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Abstract—To advance energy conservation in cooling systems 

within buildings, a pivotal technology known as cooling load 

prediction is essential. Traditional industry computational 

models typically employ forward or inverse modeling techniques, 

but these methods often demand extensive computational 

resources and involve lengthy procedures. However, artificial 

intelligence (AI) surpasses these approaches, with its models 

exhibiting the capability to autonomously discern intricate 

patterns, adapt dynamically, and enhance their performance as 

data volumes increase. AI models excel in forecasting cooling 

loads, accounting for various factors like weather conditions, 

building materials, and occupancy. This results in agile and 

responsive predictions, ultimately leading to heightened energy 

efficiency. The dataset of this study, which comprised 768 

samples, was derived from previous studies. The primary 

objective of this study is to introduce a novel framework for the 

prediction of Cooling Load via integrating the Radial Basis 

Function (RBF) with 2 innovative optimization algorithms, 

specifically the Dynamic Arithmetic Optimization Algorithm 

(DAO) and the Golden Eagle Optimization Algorithm (GEO). 

The predictive outcomes indicate that the RBDA prediction 

model outperforms RBF in cooling load predictions, with 

RMSE=0.792, approximately half as much as those of RBF. 

Furthermore, the RBDA model's performance, especially in the 

training phase, confirmed the optimal value of R2=0.993. 
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I. INTRODUCTION 

A. Background 

As building designs become more intricate and demand 
greater sustainability performance, the utilization of building 
simulation tools will become unavoidable. Building energy 
simulation models have undergone over four decades of 
evolution, with most development endeavors concentrating on 
refining the model's thermal processes during this time [1]. 
Four key elements significantly influence a building's energy 
consumption: (1) its physical attributes, encompassing factors 
like location, orientation, and type; (2) the installed equipment 
responsible for maintaining the desired indoor conditions, such 
as heating, ventilation, air-conditioning systems, electricity, or 
hot water; (3) external conditions and meteorological variables 
like temperature, humidity, and solar radiation; and (4) 
occupant behavior and the associated consequences of their 
presence [2]. 

Data on energy consumption across various sectors reveals 
that the building industry accounts for approximately 40% of 
the global electricity demand. This electricity is utilized for 
heating, air conditioning, ventilation, lighting, and the 
operation of diverse building service systems [3]. For building 
service systems in tropical or sub-tropical areas, where air 
conditioning alone accounts for at least 50% of a building's 
total energy consumption, the proportion is rather higher [4]. 
However, conducting thorough examinations of energy 
consumption tends to be expensive and demanding, 
discouraging property owners and managers from allocating 
the required investments in terms of time and finances for a 
comprehensive assessment of energy efficiency. In response to 
this issue, researchers have developed economical assessment 
methods designed to identify buildings with potential for 
energy conservation. The rapid development of building 
design-specific computer technology and software has made 
these strategies possible. Computer-based simulation models 
have been used in many research to evaluate the energy 
consumption levels of buildings [5]. The most intricate 
processes within buildings are primarily driven by human 
behavior, as humans are inherently unpredictable creatures. 
Human actions significantly impact a building's energy 
equilibrium, influencing both the indoor environment and the 
requirements for energy usage [6]. 

The forward modelling technique is used by several 
complex computer-based energy simulation programs, such as 
DOE − 2, EnergyPlus, and BLAST. However, developing the 
simulation model is a very labour- and resource-intensive 
process, especially for complex mixed-use structures with 
erratic operating schedules. An alternative method called 
inverse modelling relies on using current building 
characteristics, such as energy use, meteorological information, 
or other relevant performance data, to infer a set of building 
characteristics, such as cooling loads. Regression analysis has 
historically been used to use collected data to estimate the 
distinctive parameters of a structure and its systems. However, 
the definition of the representative building attributes and the 
accuracy of the building's performance data sometimes place 
limitations on the flexibility of inverse models. Obtaining data 
is another issue that comes up often since it is the foundation 
for building a working model. In actuality, not every structure 
that is currently in place has building automation installed. 
Lack of vital information like as-built building details, system 
specs, and operating schedules causes several challenges for 
simulation projects. 
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B. Literature Review 

AI methods are a viable alternative to traditional 
approaches, especially in inverse modelling. One such AI tool, 
known as an artificial neural network(ANN), can effectively 
approximate nonlinear systems and demonstrate adaptability in 
complex environments through network training. ANNs, 
devoid of intricate rules and mathematical procedures, can 
grasp the intricacies of complex multidimensional systems. 
Furthermore, ANNs exhibit fault tolerance, robustness, and 
resilience to noise [7]. Hence, the distinctive attributes of ANN, 
such as nonlinearity, adaptability, and the capability to map 
arbitrary functions, render them well-suited for predictive tasks 
compared to other AI techniques like expert systems, genetic 
algorithms, and fuzzy logic. ANN is a strong contender for 
managing building equipment and occupancy data, which 
inherently contain noise and incomplete information [8], [9], 
[10], [11], [12], [13], [14]. Furthermore, 𝐴𝑁𝑁  are widely 
recognized as a technology that provides an alternative 
approach to addressing complex and ambiguous problems, 
primarily due to their robust nonlinear mapping capabilities. 
Consequently, they have gained significant popularity for use 
in predicting both building cooling loads [15], [16], [17], [18], 
[19] and building energy consumption [20], [21], [22]. 

