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Abstract—Computed tomography angiography (CTA) has
turned non-invasive diagnosis of cardiovascular anomalies into
a reality as state-of-the-art imaging equipment is capable of
recording sub-millimeter details. Based on high intensity, the
calcified plaques are easily identified in cardiac CTA; however,
low density based non-calcified plaque detection has been a
challenging problem in recent years. We propose an efficient
method in this work for automated detection of the non-calcified
plaques using discrete radial profiles. The plaque detection
is accomplished using support vector machine to differentiate
abnormal coronary segments. We investigated a total of 32 CTA
volumes and the detection mean accuracy of 84.6% was achieved,
which is in-line with the reported literature.
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I. INTRODUCTION

Coronary heart disease (CHD) refers to the deposition of
materials (also termed as coronary plaques) inside coronary
arteries. The growth of plaque results in a reduced blood
flow towards heart muscles. Consequently, the heart muscles
become oxygen starved resulting in fatal cardiac consequences
including angina, heart failure and arrhythmias. In context of
the flow of this paper, we present relevant literature in Section
I-B, which is followed by the clinical data description. In the
subsequent section, the proposed model is explained, followed
with results of Section III. The last section presents some
limitations and the future extension for this work.

A. Clinical Motivation

According to the fact sheet of the World Health Organiza-
tion [1], CHD was the leading cause of death globally in 2013,
with 8.14 million deaths (16.8%) compared to 5.74 million
deaths (12%) in 1990. Moreover, the recent statistics of the
National Health Services, United Kingdom [2] reveals that
over 2.3 million people in the United Kingdom suffer from
CHD where the annual death toll is approximately 73,000 (an
average of one death every seven minutes). The huge levels
of growing morbidity and mortality have led to a increased
interest abnormality detection methods. From a clinical point
of view, the detection and quantification of arterial plaque
can help physicians avoid or at least delay the worst cardiac
events by addressing behavioural risk factors [3]. State of the
art developments [4] in non-invasive imaging technology have
revolutionized the clinical diagnosis methods in recent years.
For instance, sub-millimeter based acquisition of the internal

organs has made CTA a feasible alternative to cardiac cau-
terization for detecting coronary obstruction [5]; however, the
composition of the coronary plaques pose a difficult challenge
in the effective diagnosis. High intensity calcified plaques
can be detected easily in CTA imagery [6]–[9]; however, the
detection of the non-calcified plaques has been a challenging
problem in clinical practice due to close proximity with blood
voxels.

Clinically, the non-calcified plaques have been established
as the most important indicator of acute coronary syndromes
due to their fragile nature [10]. Moreover, unexpected rupture
has made soft plaques much threatening, i.e. for many indi-
viduals, sudden death becomes the first sign of soft plaque in
contrast to the calcified plaques which often lead to disease
symptoms at early stages. In addition, the positive remodeling
associated with soft plaques further amplifies the detection
challenge as the radial stenosis detection based methods often
miss the non-calcified plaques [6]–[9], [11]. Consequently, the
intense focus of the current research is an early detection of
soft plaques to predict and avoid worst cardiac events [12].

B. Related Work

Based on the fact that soft plaque detection is a complex
phenomena, there exists a little literature [13]–[17] addressing
automatic detection of soft plaques in CTA imagery. Out of
the reported work, the majority of the research have been
clinical pilot studies or generic anomaly detection techniques.
One framework in this context was proposed by Clouse et
al. [13]; however the main focus was the quantification of
manually identified soft plaques. Accordingly, a total of 49
coronary segments (41 normal, 8 abnormal) were chosen for
investigation from a dataset of 40 CTA volumes, to validate the
proposed quantification method. For precise quantification of
soft plaques, the authors established correspondence between
two normal cross sections at the terminal sites of the plaque
region to approximate the outer boundary of the vessel. In
the subsequent step, all voxels having intensity equal of the
lumen were subtracted and those left over were identified as
soft plaque. Accordingly, the research illustrated that the soft
plaques can be quantified in CTA; however, the results were
based on certain manual inputs i.e. a pre-selective set of the
segments was used in investigation with a manual selection
of plaque terminal points. An extension of this work further
validated the quantification correlation among two imaging
modalities (i.e. CTA and intravenous ultrasound (IVUS) plaque
quantifications [18]. Similar to the base study, the selection of
the coronary segment was made in a pre-processing stage for
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optimal results. Accordingly, 20 soft plaque effected segments
were chosen from a set of 12 CTAs. Despite of the successful
correlation , this method does not fulfil the automated spirit as
it was based on manual selection of the plaque positions.

