are 

tailored to the target task. The reason for this replacement is 
that the early layers have already captured general features, 
while the later layers can be fine-tuned to capture task-specific 
features for the new dataset [20]. 

For example, if we have a deep learning model based on 
VGG16, we can exclude the classifier part by disabling or 
removing the top layer. By doing so, we obtain a feature vector 
of 4096 numbers. This vector can be serialized and stored, 
serving as input to a new model. Alternatively, we can replace 
the classifier part with a new set of convolutional layers if we 
want to use a different classifier. This adaptability allows us to 
customize the model architecture according to the specific 
requirements of the task at hand [3, 8]. 

C. Vision Transformer 

A Vision Transformer (ViT) is a type of attention model 
initially developed for Natural Language Processing (NLP) 
tasks but has also shown promise in image analysis. Unlike 
traditional convolutional neural networks (CNNs), ViT 
requires fewer computational resources when pre-trained on a 
large image dataset and subsequently applied to smaller 
datasets for classification tasks. 

The ViT model operates by dividing an image into a set 
number of patches, each with a fixed size. These patches are 
then embedded, creating a sequence of embeddings that is 
subsequently fed into a Transformer Encoder. The Transformer 
Encoder is made up of self-attention heads and MLP (Multi-
Layer Perceptron) blocks, which help the model find patterns 
and connections in the image [7]. A schematic representation 
of the ViT model is presented in Fig. 1. 

 
Fig. 1. Vision transformer model [7]. 

D. Evaluation Metrics 

For validating the result or our proposed model we have 
used the following metrics [9]: 

Accuracy: This value represents the proportion of correctly 
classified instances. It is calculated by considering instances 
that are predicted to have positive or negative values and 
belong to one of those classes. The formula is as follows: 

𝑎𝑐𝑐 =
1

|𝑇𝑒|
∑ 𝐼[�̂�(𝑥) = 𝑐(𝑥)]𝑥∈𝑇𝑒                     (1) 

In Eq. (1), the 𝑇𝑒  refers to the test set, while the function 
𝐼[𝑥] refers to the indicator function. This function takes a value 
of 1 when the value is correctly classified and 0 in other cases. 
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Precision: This metric refers to the calculation of the 
proportion of accurate positive predictions. This means that if 
the model predicts a value in the positive class, it must be in 
that class. The formula is as follows: 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         

where, TP and FP represent True Positive and False 
Positive, respectively. A True Positive is an instance that has 
this value and was correctly classified as positive, whereas a 
False Positive is an instance that was incorrectly classified as 
positive but has a negative value. 

Recall: This metric refers to the percentage of all positive 
instances that are correctly predicted. This means that if all 
positive instances of a model are considered, this metric tells us 
how many the model correctly predicted. The formula for this 
metric is as follows: 

Rec =
TP

TP+FN
  

False Negative (FN) refers to instances that are classified as 
negative but belong to a positive class. 

F1-Score: When we want to calculate the average of the 
incorrect classifications made while considering the set of 
classes, we can use the F1-score formula: 

𝐹1 − Score =
2

1

Prec
+

1

Rec

                       (4) 

III. MATERIALS AND METHODS 

A. Dataset 

The objective of this study was to evaluate the performance 
of a couple of machine learning models, specifically the Multi-
Layer Perceptron (MLP) and Support Vector Classifier (SVC), 
in conjunction with transfer learning techniques and a Vision 
Transformer for breast cancer image classification. We 
conducted experiments using a dataset comprising images of 
benign and malignant breast samples obtained from the Digital 
Database for Screening Mammography (DDSM) and the 
INbreast datasets. 

In this study, we collected a dataset of breast 
mammography images from the Dataset of Breast 
Mammography Images with Masses (Huang and Lin, 2020), 
which is available at 
https://data.mendeley.com/datasets/ywsbh3ndr8/2. 
Specifically, we utilized the Digital Database for Screening 
Mammography (DDSM) and the INbreast datasets [12] from 
this repository. 