In energy consumption prediction in building projects, 
Sapnken et al. [23] conducted a study using data from 7559 
buildings and employing nine ML models. Their investigation 
focused on the efficiency of a Deep Neural Network (DNN) 
model, demonstrating impressive results and proposing it as an 
innovative tool for optimizing and predicting energy 
consumption during the construction design phase of energy-
efficient buildings. Leiprecht et al. [24] performed a 
comprehensive analysis that included autoregressive 
forecasting methods, decision trees, and "adaptive boosting," 
exploring deep learning techniques such as Long Short-Term 
Memory (LSTM) neural networks for thermal load prediction. 
Jihad and Tahiri [25] utilized ANN to forecast energy 
requirements in residential structures, achieving satisfactory 
outcomes with 98.7% accuracy for training data and 97.6% for 
test data. Wang et al. [26] introduced the Improved Energy 
Hybrid Optimization (IEHO) neural network, which enhanced 
the precision of Energy Hybrid Optimization (EHO) 
approaches. They integrated the Back-Propagation (BP) neural 
network with the IEHO neural network to form the IEHO-BP 
neural network model for heating and cooling load forecasting, 
which demonstrated superior precision. Another study [27] 
investigated building energy performance using machine 
learning (ML) techniques including general linear regression, 
ANNs, decision trees, SVR, and ensemble inference models for 
cooling and heating load forecasting. This research explored 
the impact of structural and interior design factors on cooling 
loads and estimated HVAC system energy demand based on 
cooling and heating load requirements using various regression 
models. Cai et al. [28] studied the impact of input factors on 
heating and cooling loads in residential buildings using the 
SVR-supervised ML algorithm. They addressed parameter 
fitting challenges by examining six meta-heuristic optimization 
algorithms and found that the SVR-AEO hybrid model 

outperformed others in accurately simulating residential 
building loads. 

Although, several studies have been conducted on the 
prediction of building loads [29] using ML algorithms [30], 
also, there are major gaps in the literature in utilizing other 
algorithms and methodologies such as hybridizing with novel 
metaheuristic algorithms. 

C. Objectives and Contribution 

In the present research, inspiration is drawn from prior 
successful outcomes that highlighted the superior performance 
of ANNs compared to other models, leading to the 
development of Radial Basis Functions (RBF) models for the 
prediction of cooling loads (CL) in buildings. The contribution 
of this study lies in exploring novel methodologies to enhance 
RBF modeling accuracy for CL prediction. The performance of 
predicting outcomes using a single RBF model was evaluated. 
To further optimize the training process and improve model 
performance, two separate optimizers were employed: the 
DAO and the GEO algorithms. Integrating these optimizers 
aims to efficiently tune RBF model parameters and enhance 
predictive accuracy. The novelty of this approach lies in the 
combination of RBF modeling with advanced optimization 
techniques, offering a promising avenue to achieve higher 
accuracy in cooling load prediction. By exploiting the strengths 
of DAO and GEO, this research extends the boundaries of 
traditional RBF applications, demonstrating their effectiveness 
in the context of building energy efficiency studies. The choice 
of RBF models, coupled with the use of the GEO and the 
DAO, reflects a strategic approach to enhance the accuracy and 
efficiency of CL prediction in buildings. RBF models are 
particularly suitable for nonlinear approximation tasks and 
offer flexibility in capturing complex relationships within 
datasets, making them well-suited for CL prediction. The 
integration of GEO and DAO as optimization techniques is 
motivated by the need to effectively tune RBF model 
parameters for optimal performance. GEO, inspired by the 
behavior of eagles in searching for prey, employs a nature-
inspired algorithm to efficiently explore the solution space and 
converge towards optimal solutions. On the other hand, DAO, 
characterized by its dynamic arithmetic operations, leverages 
mathematical principles to guide the optimization process 
toward improved model fitting. 

D. Research Organization 

The introductory part of this study is divided into 4 main 
sections: background, literature review, objectives, and 
research organization. Following this, the next section provides 
detailed explanations about the dataset used and concise 
descriptions of various ML techniques, including models and 
optimization algorithms. Section III covers the description of 
performance evaluators, comparative results using metrics and 
different techniques, and an analysis comparing the study's 
findings with existing research. In Section IV, the study's 
conclusions are summarized.  

Fig. 1 shows the process of present study. 
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Fig. 1. The current Study's procedure. 

II. MATERIALS AND METHODS 

In the second section of this article, a concise overview of 

the dataset used in this research is presented, along with 

descriptions of the ML algorithms selected for implementation 

in this study, including the RBF model, GEO algorithm, and 

DAO algorithm. This section provides detailed insights into 

the dataset characteristics and the rationale behind choosing 

specific ML techniques to address the research objectives. 

A. Data Collection 

The presence of valid and substantial data is paramount in 
ensuring the credibility and efficacy of the methods outlined in 
this paper. This study uses a dataset obtained from previous 
research endeavors [31], [32] to train intelligent models, which 

comprised 768 data samples. This dataset furnishes essential 
information required to implement the proposed techniques and 
assess their performance in predicting building cooling loads. 
This study's examination of input parameters is predicated on 
eight important elements, namely relative compactness (RC), 
surface area (SA), wall area (WA), roof area (RA), orientation 
(Or), overall height (OH), glazing area (GA), and the 
distribution of glazing area (GAD). These factors collectively 
serve as the basis for evaluating and optimizing the predictive 
models used in this study. Table Ⅰ details the primary criteria 
employed for statistically examining the dataset, including 
metrics such as data averages, standard deviations, and 
minimum and maximum values. The dataset is partitioned into 
70% for training, 15% for validation, and 15% for testing. 

TABLE I.  THE INPUT VARIABLE'S STATISTICAL CHARACTERISTICS FOR COOLING 

𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 
 𝐈𝐧𝐝𝐢𝐜𝐚𝐭𝐨𝐫𝐬 

𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚 𝑴𝒊𝒏 𝑴𝒂𝒙 𝑨𝒗𝒈 𝑺𝒕.𝑫𝒆𝒗. 