Machine learning based soft plaque detection was first
reported by Wei et al. [14], in which authors employed a linear
discriminant analysis (LDA) to minimize the false positives
for a set of 120 pre-selected plaque candidates. According,
the efficiency of the LDA classifier was based on NCP can-
didate selection criteria, and the machine learning was used
to maximize the performance by suppressing false candidates.
Starting with a manually corrected coronary centreline, the
vessel radius along the length of the centreline was obtained in
the first stage. In a subsequent stage, the obtained radius was
used to identify seed points for 2 mm long plaque candidate
regions. From a set of 83 CTA volumes, 120 plaque candidate
regions were used in detection process, for which the reported
sensitivity was 92.5%. Another use of learning method was
reported by Tessman [17], in which coronary stenosis effected
cross-sections were detected. In the first step, the pre-extracted
coronary centreline was used to map the vessel segment
with a series of multi-scale overlapping cylinders to identify
the sampling points inside the segment. Subsequently, image
based features like intensity, gradient and the first-second
order derivatives were extracted at the sampled points to
identify high intensity calcifications. Moreover, global features
including image mean, entropy and variance were used in
combination with Haar-like features to detect the low intensity
soft plaques. According to the reported results, the plaque
detection accuracies were 94% and 79%, respectively for two
classes of plaques i.e. calcified and non-calcified. It should be
noted that the low accuracy for non-calcified plaques illustrate
that soft plaque detection demands a more sophisticated system
i.e. beyond stenosis based computations to efficiently address
vessel remodelling.

An important method focusing on cross-section based
vascular abnormality detection was proposed by Zuluaga et
al. [19]. Based on the “density level detection” technique of
Steinwart [20], authors employed an unsupervised learning
approach in this work for detecting abnormal cross-section.
In this method, the vascular cross-sectional images were
discretely sampled around centreline to derive the feature
set for suppressing outliers Subsequently, they used an SVM
model trained on normal cross sections to label the outliers
(i.e. the cross sections which violate the intensity pattern of
normal class) as abnormal. According to the reported results,
a good detection rate of 79.62%, was reported for 9 clinical
CTA datasets; however, the selection of anomaly concentration
parameter ρ plays an important role in overall results. In
addition, a large number of normal cross-sections having
similar intensity pattern are required for good training of SVM
due to one-class nature of supervisor.

Similarly Renard and Yang [15], Lankton et al. [16] and
Li et al. [21] proposed different approaches for the plaque
detection in CTA; however, these method were validated for
small datasets and require certain manual inputs from the
user, which preclude the automated solutions. Likewise, a
number of plaque quantification algorithms [22]–[25] have
been proposed in recent years with a motive of correlating CTA
with intra-vascular ultrasound (IVUS) measurements; however,

these methods again employ manual input in terms of the
plaque position and length in respective coronary vasculature.

In contrast to manual input based quantification, we ad-
dressed the problem of automated detection of plaque in this
work. Accordingly, our contribution is an efficient method for
the detection of the non-calcified plaque in coronary vascula-
ture. We employed a machine learning technique (SVM) for
identifying non-calcified plaque affected coronary segments.
It should be noted that the proposed method differs from
LDA based Wei et al. [14] classifier and anomaly detection
methods of [17], [19] in the sense that we segment coronary
tree in CTA using hybrid energy formulation. Accordingly,
the segment radial information based on the segmented tree is
employed in classification to handle both positive and negative
remodeling associated with the soft plaques. Experimental
results demonstrate that the proposed method achieves a good
agreement (detection accuracy of 88.4% with respect to manual
annotations), and in-line with anomaly detection methods of
[17], [19].

C. CTA Dataset Acquisition

In this study, we have investigated three CTA datasets in
context of the soft plaque detection. A first dataset comes
from public database of Rotterdam Coronary Artery Evaluation
framework. This dataset contains 18 CTA volumes coming
from different scanners and different institutes as explained in
[26], [27]. The second dataset consisting of 12 clinical CTA
volumes was obtained from Guys & St. Thomas’s Hospital
London. In addition, a third dataset consisting of only two
CTA volumes was obtained from Semmelweis University,
Budapest Hungary. It should be noted that the multi-vendor
data increases the complexity of the plaque detection problem;
however, the reproducibility of the method can be validated
successfully. Moreover, all the CTA data provides complete
ground truth in terms of segment nature (normal or plaque
effected), type and position of the plaque in abnormal segments
and stenosis information (if any) for the vessel boundary
respectively.