The dataset used in this study was compiled from multiple 
sources. Initially, Huang and Lin [15] selected 106 images 
from the INbreast dataset, 53 images from the MIAS dataset, 
and 2188 images from the DDSM dataset. To address the issue 
of overfitting, a data augmentation technique was employed, 
which involved multi-angle rotation, flipping, and 11-angle 
rotation in both horizontal and vertical directions. The 
compiled dataset, available at https://data.mendeley.com 

/datasets/ywsbh3ndr8/2, is organized into four folders: DDSM 
dataset, INbreast dataset, INbreast+MIAS+DDSM dataset, and 
MIAS dataset. For our experiments, we focused on the DDSM 
dataset and the INbreast dataset. The DDSM dataset consists of 
both benign and malignant masses, with 5970 and 7158 
samples, respectively. The INbreast dataset contains 2520 
samples of benign cases and 5112 samples of malignant cases. 
An example of both types of samples from these datasets is 
shown in Fig. 2. 

   
(a) 

   
(b) 

Fig. 2. A couple of samples from the benign and malignant masses as found 

in the DDSM (a) and INbreast datasets (b). 

Considering the number of samples, we can observe that 
the DDSM dataset consists of 55% malignant masses and 45% 
benign masses, while the INbreast dataset consists of 33% 
malignant cases and 67% benign cases. Based on these 
percentages, we can conclude that the data is not imbalanced. It 
is worth noting that the study conducted by Haibo and García 
[11] suggested that a dataset can be considered imbalanced if 
the minority class constitutes less than 10% of the total 
samples. It is important to mention that their study focused on 
dichotomous classes, similar to the ones examined in our 
research. In scenarios in which the data is unbalanced, 
techniques such as data augmentation [15] can be used. This 
includes image rotation at 11 angles in both horizontal and 
vertical directions, ranging from 30º to 330º degrees in 30-
degree increments. Additionally, horizontal and vertical 
flipping can be used. 

B. Methodology 

In the Fig. 3, we have depicted the steps followed in our 
work and that can be summarize in the following steps: 

Step 1: We obtained a collection of images from the DDSM 
and INbreast datasets that represent both benign and malignant 
formations related to breast cancer. Prior to being inputted into 
a Vision Transformer (ViT) model, this data undergoes 
resizing and normalization. 

Step 2: The ViT model operates as a feature extractor 
through the utilization of transfer learning. To carry out the 
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mentioned function, the classifier head is detached from this 
model. 

Step 3: After that, a PCA model receives the features that 
the ViT model generated. During this stage, we isolate a subset 
of components that possess the ability to elucidate the majority 
of the data. The objective is to decrease the dimensionality of 
the data, rendering it more manageable for straightforward and 
computationally efficient machine learning models such as a 
Multilayer Perceptron (MLP) and a Support Vector Machine 
(SVM). 

Step 4: The hyperparameters of both models are adjusted, 
and the classification results are assessed using metrics such as 
accuracy, precision, recall, and F1-score. 

 
Fig. 3. The integration of a ViT model as a feature extractor, coupled with 

PCA and machine learning models as classifiers, serves to identify benign and 

malignant cases of breast cancer (figure of the ViT obtained from the work of 

[7]. 

C. Experimentation 

Considering the DDSM Dataset, which contains both 
benign and malignant images of the breast, we performed 
image resizing to 224 x 224 pixels and channel normalization 
with a value of 0.5 [5]. Subsequently, we read the images from 
their respective folders and assigned a label of 0 for benign 
masses and 1 for malignant masses. To determine the number 
of epochs for model optimization, we employed a standard 
split of 80% for training and 20% for validation, with a batch 
size of 32. We utilized the pre-trained Vision Transformer 
(ViT) model "facebookresearch/deit:main" with the 
"deit_base_patch16_224" architecture, which was pre-trained 
on the ImageNet-1k dataset at a resolution of 224 x 224 with 
fixed patches of 16 x 16 [36, 16]. For the loss function, we 
chose Cross Entropy, a commonly used metric for estimating 
probabilities in breast cancer classification [17, 18]. The 
optimizer selected was Adam, supported by previous studies 