RC 𝐼𝑛𝑝𝑢𝑡 0.62 0.98 0.764 0.106 

SA (m2) 𝐼𝑛𝑝𝑢𝑡 514.5 808.5 671.70 88.086 

WA (m2) 𝐼𝑛𝑝𝑢𝑡 245 416.5 318.5 43.63 

RA (m) 𝐼𝑛𝑝𝑢𝑡 110.25 220.5 176.60 45.165 

OH (m) 𝐼𝑛𝑝𝑢𝑡 3.5 7 5.25 1.751 

Or 𝐼𝑛𝑝𝑢𝑡 2 5 3.5 1.118 

GA (%) 𝐼𝑛𝑝𝑢𝑡 0 0.4 0.235 0.133 

GAD 𝐼𝑛𝑝𝑢𝑡 0 5 2.81 1.55 

Cooling (kW) 𝑂𝑢𝑡𝑝𝑢𝑡 10.9 48.03 24.587 9.51 
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B. Overview of ML Method and Optimizers 

1) Radial Basis Function (RBF): The Radial Basis 

Function (RBF)  network, a member of the ANNs family, 

utilizes data-driven methods to establish connections between 

input and output elements. Instead of relying on mathematical 

equations, it derives the model's structure and unknown 

parameters from the provided data [33]. The RBF network is 

structured into three layers: the input, linear output, and 

hidden layers. As input vectors traverse the hidden layer, they 

experience a transformation process, generating radial basis 

functions. 

These operations are executed through an activation 
process derived from a Gaussian distribution, firmly grounded 
in the fundamental principles of the Gaussian function. 
According to the literature, the Gaussian elementary operation 
(𝐹𝑗) is described as being defined by two critical parameters: 

width and center [34]. The function is represented in the 
following manner:  

𝐹𝑗(𝑥) = 𝑒𝑥𝑝 (
|𝑥 − 𝛽𝑗|

2

2𝛼𝑗
2 ) (1) 

The output neuron is commonly denoted as: 

𝑦(𝑥) =∑ 𝜎𝑗𝐹𝑗(𝑥) + 𝑎
𝑛

𝑗=1
 (2) 

In the above context, 𝑥 refers to the inputs, 𝛽𝑗 and 𝛼𝑗 reflect 

the width and center of the Gaussian basis function, 
individually. And 𝑛 denotes the number of hidden neurons, 𝑎 
indicates the bias coefficient, and the weight factor that 
connects the 𝑗𝑡ℎ  hidden neuron to the output neuron is 
represented by 𝜎𝑗. 

2) Dynamic Arithmetic Optimization Algorithm (DAOA): 

Adding 2 new accelerator functions has improved the 

foundational arithmetic optimization algorithm. These 

modifications affect candidate solutions and the search 

process, balancing exploration and exploitation dynamically. 

Unlike other advanced metaheuristics, DAOA stands out 

because it doesn't need initial parameter adjustments. The 

DAOA pseudo-code is in Algorithm 1, and the next section 

explains its dynamic features in detail [35].

ALGORITHM Ⅰ. PSEUDO-CODE OF 𝐷𝐴𝑂𝐴 

 

𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚′𝑠 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝜸; 𝝁 
𝑃𝑟𝑜𝑑𝑢𝑐𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑠𝑒𝑟𝑣𝑒 𝑎𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
    𝒘𝒉𝒊𝒍𝒆 (𝑡 <  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 𝑫𝒐 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒𝑖𝑟 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑠. 

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐷𝐴𝐹 𝑣𝑎𝑙𝑢𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (3) 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐷𝐶𝑆 𝑣𝑎𝑙𝑢𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 
        𝒇𝒐𝒓 𝑖 𝐷 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑫𝒐 
        𝒇𝒐𝒓 𝑗 𝐷 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑫𝒐 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 0 𝑡𝑜 1 𝑓𝑜𝑟 𝒓𝟏;  𝒓𝟐;  𝒓𝟑 
       𝒊𝒇 𝒓𝟏 >  𝐷𝐴𝐹 𝒕𝒉𝒆𝒏 𝒆𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏 𝒑𝒉𝒂𝒔𝒆 
        𝒊𝒇 𝒓𝟐 >  0: 5 𝒕𝒉𝒆𝒏 𝒖𝒑𝒅𝒂𝒕𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔′ 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 
𝑈𝑠𝑖𝑛𝑔 𝑓𝑖𝑟𝑠𝑡 𝑟𝑢𝑙𝑒 𝑖𝑛 𝐸𝑞. (4) 
          𝒆𝒍𝒔𝒆 
𝑈𝑠𝑖𝑛𝑔 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑢𝑙𝑒 𝑖𝑛 𝐸𝑞. (14) 
         𝒆𝒏𝒅 𝒊𝒇 
     𝒊𝒇 𝒓𝟏 <  𝐷𝐴𝐹 𝒕𝒉𝒆𝒏 𝒆𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒑𝒉𝒂𝒔𝒆 
     𝒊𝒇 𝒓𝟑 >  0: 5 𝒕𝒉𝒆𝒏 𝒖𝒑𝒅𝒂𝒕𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔′ 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 
𝑈𝑠𝑖𝑛𝑔 𝑓𝑖𝑟𝑠𝑡 𝑟𝑢𝑙𝑒 𝑖𝑛 𝐸𝑞. (5) 
𝒆𝒍𝒔𝒆 
𝑈𝑠𝑖𝑛𝑔 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑢𝑙𝑒 𝑖𝑛 𝐸𝑞. (5) 
                     𝒆𝒏𝒅 𝒊𝒇 
                𝒆𝒏𝒅 𝒊𝒇 
         𝒆𝒏𝒅 𝒇𝒐𝒓 
𝒆𝒏𝒅 𝒇𝒐𝒓 
𝑡 𝐷 𝑡 𝐶 1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

𝑃𝑟𝑜𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑡𝑜𝑝 − 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 
    𝒆𝒏𝒅 𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 
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a) DAOA's Dynamic accelerated function: The dynamic 

aspect of the arithmetic optimization algorithm heavily 

depends on the Dynamic Accelerated Function (DAF) during 

the search. It is necessary to adjust the starting values of the 

accelerated function (Min  and Max)  in the AOA . However, 

when a new descending function replaces DAF, it is more 

desirable to use an algorithm without internally configurable 

parameters. The adjustment factor for this optimization 

approach is shown as follows: 

𝐷𝐴𝐹 = (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥
𝐼𝑡𝑒𝑟

)𝛾 (3) 

Here, "𝐼𝑡𝑒𝑟"  reflects the ongoing iteration count, 
"𝐼𝑡𝑒𝑟𝑚𝑎𝑥" is indicated as the upper limit for iterations, and the 
value of "α" remains a constant. The function experiences a 
decrease with each consecutive iteration within the algorithm. 

b) Dynamic 𝐷𝐴𝑂𝐴  candidate solution: The dynamic 

properties of 𝐷𝐴𝑂𝐴 candidate solutions are introduced in this 

section. The exploration and exploitation stages of 

metaheuristic algorithms must be approached in a balanced 

manner for the algorithm to be successful. Every solution in 

this dynamic adaptation, which prioritizes better exploration 

and exploitation, iteratively improves its locations by making 

reference to the optimal solution found during optimization. 