II. METHODS

The first step in the plaque detection process is the
segmentation of the coronary tree in CTA using a hybrid
energy formulation as proposed in Jawaid et al. [28]. After
tree extraction, we performed the skeletonization using fast
marching implementation of the thinning algorithm of Van et
al. [29]. As the plaque detection method heavily relies upon
the centreline accuracy, we evaluated the deviation error with
respect to manual reference ground truth as presented in Fig.
1. The visual comparison for complete coronary vasculature is
presented in Fig. 1a, whereas the deviation error for individual
segments (RCA, LCX, LAD and D1) is shown in Fig. 1b. After
generating the tree skeleton, we used 17-segment model of
American Heart Association (AHA) [30] to label the individual
segment present in respective coronary tree. In the subsequent
step, we employed segment-wise centerlines to extract cylin-
drical volume using interpolation in 3D space. In the final
step, the cross-section based cylindrical volume is used in a
support vector machine framework to identify abnormalities in
segment respectively. For a mathematical interpretation of the
paper, let I defines a 3D CTA image and x represents a spatial
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Fig. 1. Centreline accuracy with respect to reference centreline [27]. (a,
c) shows obtained centreline overlain with reference in 3D space, whereas
(b, d) represents mean deviation for major segments in millimeters. It can
be observed that mean deviation with respect to the reference is less than or
around 1mm.

location in domain Ω. Moreover, it is important to mention
that the high intensity based calcifications are regularized in a
pre-processing stage to optimize the non-calcified detection as
reported in [13]–[16], [18], [21], [31], [32]. Accordingly, the
high intensity plaques were assigned lumen intensity value to
minimize to work with-in the scope of this research.

A. Cylindrical Modelling of Coronary Segments

In order to identify the intensity in-homogeneity along the
coronary tree, we employed the ideal of the mean radial profile.
However, in contrast to conventional 2D image based profiles,
we used an extended version to detect intensity abnormality in
3D vessel structures. Accordingly, we extracted oblique cross
sections along the length of segment by substituting nxyz =
[nx, ny, nz]

T (normal of the plane) and cxyz (centreline point
at respective location) in by (1).

nxyz · (x− cxyz) = 0 (1)

The normal of the plane is computed using consecutive points
of the centreline to precisely follow the vessel orientation.

To effectively represent the coronary segments, we used the
diameter for cylindrical model to be 6 mm,as it represents the

Fig. 2. Cylindrical model for coronary segments using 6mm circle. It can
be observed that 3D surface is overlaid with centreline (black) along with
oblique planes in 3D space. Moreover, blue, red and green contours represent
the curved cylindrical approximations for three segments of AHA model.

(a) normal (b) normal (c) normal (d) normal (e) normal

(f) Intensity composition for normal and abnormal coronary cross sections.

Fig. 3. Cross-section based visualization of coronary segment. (a)-(e)
represents grey scale visualization for sequential cross sections, whereas (f)
shows colour interpretation in context of concentric rings (dots). It can be
observed from (f) that left represents a normal cross section with adequate
flow of blood, whereas right shows a plaque leading to blood obstruction.

maximum possible expansion of the normal coronary structure
in CTA [11], [33]. This 6mm modelling is illustrated in Fig. 2
where it can be observed that the circumference of the cylindri-
cal model serves interface between lumen and the background.
In the subsequent step, we computed the customized radial
profile for the coronary segment using discrete approximations
as expressed by (2).

v[i, k] = 1
L

∑L
t=1 I(ri, θt, qk) ∀i, k, i = 1, ..., 8, k = 1, ...K (2)

where qk represents the kth cross sectional of coronary
segment and K defines the total number of points along the
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length of the segment. L denotes the total number of projected
rays, which is set equal to 16 in our model and the respective
projection angle is computed as θt = t

(
π
8

)
. Moreover, i de-

notes the concentric ring formed at radius ri = 0.4(9− i)mm.
It is important to mention that the discretization parameters
are selected to achieve a balance between profile accuracy and
processing load. Accordingly, this sampling interval used for
radial and cylindrical axis represents 0.4mm (isotropic voxel
size), 22.5◦ angular interval projects 16 rays on the sampling
plane for estimation of the radial profile on respective plane.
Moreover, the formulation for radius ri parameter reflects that
concentric rings are numbered in an inward fashion, i.e. the
outer ring is labeled as v1 with inner most ring named as v8
as shown in visual illustration of cross sections in Fig. 3f. It
can be observed that in general inner rings (v5 to v8) define
the blood filled lumen and outer rings (v1 to v4) define the
interface between lumen and the CTA background.