[18, 34], with a learning rate of 0.001. It is important to note 
that we employed this configuration to create a feature 
extraction model by removing the last layer, which served as a 
classifier, after the training phase. Additionally, we flattened 
our data into a 2D tensor, where each row corresponds to the 
features extracted from an image. With this setup, we 
conducted experiments and obtained the training and validation 
loss curves, as shown in Fig. 4. To evaluate the model's 
performance, we tested various numbers of epochs and decided 
to maintain a value of five based on the results obtained. 

For the INbreast dataset, the methodology was similar, with 
the exception that when we plotted the loss curves for a fixed 
number of epochs using the same learning rate as applied to the 
DDSM dataset, we observed that the validation set's loss did 
not decrease significantly. This indicated the occurrence of 
overfitting. To address this issue, we manually adjusted the 
learning rate and determined that a value of 0.0001 resulted in 
a rapid decrease of the validation set's loss with eight epochs. 

 
(a) 

 
(b) 

Fig. 4. Training and validation curve losses for obtaining the number of 

epochs for the DDSM (a) and INbreast datasets (b). 

Algorithm 1 outlines the steps performed in the study: 

1) Define the dataset directory and the image 

transformation pipeline using PyTorch's 

`transforms.Compose()` function. 

2) Create a custom dataset class that is inherited from 

PyTorch's Dataset class. In the constructor, initialize the root 

directory, transformation pipeline, and targets. Implement the 

`__len__` method to return the total number of samples in the 
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dataset. Implement the `__getitem__` method to compute the 

number of samples in each class, determine the class of the 

current sample based on its index, load the corresponding 

image and label, apply the transformation pipeline to the 

image, and return the transformed image and label. 

3) Split the dataset into training and validation sets using 

PyTorch's `random_split()` function. 

4) Define data loaders for the training and validation sets 

using PyTorch's DataLoader class. 

5) Load the pre-trained ViT model from Facebook 

Research using the `torch.hub.load()` function. 

6) Define the loss function as the cross-entropy loss and 

choose the optimizer as Adam. 

7) Train the model on the training set for a specified 

number of epochs. During training, fine-tune the pre-trained 

ViT model on the custom dataset, enabling it to learn task-

specific features. Use the loss function and optimizer to update 

the model's parameters. 

8) After each epoch, validate the model on the validation 

set and calculate the validation loss using the loss function. 

This step monitors the model's performance on unseen data 

and helps prevent overfitting. 

9) Save the trained visual transformer model to a file using 

the `torch.save()` function. 

10) Plot the training and validation losses using 

Matplotlib. This visualization aids in tracking the model's 

performance during training and identifying any issues, such 

as overfitting. 

When the model was trained, given the number of epochs 
obtained, we decided to use PCA for dimensionality reduction. 
The choice of PCA was mainly because we wanted to reduce 
the number of features given a certain number of components. 
In the experiments performed, we found that the number of 
components that explained 95% of the data was 43 for the 
DDSM dataset, while the number of suitable components 
found for the INbreast dataset was of 1933 components. It is 
not surprising that INbreast required a greater number of 
principal components. We hypothesize that the main reason for 
this is that the dataset consists of electric signals converted into 
images, which provides more detailed information than the 
DDSM dataset [34]. 

An algorithm is provided for utilizing the saved model 
from Algorithm 1 to obtain the desired number of components 
using PCA. The components will serve as input features in the 
machine learning model: 

Algorithm 2: 

1) Load the trained visual transformer model by invoking 

the function load_visual_transformer(). 

2) Define a feature extractor by removing the 

classification head from the pre-trained ViT model through the 

creation of a torch.nn.Sequential() object. 