Eq. (4) in the basic version is replaced by Eq. (5) as a 

consequence of the inclusion of the Dynamic Candidate 

Solution (𝐷𝐶𝑆) function. 

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) =

{
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝐷𝐶𝑆 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗))   ,     𝑟2 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) × 𝐷𝐶𝑆 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗))           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) =

{
𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝐷𝐶𝑆 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗))    ,       𝑟3 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝐷𝐶𝑆 × ((𝑈𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗))    ,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

The incorporation of the 𝐷𝐶𝑆 function is a direct response 
to the diminishing ratio of candidate solutions. Its value 
consistently diminishes in each iteration, following this 
established pattern. 

𝐷𝐶𝑆(0) = 1 − √
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
 (6) 

𝐷𝐶𝑆(𝑡 + 1) = 𝐷𝐶𝑆(𝑡) × 0.99 (7) 

Extensive testing involving various hunt agents and 
iterations has shown that including candidate solutions in 
𝐷𝐴𝑂𝐴 notably speeds up AOA's convergence rate, ultimately 
improving solution quality. The lack of parameters is often an 
advantageous feature in metaheuristic algorithms. What sets 
DAOA apart from AOA is its integration of dynamic functions, 
while the other aspects of the approach align with the AOA 
algorithm discussed earlier. 

Adaptive parameters help the 𝐷𝐴𝑂𝐴  algorithm; just the 
population size and maximum number of iterations need to be 
adjusted. This algorithm sets itself apart unlike other 

algorithms that demand problem-specific parameter 
adjustments. However, it has a drawback: it relies on the 
iteration count, rather than fitness improvements, as the basis 
for its adaptive mechanism. 

3) Golden Eagle Optimization (GEO): This study 

introduces an innovative swarm-intelligence metaheuristic 

algorithm inspired by the hunting behavior of golden eagles, 

referred to as the 𝐺𝐸𝑂 . 𝐺𝐸𝑂  is rooted in the intelligent 

adaptation of attack and cruising behaviors observed in golden 

eagles during their prey search and hunting activities. 

The key attributes of the hunting behavior exhibited by 
golden eagles can be summed up in this way [36]: 

They move in a curved trajectory while searching and 
move in a straight line when attacking. 

They tend to start off cruising around when they start 
hunting and then gradually start to attack more towards the 
end. 

Throughout their flight, they maintain a propensity for both 
cruising and attacking at all times. 

They seek information about prey from other eagles. 

The golden eagle's ability to maneuver between flying and 
hunting is a natural means of exploration, advantage-taking, 
and transitioning from one to the other. This clears the path for 
creating a new type of algorithm. The next part shows this 
behavior mathematically modeled. 

a) Algorithm for optimization and mathematical model: 

This section explains how a mathematical equation was 

created to simulate golden eagle hunting behavior. It 

introduces the spiral motion formula and then dissects it into 

attack and cruise vectors, emphasizing the aspects of 

exploration and exploitation, respectively. 

 Golden eagles spiraling around in circles: 𝐺𝐸𝑂 
concentrates on the spiral motion of golden eagles. 
Every time, golden eagle ′𝑛′ selects a randomly selected 
prey from the golden eagle ′𝑓 ' and circles around the 
ideal spot that the eagle frequents. ′𝑓′ is designated as a 
member of the set {1,2, . . . , 𝑃𝑜𝑝𝑆𝑖𝑧𝑒}  because the 
golden eagle, represented by 'n', has the ability to 
choose to circle its memory. 

 Prey selection: Each iteration involves search agents 
choosing targets from collective memory. Improved 
positions replace stored ones. In the GEO approach, 
golden eagles select prey randomly from any flock 
member's memory without proximity constraints. 

 Attack (exploitation): The attack is a vector from the 
eagle's current position to its remembered prey. The 
attack vector for Golden Eagle 𝑛  can be calculated 
using Eq. (8). 

𝐴𝑛⃗⃗ ⃗⃗  = 𝑋𝑓
∗⃗⃗ ⃗⃗  − 𝑋𝑛⃗⃗ ⃗⃗   (8) 
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Here, 𝑋𝑛⃗⃗ ⃗⃗   is the current position of eagle 𝑛,  𝐴𝑛⃗⃗ ⃗⃗   is the eagle's 

𝑛 attack maneuver 𝑎𝑛𝑑  𝑋𝑓
∗⃗⃗ ⃗⃗   is the best place (prey) visited so 

distant by eagle 𝑓. 

 Cruise (exploration): The cruise vector originates from 
modifying the attack vector. It follows the circle's 
tangent and stands at a right angle to the attack vector, 
indicating the eagle's speed concerning the prey. In  𝑖-
dimensional space, it lies within the tangent hyperplane. 
To determine it, the equation of this hyperplane must be 
established, involving a point and a perpendicular 
normal vector. Eq. (9) supplies the scalar representation 
of this hyperplane in 𝑖-dimensional space. 