The concentric ring based labeling phenomena is further
demonstrated in Fig. 4, where the intensity response is pre-
sented along the length of the coronary segment. It can be
observed that four external rings defining external interface
assumes low intensity values and remain stable irrespective
of the normal or abnormal cross-section, whereas the internal
four rings reflect the contrast filled blood in terms of high
intensity. Moreover, it can be observed from the figure that
normal cross-sections lead to stable response for the inner
rings, whereas the presence of low intensity material results
in significant concavities for inner four rings (see Fig. 4b).

Accordingly, we start with the assumption that this concav-
ity property of the diseases segments can be effectively used in
support vector machine based classification. In the subsequent
step, we computed mathematical representation (s) of coronary
segment using intensity response of four inner rings as follows:

s[k] =
1

4

8∑
i=5

v[i, k], ∀k, k = 1...K (3)

The mean segment representation of the coronary segment
often undergoes short term transitions, which are smoothed
with the help of moving average operation. Accordingly, we
compute the smoothed statistical representation of the segment
in terms of moving mean and moving standard deviation using
a [1] by [3] moving window as expressed in (4). Moreover,
it can be visually observed from Fig. 3f that the different
coronary segments have variable lengths. Accordingly, this
length variation is apportioned in this step with the help of
spline-based interpolation to construct fixed length character-
istic functions µ

′

s, σ
′

s (each having 100 samples) for respective
coronary segments.

σs[k] =

√√√√ 1

(2n+ 1)− 1

n∑
i=−n

(s[k + i]− µ[k])2,

µs[k] =
1

2n+ 1

n∑
i=−n

s[k + i], ∀k, k = 1, ...,K (4)
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Fig. 4. Intensity plot for 8 concentric rings (v1 to v8) for two segments
(normal and abnormal). It can be observed that central ring (v8) exhibits HU
intensity and outer ring (v1) assumes lower intensity value. Moreover, the
mean representation of the coronary segment is computed by averaging the
four inner rings (v8) - (v5).

B. SVM Based Segment Classification

1) Feature Based Representation for Coronary Segments:
The computation of fixed length characteristic function is
followed with SVM based differentiation of the plaque effected
coronary segments. The performance of the SVM classifier
heavily relies on the selected features, as distinctive features
helps classifier in optimal performance, whereas ambiguous
features lead to poor accuracy. In context of the non-calcified
plaque detector SVM, the intensity plays most important role
as it is the only indicator of the non-calcified plaques. Ac-
cordingly, we derived hand-crafted features capable to project
intensity variations before application of the SVM classifier.
Accordingly, we extracted the features by splitting the seg-
ment characteristic functions µ

′

s and σ
′

s into m windows as
expressed in (5).

fµ[m] =

5∑
n=1

µ
′

s[n+ 5(m− 1)],∀m = 1, 2, ..., 20

fσ[m] =

5∑
n=1

σ
′

s[n+ 5(m− 1)],∀m = 1, 2, ..., 20 (5)

The idea of m windows is used to exploit the relative vari-
ations in intensity along the length of the segment. However,
selection of appropriate number of windows is a challenging
task as it rationalizes the feature vector dimension at the cost
of approximation error. Relationship between subsets and the
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approximation error is presented in Fig. 5, where it can be
observed that the quantization error is inversely proportional
to the number of subsets, i.e. approximation improves as
the number of windows is increased. In order to maintain a
balance between the accuracy and the feature vector size, we
defined number of subsets m equal to 20, as the quantization
error becomes steady for m = 20 as illustrated in the Fig.
5. Accordingly, the discriminative capability of subset based
extracted features (fµ and fσ) to distinguish the intensity
patterns in to two classes is illustrated in Fig. 6 (see Fig. 6a -
reffig:fig8f).

Furthermore, an additional parameter namely mid-lumen
intensity fmid is added to improve the performance of the
SVM classifier. Mathematical formulation for the mid lumen
intensity is expressed by (6), i.e. mid-lumen response is
acquired by modelling the intensity of the central concentric
ring v8.

fmid[m] =
1

5

5∑
n=1

v8[n+ 5(m− 1)],∀m = 1, 2, ..., 20 (6)

The visual justification for the additional feature mid lumen
intensity is presented in Fig. 6c and 6f. Apparently fmid
replicates the distribution pattern of fµ; however, this feature
encodes the concentration of contrast medium in the lumen
centre along the length of the segment. It is important to
mention that a non-calcified plaque located at the start of
the coronary segment results in lower intensity in the mid
of lumen; hence, the segment must be labelled as abnormal.
However, due to the stable mean and variance along the seg-
ment, classifier may erroneously identify segment as normal.
Accordingly, the mid lumen feature fmid ensures that the
classifier takes into account not only the intensity variations but
the mid-lumen response of segment for efficient classification.
Next, we concatenate three feature sets fµ, fσ and fmid
to obtain a feature based representation Fxi for respective
coronary segment with dimensions [1 x 60].