3) Utilize a data loader to apply the feature extractor to the 

images in the dataset. For each batch of images, extract the 

features using the feature extractor, flatten the resulting 

feature maps, and store the features and corresponding labels 

in separate lists. 

4) Concatenate the feature vectors and labels, 

transforming them into numpy arrays. 

5) Apply PCA to the feature vectors to reduce their 

dimensionality. 

At this stage, we opted to employ two machine learning 
models: a multilayer perceptron (MLP) and a support vector 
classifier (SVC). For the MLP model, we explored the 
following number of hidden layers as a hyperparameter grid: 

Hidden layer size 1: A single hidden layer with the same 
number of neurons as the input features. 

Hidden layers size 64: In this case, we employed two 
hidden layers. The first layer had the same number of neurons 
as the input, and the second layer had 64 neurons. 

Hidden layers size 128: Like the configuration mentioned 
earlier, but with the second hidden layer having 128 neurons. 

Hidden layers size 256: Again, similar to the previous 
configurations, with the number of neurons in the hidden layer 
now set to 256. 

This grid served as input for a grid search cross-validation 
function that utilized five folds to determine the best number of 
hidden layers as a hyperparameter for this model. After 
applying the grid search function, we identified the best 
hyperparameter values to be 256 neurons for the DDSM 
dataset and 128 neurons for the INbreast dataset, respectively. 

For the DDSM dataset, we utilized two hidden layers with 
256 and 128 neurons, respectively. Meanwhile, for the 
INbreast dataset, we employed the same number of hidden 
layers but with 1933 and 128 neurons in each layer. The 
activation function used was ReLU. 

Concerning the hyperparameters for the SVC, we utilized a 
hyperparameter grid consisting of the following values: 

C (penalization factor): 0.01, 0.1, 1, 10, 100 

Kernels: Linear, Polynomial, RBF 

Gamma value (only applicable to RBF): 0.001, 0.01, 0.1 

Subsequently, we performed a grid search cross-validation 
with five folds to obtain the best hyperparameters, considering 
the grid. 

For the DDSM dataset, the SVC model was configured 
with an RBF kernel, a penalty parameter C of 100, and a 
gamma value of 0.001. As for the INbreast dataset, the 
hyperparameters for the SVC model were set as follows: RBF 
kernel, C of 100, and gamma value of 0.1. 

IV. RESULTS 

After employing transfer learning using a Vision 
Transformer (ViT) as described in the methodology section 
and applying the aforementioned classifier methods, we 
obtained the following results for both models that are 
presented in Table II. 
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TABLE II. METRICS OBTAINED FROM THE MODELS EVALUATED IN THE 

DDSM (A) AND INBREAST (B) DATASETS 

(a) 

ViT model + Classifier using 
PCA (DDSM)/Metric 

Acc Prec Recall F1-score 

MLP 0.9819 0.983 0.9836 0.983 

SVC 0.9672 0.962 0.9786 0.970 

(b) 

ViT model + Classifier using 

PCA (INbreast)/Metric 
Acc Prec Recall F1-score 

MLP 0.943 0.954 0.9624 0.9582 

SVM 0.843 0.810 1 0.8953 

Table II displays the metrics for Accuracy, Precision, 
Recall, and F1-score of our proposed model, which were 
calculated using the DDSM and INbreast datasets. It is 
noteworthy that our Precision and Recall results consistently 
exceed 97% on average. The precision and recall in medical 
diagnosis are of utmost importance. In this cancer situation, the 
recall metric prioritizes false negatives, while precision focuses 
on false positives. Furthermore, the f1-score, which is the 
harmonic mean that takes into account both precision and 
recall, has yielded an average of 96%. Upon evaluating both 
models, it can be deduced that they exhibit minimal 
occurrences of false positive and false negative predictions. 
Furthermore, they provide a well-balanced performance in 
terms of precision and recall. 