ℎ1𝑥1 + ℎ2𝑥2 + ℎ3𝑥3 +⋯+ ℎ𝑖𝑥𝑖 = 𝑑 ⇒∑ℎ𝑗𝑥𝑗

𝑖

𝑗=1

= 𝑑 (9) 

∑𝑎𝑗𝑥𝑗

𝑖

𝑗=1

=∑𝑎𝑗
𝑡𝑥𝑗
∗

𝑖

𝑗=1

 (10) 

Here ,𝑃 ⃗⃗  ⃗ =  [𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑖] is the hyperplane's arbitrary 

point and �⃗⃗�  =  [ℎ1, ℎ2, ℎ3, … , ℎ𝑖  ] is the normal vector, 𝑋 =

 [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖] is the variables vector, and 𝑑 =  𝐻 ⃗⃗⃗⃗ ⋅  �⃗�  =

 ∑ ℎ𝑗
𝑖
𝑗=1 𝑝𝑗. 𝑋𝑛⃗⃗ ⃗⃗    (the place of the eagle 𝑛) is considered as any 

random location inside the hyperplane and reflect 𝐴𝑛⃗⃗ ⃗⃗   (the point 
of attack) as the hyperplane may be shown using its normal to 

which 𝐶 𝑛
𝑡  (The cruise vector in iteration 𝑡 for the Golden Eagle 

𝑛) belongs version to Eq. (10). 

Here, 𝑋 ∗ = [𝑥1
∗, 𝑥2

∗, 𝑥3
∗, … , 𝑥𝑖

∗] is the chosen prey's 
location, and 𝐴𝑛 = [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑖] is the attack vector, 𝑋 =
 [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖]  is the decision/design variables vector; it's 
time to find a cruise vector inside the cruise hyperplane that 
was calculated for Eagle 𝑛 in iteration 𝑡. 

The final dimension is determined based on its 
compatibility with the hyperplane equation, resulting in 𝑖 ― 1 
free variable and a single fixed variable. To locate a chance 𝑖-
dimensional objective point 𝐶 on the golden eagle 𝑛's journey 
hyperplane: Step 1. Arbitrarily pick one variable from the set 
of 𝑖 variable stars as the fixed variable, denoting its index as 𝑘. 
Notably, avoid selecting a fixed variable among those 

associated with zero elements in the attack vector 𝐴𝑛⃗⃗ ⃗⃗  . 

When a variable's coefficient in Eq. (9) is 0 , the line 
becomes parallel to that variable's axis, allowing it to take any 
value while the other 𝑖 ― 1  variables vary randomly. As an 
instance, in the 3𝐷  plane 3𝑥1 + 2𝑥2 = 10 , if 𝑘 =  3  and 
random numbers for 𝑥1 and 𝑥2 is selected, say {𝑥1  =  2, 𝑥2  =
 5} , a unique point cannot be found. Rather, this plane 
generates an endless number of points, all of which fulfill the 
{[2,5,1], [2,5,2], [2,5,3], …} plane equation. Step 2: Give each 
variable a random value, except for the 𝑘−𝑡™ variable, which 
always has the same value. Determine the fixed variable's 
value in Step 3 by using Eq. (11). 

𝑐𝑘 =
𝑑 − ∑ 𝑎𝑗𝑗,𝑗≠𝑘

𝑎𝑘
 (11) 

Here 𝑐𝑘  denotes the 𝑘 − 𝑡ℎ element of the terminus point 
𝐶, 𝑎𝑗  represents the 𝑗 − 𝑡ℎ element of the attack vector 𝐴𝑛, 𝑑 

refers to the right−hand side of the Eq. (9), 𝑎𝑘
𝑡  signifies the 

𝑘 − 𝑡ℎ  element of the attack vector 𝐴𝑛⃗⃗ ⃗⃗  , and 𝑘 shows the 
directory of the fixed variable. The cruise hyperplane now has 
a new random destination point. Eq. (12) shows how to find the 
location of the cruise hyperplane's destination. 

𝐶 𝑛 = (𝑐1 = 𝑟𝑎𝑛𝑑 , 𝑐2 = 𝑟𝑎𝑛𝑑,… , 𝑐𝑘

=
𝑑 − ∑ 𝑎𝑗𝑗;𝑗≠𝑘

𝑎𝑘
 , … , 𝑐𝑖 = 𝑟𝑎𝑛𝑑 

(12) 

In iteration 𝑡, the cruise vector for Golden Eagle 𝑛 may be 
computed once the destination point has been determined. 
Random integers between 0 and 1 make up the components of 
the destination location. The golden eagle population is guided 
by the cruise vector away from their prior memory, 
highlighting the discovery phase of 𝐺𝐸𝑂. 

 Transferring to new roles 

The golden eagles use both assault and cruise vectors when 
they travel. According to Eq. (13), the step vector for golden 
eagle 𝑛 is described in iteration 𝑡. 

∆𝑥𝑛 = 𝑟 1𝑝𝑎
𝐴𝑛⃗⃗ ⃗⃗  

‖𝐴𝑛⃗⃗ ⃗⃗  ‖
+ 𝑟 2𝑝𝑐

𝐶 𝑛

‖𝐶 𝑛‖
 

(13) 

The coefficients 𝑝𝑎
𝑡  and 𝑝𝑐

𝑡 in iteration 𝑡 control the impact 
of attack and cruise on golden eagles. Random vectors 𝑟 1 and 
𝑟 2 have elements within [0,1]. The discussion of 𝑝𝑎 and 𝑝𝑐 will 

follow.‖𝐶 𝑛‖ and ‖𝐴𝑛⃗⃗ ⃗⃗  ‖ represent the attack and cruise vectors' 

Euclidean norms, as determined by Eq. (14). 

‖𝐴𝑛⃗⃗ ⃗⃗  ‖ = √∑ 𝑎𝑗
2𝑖

𝑗=1  , ‖𝐶 𝑛‖ =√∑ 𝑐𝑗
2𝑖

𝑗=1  
(14) 

The step vector from iteration 𝑡 is added to the locations of 
the golden eagles in iteration 𝑡 to calculate their positions in 
iteration 𝑡 +  1. 

𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥𝑖
𝑡 (15) 

Golden Eagle 𝑛 updates its memory if its new position is 
superior; otherwise, it retains its memory but adopts the new 
position. In each iteration, eagles pick a random peer to circle 
the best-visited spot, determining attack and cruise vectors, 
step size, and the next position. This cycle repeats until one of 
the termination conditions is satisfied. Eq. (13) involves 2 
coefficients, the attack constant 𝑝𝑎

𝑡  and cruise constant 𝑝𝑐
𝑡 , 

which controls how the step vector is influenced by cruise and 
attack vectors. The following subsection, denoted as 𝑐, explains 
how these coefficient values change throughout the iterations. 

 Transition from exploration and exploitation 

Golden eagles primarily cruise early in their hunting flight, 
transitioning to attacking later. These parallels heightened 
exploration in greater exploitation and initial iterations in later 
iterations within the future optimizer. 
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GEO employs  𝑝𝑎  and 𝑝𝑐 to transition from exploration to 
exploitation. It begins with a low  𝑝𝑎  and high 𝑝𝑐  values. As 
iterations advance,  𝑝𝑎 increases gradually, while 𝑝𝑐  decreases 
gradually. Users define the initial and final parameter values, 
and it is possible to compute intermediate values by using the 
linear transition described in Eq. (16). 

{
𝑝𝑎 = 𝑝𝑎

0 +
𝑡

𝑇
|𝑝𝑎
𝑇 + 𝑝𝑎

0|

𝑝𝑐 = 𝑝𝑐
0 +

𝑡

𝑇
|𝑝𝑐
𝑇 + 𝑝𝑐

0|
 (16) 

In the formula, 𝑡 represents the current iteration, 𝑇  is the 
maximum iteration count, 𝑝𝑎

0  and 𝑝𝑎
𝑇  stand for the initial and 

final values of the propensity to attack (𝑝𝑎), respectively, while 
𝑝𝑐
0 and 𝑝𝑐

𝑇 denote the initial and final values of the propensity 
to cruise (𝑝𝑐), respectively. These tests, which will be covered 
in more detail later, show that [𝑝𝑎

0𝑎𝑛𝑑 𝑝𝑎
𝑇]  =

 [0.5, 2] 𝑎𝑛𝑑 [𝑝𝑐
0𝑎𝑛𝑑 𝑝𝑐

𝑇]  =  [1, 0.5]  are suitable parameter 
settings. This suggests that in the first iteration, 𝑝𝑠𝑡𝑎𝑟𝑡𝑠 at 0.5 
and climbs linearly to reach 2 in the last iteration. In a similar 
manner, 𝑝𝑐  starts at 1 in the first iteration and decreases 
linearly to 0.5 in the last. It's crucial to remember that Eq. (16) 
uses a linear strategy to change these values; however, 
logarithmic or other functions might be used as an alternative.  

C. Research Methodology 

The research methodology can be delineated in the 

following manner: 

1) Introduction: In this study, the consideration of a 

crucial problem is introduced, with a focus on the imperative 

for enhanced performance in the RBF model. Significance is 

placed on the advancement of the field of ML, particularly in 

practical applications within building energy prediction. The 

pressing need for improved efficiency in the RBF model is 

addressed, contributing to the broader landscape of ML and its 

application to real-world challenges in buildings. 

2) Hybridization method: A novel ML approach is 

presented, involving the hybridization of 2 advanced 

optimization techniques. The combination of optimization 

methods used to enhance the performance of the RBF model is 

detailed. Through the strategic integration of these advanced 

optimization techniques, an innovative perspective is 

introduced to ML, with a primary goal of elevating the 

efficiency of the RBF model. 

3) Optimizers used: In this research, the introduction and 

detailed description of the 2 distinct optimizers employed in 

the hybridization method, namely the DAO and the GEO, are 

provided. The unique strengths of each optimizer and the 

rationale behind their selection for the hybrid model are 

thoroughly explained, contributing to a comprehensive 

understanding of the strategic integration of these optimizers 

in the research framework. 

4) Model evaluation: A comprehensive evaluation of both 

single and hybridized RBF models is undertaken in this study, 

utilizing established performance metrics such as R2 and 

RMSE. The choice of these metrics is justified to ensure an 

impartial assessment of model performance, enhancing the 

reliability and objectivity of the evaluation process. 

5) Performance comparison: The performance of 

hybridized models is compared with the traditional RBF 

model in this study to emphasize the superiority of the 

proposed approach. Statistical analyses or visual 

representations of the results are provided to support the 

claims made, enhancing the credibility and clarity of the 

comparison between the 2 model types. 

6) Conclusion: This section provides a summary of the 

research's main conclusions and their consequences offering a 

concise overview of the study's outcomes. Additionally, the 

limitations of the study are discussed to encourage further 

exploration in related domains. 

III. RESULTS AND DISCUSSION 

A. Prediction Performance Analysis 

This research created an ML model called RBF to forecast 
CL. In addition, the research used two effective optimization 
algorithms, DAO and GEO, to make hybrid RBF models better 
at adjusting the settings of the models. The dataset was split 
into three smaller groups: training, validation, and testing. The 
training group had 70% of the data, the validation group had 
15%, and the testing group had the remaining 15%. The 
models were evaluated in Table Ⅱ by comparing different 
measures, like 𝑅2 (coefficient of determination), 𝑅𝑀𝑆𝐸  (Root 
Mean Square Error), 𝑀𝐴𝐸  (Mean Relative Absolute Error), 
NMSE (Normalized Mean Squared Error), and PI (prediction 
interval). These measures were defined in 𝐸𝑞𝑠. (17) to (21):  

𝑅2 =

(

 
∑ (𝑇𝑖 − �̅�)(𝑃𝑖 − �̅�)
𝑛
𝑖=1

√[∑ (𝑇𝑖 − �̅�)
2𝑛

𝑖=1 ][∑ (𝑃𝑖 − �̅�)
2𝑛

𝑖=1 ]
)

 

2

 (17) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑇𝑖)

2𝑛
𝑖=1

𝑛
 (18) 

𝑀𝐴𝐸 = 
1

𝑛
∑‖𝑃𝑖 − 𝑇𝑖‖

𝑛

𝑖=1

 (19) 

𝑁𝑀𝑆𝐸 =  

1
𝑛
× ∑((𝑦𝑖 − �̂�𝑖)

2)

1
𝑛
× ∑𝑦𝑖

2
 (20) 

𝑃𝐼 = �̅�2 ± 𝑡(𝛼/2,   𝑁−2) ∗ 𝑞
2 (21) 

Where 𝑛 is the number of the data points, 𝑇𝑖  and 𝑃𝑖  are the 

test and predicted results, respectively. �̅� and �̅� are the average 
of the test and prediction result values, 𝑦𝑖  represents the actual 
values, �̂�𝑖 denotes the predicted values, 𝑞2 signifies the average 
error value that has been combined from both groups; the t-
value corresponding to the desired level of confidence (𝛼) and 
degrees of freedom (𝑁 − 2) is obtained from the 𝑡 distribution 

at the critical level of (
𝛼

2
, 𝑁 − 2)." 
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The following discourse offers a comprehensive analysis of 
the model's capability to predict CL effectively: 

 The RBDA hybrid model showcased exceptional 
performance, achieving the highest 𝑅2  values such as 

𝑅𝑡𝑟𝑎𝑖𝑛
2 = 0.993 , 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2 = 0.984 ,  𝑅𝑡𝑒𝑠𝑡
2 = 0.984  

and 𝑅𝑎𝑙𝑙
2 = 0.990 . The elevated 𝑅2  values indicate a 

robust alignment among the model and the dataset, 
emphasizing the dependable nature of the selected input 
variables as strong predictors of the predictable output. 
Additionally, in the case of both hybrid models, the 𝑅2 
value during the training phase is higher than in the 
testing phase. This discrepancy suggests suboptimal 
training performance in the developed models. 

 A Prediction Interval is a statistical metric that 
quantifies the level of uncertainty associated with a 

model's predictions. It sets itself apart from a point 
estimate, such as a mean or median, by defining a range 
or interval in which future observations are anticipated 
to occur with a specified confidence level. Among all 
the models, RBDA stands out with its minimal PI value 
of 0.019, indicating the lowest degree of uncertainty. 

 The RMSE varies across a range, with a minimum of 
0.792 (observed during the training phase of RBDA) 
and a maximum of 1.996 (noted during the RBF single 
model validation phase). Furthermore, during the 
training phase of RBDA, the MAE and NMSE values, 
specifically 0.542 and 0.001, respectively, were 
observed. This additional evidence solidifies the RBDA 
hybrid model's high level of accuracy. 

TABLE II.  THE OUTCOME OF MODELS CREATED FOR RBF 

𝐌𝐨𝐝𝐞𝐥 𝐏𝐡𝐚𝐬𝐞 
𝐈𝐧𝐝𝐞𝐱 𝐯𝐚𝐥𝐮𝐞𝐬 

𝑹𝑴𝑺𝑬 R2 MAE NMSE PI 

RBF 

𝑇𝑟𝑎𝑖𝑛 1.522 0.974 1.313 0.004 0.031 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 1.996 0.963 1.764 0.035 0.041 

𝑇𝑒𝑠𝑡 1.956 0.961 1.667 0.033 0.040 

𝐴𝑙𝑙 1.671 0.970 1.433 0.004 0.034 

RBDA 

𝑇𝑟𝑎𝑖𝑛 0.792 0.993 0.542 0.001 0.016 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 1.274 0.984 0.848 0.014 0.026 

𝑇𝑒𝑠𝑡 1.197 0.984 0.836 0.013 0.024 

𝐴𝑙𝑙 0.947 0.990 0.632 0.001 0.019 

RBGE 

𝑇𝑟𝑎𝑖𝑛 1.167 0.985 0.778 0.003 0.024 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 1.622 0.974 1.139 0.023 0.033 

𝑇𝑒𝑠𝑡 1.603 0.972 1.062 0.022 0.033 

𝐴𝑙𝑙 1.316 0.981 0.875 0.002 0.027 
 

Fig. 2 illustrates dispersed visualizations of the correlation 
between predicted and measured CL values. These scattered 
data points are derived from the 2 evaluation sets based on 
RMSE and 𝑅2. In a broad sense, RMSE serves as a dispersion 
controller, meaning that lower values of this metric correspond 
to higher data point density. Moreover, the 𝑅2 metric tends to 
cluster testing and training data points closer to the centerline. 

The figure incorporates several additional elements, 
including a central line at the Y=X coordinates and 2 lines 
positioned below and above the central line to represent a 10% 
underestimation and 10% overestimation range. Upon 
conducting an exhaustive comparison across the three 
predictive models, it becomes evident that all models exhibit 
favorable 𝑅2 values. This is observed through the proximity of 

data points associated with these models to the central best-fit 
line, with most points falling within the boundaries defined by 
the 2 threshold lines. 

Among the 2 optimized RBF models, it is discernible that 
the data points exhibit greater proximity to the central line, 
indicating superior performance compared to the single RBF 
model. In the comparative evaluation of the optimized models, 
upper and lower threshold lines are employed as reference 
points. Notably, it becomes evident that the data points about 
the model optimized through the DAO are consistently 
contained within the demarcated threshold lines. Conversely, 
the data points associated with the model optimized through 
the GEO exhibit a somewhat greater degree of dispersion 
relative to the prescribed boundaries. 
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Fig. 2. The scatter plot for developed hybrid models. 

This academic research uses a stacked bar plot, as shown in 
Fig. 3, to compare many parameters in-depth. By stacking the 
measurements inside of separate bars, this visualization 
technique offers a succinct and understandable representation 
of the correlations between various measures. Because each 
statistic is represented by a different hue, it is easier to see how 
each one contributes to the final outcomes. The calculated 
RMSE, R2, and MAE values for the different models are 

shown in Fig. 3. Upon closer examination, it becomes evident 
that the RBDA model exhibits lower error rates according to 
the RMSE = 0.792 and MAE = 0.542 compared to RBF and 
RBGE. Furthermore, concerning prediction accuracy, as 
evidenced by the 𝑅2  values, it is noteworthy that RBF (𝑅2= 
0.974) and RBGE (𝑅2= 0.984) exhibit lower values when 
compared to the RBDA model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

1015 | P a g e  

www.ijacsa.thesai.org 

  

 

Fig. 3. Comparison between models is based on RMSE, R2, and MAE. 