From the data presented in Table II, it is evident that the 
MLP model outperformed the SVC classifier for both datasets. 
It is worth noting that a five-fold cross-validation was utilized 
for validating our results in each model. 

It is worth noting that the MLP model outperformed the 
SVM model on both datasets. In the case of the DDSM dataset, 
the difference between the two models is only about one point. 
However, the distinction observed in the INbreast dataset is 
more pronounced, with a difference of nearly 10 points in 
Accuracy and Precision between both models. 

According to the authors [22], both datasets, DDSM and 
INbreast, were subjected to data augmentation techniques such 
as rotation and flipping. The difference between the original 
data from both datasets (i.e., data that had not been augmented) 
was significant. For the DDSM dataset, 2188 images were 
augmented to 13128, while 106 mass images were augmented 
to 7632 for the INbreast dataset. The proportion of augmented 
data in the INbreast dataset far outnumbers that in the DDSM 
dataset. 

At this point, we can speculate that this disparity may have 
contributed to the SVM model's lower results compared to its 
MLP counterpart, which demonstrated a greater ability to 
generalize its classification capabilities in both datasets. These 
findings are intriguing, especially considering the work of Shen 
et al. [34]. Their research indicated that the INbreast dataset, 
containing FFDM (full-field digital mammography) images 
with varied intensity profiles, allowed them to evaluate the 
suitability of a particular classifier model across several 
mammography platforms. This property stems from the fact 
that FFDM images replace X-rays with electrical signals, 
allowing them to be reproduced across multiple devices [35]. 

V. DISCUSSION 

In comparison to other studies that have utilized the DDSM 
dataset, we did not find any previous work that employed 
transfer learning combined with PCA and machine learning 
models. In the study conducted by Ayana et al. [2], transfer 
learning was also utilized with various ViT models, such as 
Swim and Pyramid, along with image augmentation to address 
the issue of dataset imbalance. Their results, obtained when 
training the models from scratch, ranged from a 78% in 
accuracy, precision, and F1-score. Furthermore, the authors 
explored CNN models including ResNet, EfficientNet, and 
InceptionNet, achieving an average accuracy, F1-score, and 
recall of 94%. We believe it is important to mention recall as a 
crucial metric since the consequences of missing or 
misclassifying a cancer screening can be detrimental. However, 
our approach, incorporating PCA, transfer learning, and 
machine learning models, yielded promising results with an 
average performance of 98% across the evaluated metrics. 

Another study conducted by Ragab et al. [30] investigated 
two datasets, namely the DDSM and the Curated Breast Image 
Subset of the DDSM (CBIS-DDSM). The authors employed 
image enhancement techniques, including Contrast-Limited 
Adaptive Histogram Equalization (CLAHE), to improve image 
definition. They also performed image segmentation and 
utilized data augmentation. It is worth mentioning that CLAHE 
was also applied to the DDSM dataset with data augmentation, 
as employed in our present study. Ragab et al.  [30] performed 
feature extraction using a Deep Convolutional Neural Network 
(DCNN), specifically AlexNet, which was pre-trained on the 
ImageNet dataset. Their combined model, consisting of the 
DCNN and a Support Vector Machine (SVM) classifier, 
achieved an accuracy of 87.2% using a medium Gaussian 
kernel function. Although there are some differences between 
the datasets used in their study and ours, there are notable 
similarities, such as both datasets being based on the DDSM 
dataset and the utilization of similar techniques for image 
preprocessing and augmentation. The authors' use of image 
segmentation is a distinct difference from our approach. 