In Fig. 4 and Fig. 5, the error percentages (%)  for the 
models are visualized using both normal distribution plots and 
the half-boxes, with the errors categorized across the training, 
validation, and test datasets. As depicted in Fig. 4, the normal 
distribution plot illustrates that RBDA exhibits a narrow bell-
shaped distribution line during the training phase with a higher 
concentration of errors in the zero percent range, thus 
indicating its superior performance. However, in the validation 
and testing phases, the distribution curves for RBF and RBDA 
resemble each other, whereas RBF shows a wider spread of 
error values across a broader range. Upon examining the 
spectrum of error values presented in Fig. 5 for the various 
models, it becomes evident that the training phase of RBF 
exhibits the widest range of error values, while the validation 
phase of RBF displays the narrowest range. Noteworthy is the 
consistent excellence in performance displayed by the RBDA 
hybrid model throughout all three phases when considering a 
range of box proportions related to 25% to 75% of error values. 
It is essential to underscore that the model's performance 

exhibits a discernible enhancement as the box proportions 
approach zero. Moreover, according to RBGE half boxes, it 
can be observed that it exhibited marginal variation and 
secured the second position in terms of performance ranking. 

B. Comparing the results of this study and existing studies 

Numerous studies have been conducted on CL prediction, 

including investigations by Afzal et al. [37] using the 𝑀𝐿𝑃 

model, and Gong et al. [38] employing the GBM technique. 

Among the existing publications reported in Table III, 

superior performance was demonstrated by the GPR model, 

achieving an R2 value of 0.99 and an RMSE value of 0.059 in 

a study showed by Roy et al. [39]. A fundamental framework 

based on the RBF model was used in the present research, and 

it was improved by hybridizing it with the GEO and DAO 

algorithms. After analyzing the data, it was discovered that the 

TDO integration into the RFR model had remarkable 

applicability. It outperformed the other models in this 

research, with an R2 value of 0.997 and an 𝑅𝑀𝑆𝐸 of 0.498. 
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Fig. 4. The normal distribution plot serves as the foundation for the hybrid models' error percentage. 

 
Fig. 5. The half box of errors among the developed models. 
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TABLE III.  THE OUTCOME OF MODELS CREATED FOR RBF 

Name Model 
Results 

RMSE R2 

𝐺𝑜𝑛𝑔 𝑒𝑡 𝑎𝑙. [38] 𝐺𝐵𝑀 0.1929 0.9882 

𝐴𝑓𝑧𝑎𝑙 𝑒𝑡 𝑎𝑙. [37] 𝑀𝐿𝑃 1.4122 0.9806 

𝑅𝑜𝑦 𝑒𝑡 𝑎𝑙. [39] 𝐺𝑃𝑅 0.059 0.99 

Present study RBF+DAO 0.792 0.993 
 

IV. CONCLUSION 

In conclusion, this research stressed the significance of 
accurate forecasting of energy use and assessment of retrofit 
strategies for the management of building energy systems. The 
weather, tenant behavior, building characteristics, and energy 
infrastructure all make it difficult to forecast how much energy 
a facility will need. Although they depend mostly on data 
quality and modeling complexity for accuracy, physics-based 
simulations may provide valuable insights. With an emphasis 
on Radial Basis Function (RBF) models in particular, this 
research examined the potential efficacy of ML techniques by 
using the growing amount of publicly available building 
energy data. Regarding the prediction of Cooling Load (CL), a 
significant advancement in civil engineering was made. It 
achieved this by effectively mitigating the constraints typically 
associated with ML techniques by incorporating optimization 
algorithms into RBF models. The forecasted outcomes 
generated by these models were subjected to a comparative 
analysis employing five distinct evaluation indices. The 
findings showcased the presence of a robust and exceptionally 
accurate predictive model, notably the RBDA (Radial Basis 
Function optimized with DAO), which displayed an 
outstanding correlation with the actual measured CL, as 
evidenced by a high 𝑅2  value of 0.993, 1.95%, and 0.81% 
higher than RBF and RBGE. Additionally, it's worth noting 
that RBDA demonstrated the highest level of accuracy among 
the models, boasting a minimal RMSE value of 0.792. This 
represented a reduction of 47.96% compared to RBF and a 
32.1% decrease compared to RBGE. Developed models solve 
problems and help engineers and researchers with civil 
engineering projects. They are reliable and precise in 
predicting CL, making projects safer and cheaper, and they can 
be helpful in future research. Addressing the limitations of this 
study underscores the critical importance of data quality and 
availability for effective ML model performance. To ensure 
model generalization across diverse environmental and 
building conditions, further validation and adaptation efforts 
are essential to validate broader applicability. The sensitivity of 
optimization algorithms to specific parameter settings 
necessitates meticulous fine-tuning to achieve optimal results, 
emphasizing the need for methodological refinement. 
Additionally, enriching CL predictive accuracy can be 
achieved by incorporating additional factors like occupant 
behavior dynamics or building usage patterns, enhancing 
practical utility in real-world scenarios. Future research should 
prioritize enhancing model validation through field studies to 
ensure robustness and reliability in varying conditions. 
Exploring advanced ML techniques beyond RBF models, such 
as deep learning architectures, can elevate prediction accuracy 
and unveil hidden data patterns. Dynamic model adaptation is a 

promising avenue for developing responsive models that adjust 
to evolving building dynamics and environmental factors in 
real time. Furthermore, integrating uncertainty analysis 
techniques into CL prediction models can enhance reliability 
by quantifying uncertainties and providing confidence intervals 
for predicted CL values, ultimately improving usability in 
practical applications. 
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