In the research conducted by Salama et al. [31], two 
datasets, namely the DDSM and the curated DDSM, were 
utilized. The authors applied data augmentation techniques 
such as rotation and employed two deep learning models, 
ResNet-50 and VGG-16. Transfer learning was performed 
from the ImageNet dataset, and the classification layer was 
modified to accommodate only two classes. Although it 
appears that both models were used as feature selection 
algorithms, no explicit mention of this approach was found. 
The outputs from both models were then used as inputs for an 
SVM classifier. While the authors mentioned hyperparameter 
tuning for the deep learning methods employed, there was no 
information provided regarding hyperparameter tuning for the 
SVM model. The results obtained for the DDSM dataset using 
the VGG-16 model yielded an average accuracy, AUC, 
sensitivity, precision, and F1-score of 94%. For the CBIS-
DDSM dataset, the VGG-16 and ResNet-50 models combined 
with the SVM classifier and five-fold cross-validation achieved 
an average accuracy, AUC, sensitivity, precision, and F1-score 
of 96% for the former and 95% for the latter, in addition to an 
average F1-score of 93%. 
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Other researchers, such as Tsochatzidis [37], conducted 
experiments with various deep learning models, including 
AlexNet, VGG-16, VGG-19, ResNet-50, ResNet-152, 
GoogLeNet, and Inception-BN. In their study, the authors 
initialized the weights of their models from scratch and also 
applied transfer learning techniques to the DDSM-400 and 
CBIS-DDSM datasets. Data augmentation was not employed 
in their experiments. According to their findings, training the 
models from scratch yielded the best performance with 
AlexNet, achieving an accuracy of 62% for the DDSM-400 
dataset and 65% for the CBIS-DDSM dataset. However, the 
best results were obtained when using pre-trained initialized 
weights for both datasets. In particular, the ResNet-based 
model achieved an accuracy of 85% for the DDSM-400 dataset 
and an average accuracy of 80% for the CBIS-DDSM dataset. 

Das et al. [6] conducted a study where they evaluated the 
performance of various deep learning models on breast cancer 
datasets, including CBIS-DDSM and INbreast. Their 
experiments involved both shallow neural networks and deep 
neural networks. Among the models tested, the Xception 
network demonstrated the best performance, achieving an 

accuracy of 89% for CBIS-DDSM and 95% for INbreast. The 
authors suggested that the higher accuracy obtained on the 
INbreast dataset could be attributed to the higher image quality 
compared to CBIS-DDSM. 

As of the writing of this article, we have not found any 
existing research that has utilized a transfer-learning model 
based on Vision Transformer (ViT) in conjunction with 
Principal Component Analysis (PCA) for dimensionality 
reduction. Furthermore, our results show that a simple 
Multilayer Perceptron (MLP) model with two hidden layers, 
employed as a classifier, outperforms SVM-based approaches. 
We strongly believe that leveraging pre-trained models, 
particularly those based on attention mechanisms like ViT, in 
combination with dimensionality reduction techniques applied 
to the data, holds promise for achieving superior performance. 
Moreover, these approaches can be beneficial in scenarios 
where computational resources for data processing are limited. 

Table III, which is an expansion of Table I mentioned in 
the Introduction section, contains the datasets utilized in the 
reviewed studies, as well as the metrics derived from the 
outcomes of the various applied models. 

TABLE III. COMPARISON OF OTHER STUDIES WITH OUR CURRENT PROPOSAL 

Authors Methodology Dataset used Results 

Tsochatzidis et al. [38] 
Employs a modified CNN architecture that incorporates a U-Net for image 
segmentation during input. 

DDSM-400 and 
CBIS-DDSM 

AUC 89.8% and 86.2% 

Min et al. [24] 
Grayscale images are converted into pseudo-color and the masses are 

amplified for utilization in a Mask R-CNN that utilizes transfer learning. 
Inbreast 

90% (True Positive Rate) 

TPR 

Samee et al. [32] 

Images are improved through the application of contrast-limited adaptive 
histogram equalization (CLAHE). A CNN model, selected from AlexNet, 

VGG, or GoogleNet, is used to extract features, while a Logistic Regression 

model with PCA is employed for classification. 

Inbreast and MIAS 

98.8% of accuracy using 

MIAS and 98.6% using 
MIAS. 

Al-Tam et al. [1] 

The authors employed VGG16, ResNet50, and Imagenet for both binary and 

multiclass classification. For the final test, they utilized a ResNet50 model 
that was trained from scratch, in addition to a ViT model. 

CBIS-DDSM 

100% in the F1-score for 

the binary classification, 

other metrics in average 
made a 96% in the 

multiclass classification. 

Samee et al. [33] 

The authors utilized pre-trained convolutional neural network (CNN) 

models, specifically AlexNet, GoogleNet, and VGG-16. The researchers 
applied a series of feature selection techniques, including Pearson 

Correlation Coefficient, Cosine Coefficient (mainly used for texts), 

Euclidean Distance (although Liu and Zhang [23] warned about possible 
drawbacks in representing data characteristics, which could result in 

suboptimal learning), and Mutual Information. The chosen characteristics 

were subjected to classification using an ensemble of learners utilizing 
Discriminant Analysis, Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Naive Bayes. Nevertheless, it is still uncertain 

whether they employed a combination of machine learning models or 
determined which one produced the most optimal outcomes. 

Inbreast 
98.06% in Sensitivity and 

98.5% in Accuracy. 

Jabeen et al. [19] 

The authors utilized a haze-reduced local-global image enhancement 

technique. The images were subjected to augmentation, and a pre-trained 
EfficientNet-b0 model was used as a feature extractor, excluding the last 

three layers. The process of selecting features was conducted utilizing the 

Equilibrium-Jaya controlled Regula Falsi algorithm. An ensemble of K-
nearest neighbors (EKNNs) was utilized for classification. 

CBIS-DDSM 

Inbreast 

Average Accuracy of 

95.4% and 99.7% 

Our Proposal 
The ViT model is utilized as a feature extractor, PCA is employed for 
dimensionality reduction, and MLP and SVM are used as classifiers for the 

purpose of comparison. 

DDSM 

Inbreast 

Average Accuracy, 

Precision, Recall and F1-
score of 98% for the 

DDSM dataset with MLP 

as classifier. 
The same metrics give us 

an average of 95.4% for 

the InBreast dataset. 
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Regarding the limitations identified in the current research, 
it is important to note that the author faced difficulties in 
finding appropriate examples to aid in the coding process of 
the Vision Transformer (ViT) when utilized as a feature 
extractor instead of a classifier. Although there is limited 
literature on using ViT models as feature extractors, we are still 
confident in their potential for applications where the features 
obtained can be used as input for Machine learning (ML) 
models. ML models provide several benefits, such as their 
interpretability, decreased computational requirements, and 
ongoing potential usefulness in the domain of medical 
diagnosis. 

An important upcoming task would be to evaluate various 
Vision Transformer (ViT) models in combination with 
different subsets of machine learning (ML) models, such as 
Random Forest or other boosting-based methods, to ascertain if 
these model combinations can enhance the reported results. In 
addition, performing experiments with diverse datasets, e.g., 
the MIAS or the BancoWeb Lapimo, datasets beyond those 
specified in the present study, would allow for the assessment 
of the overall efficacy of an integrated model that includes 
ViT, dimensionality reduction of features, and machine 
learning techniques in diagnosing breast cancer scenarios using 
mammography data. 

VI. CONCLUSION 

The classification of samples obtained from mammograms 
holds utmost importance, as early detection of malignant 
masses can significantly impact patient outcomes. In this study, 
we demonstrated the efficacy of a transfer learning model 
based on Vision Transformer (ViT), coupled with Principal 
Component Analysis (PCA) for feature reduction, and a simple 
Multilayer Perceptron (MLP) model. Our results were found to 
be comparable to existing literature that employs 
Convolutional Neural Network (CNN) models based on 
transfer learning in conjunction with deep learning models. 
These findings highlight the potential of using ViT-based 
transfer learning approaches, combined with dimensionality 
reduction techniques and simple Machine Learning classifiers, 
to achieve accurate mammogram classification results. 
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