2) SVM Classification Framework: For a support vector
machine based classifier, the input data consists of a feature
space along with training labels, i.e. N feature vectors of the
form Xn and the associated binary labels Yn defining the class
of feature vector as normal or diseased as expressed by (7).
Here d represent the dimensions of feature vector, i.e. defined
equal to 60 in this work and N represents total number of
samples in the classifier test.

D =
{

(Xn, Yn) |Xn ⊆ Rd, Yn ⊆ {−1, 1}
}N
n=1

(7)

In context of the binary classification problem, the support
vector machine computes an optimal hyperplane by minimiz-
ing the norm of weights for ideal segregation; however, a slack
variable is often integrated to relax the constraints for a feasible
solution as expressed in (8).

min |w|2 + P

n∑
i=1

εi (8)

subject to : Yn
(
wTXn + b

)
≥ 1− εi, εi ≥ 0, for i = 1, 2, ....n

where P = 100 defines the penalty cost, i.e. it is responsible
for regularizing the influence of individual support vectors

in the classification. A small value of P leads to quick
and inaccurate classification, i.e. having frequent violations,
whereas high value results in slow and accurate classification
using hard margin in classification. For mapping data into
higher space, we employed a non-linear radial basis Gaussian
kernel with σ set equal to 1.

III. RESULTS

A. Results for SVM Classification

The first step towards verification of the results is the
formulation of ground truth reference. For this research work,
the ground truth comes along with the CTA image data, i.e.
all CTA images accompany manual expert-based segment-
wise labels. The corresponding labels indicate the status of
the coronary segment in terms normal or plaque affected, and
for plaque affected segments the ground truth further reveals
the potential position. As the scope of this work is detection
of plaque in coronary vasculature using SVM classifier, we
therefore employed ground truth in context of normal versus
plaque affected coronary segments.

Accordingly, we evaluated the plaque detection perfor-
mance of the SVM classifier by extracting a total of 344
(200 normal, 144 abnormal) segments from 32 CTA volumes.
The statistical validation for detection performance has been
performed using Leave One Out (LOO) cross validation as
shown in Fig. 7. It is important to mention that for N samples,
LOO validation method employs N−1 samples in the training
and One sample in testing. From computational point of
view, LOO validation consumes extra time in comparison with
K − fold validation; however, it reveals the true efficiency of
the SVM model, as every sample is evaluated individually.
It can be observed that a promising sensitivity rate of 92%
is achieved. Moreover, positive predictive value for SVM
classifier is 81.4%, negative predictive value is 86.9% and
overall accuracy of soft plaque detection is equal to 84.6%. A
relatively high value for these metrics reveal that the automated
detection methods is capable of detecting non-calcified plaques
with a good agreement with human expert, which is ultimate
theme of any computer assisted application.

Next, we evaluated the performance of the SVM model
on three data sets individually to validate the generalization
of our model. In this evaluation, we extracted test segments
individually from three datasets (66 from Rotterdam, 76 from
St. Thomas and 36 from Semmelweis) and SVM classification
results are presented in Fig. 8. In the subsequent step, we used
the trained SVM classifier to investigate the impact of feature
vector dimensions on the classifier efficiency. In this test we
used 122 coronary segments extracted from 3 datasets (70
normal and 52 abnormal according to the manual ground truth)
and compared the classifier performance in terms of accuracy
and processing time. It has been observed that the windowed
mean and deviation based 40 features lead to a classification
accuracy of 76.8%, where the addition of mid-lumen fmid
and features improved the classifier accuracy by approximately
8%. Moreover, the comparative analysis demonstrates that the
further increase in the feature space dimensions show only
a marginal improvement in the classifier accuracy, while the
computational time increases significantly. These results lead
to the conclusion that the classifier performance becomes

www.ijacsa.thesai.org 31 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=2 Subset Approximation Error 4.4834

 

 

Actual Profile
Approximated with 2 Subsets

(a) 2 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=4 Subset Approximation Error 3.5518

 

 

Actual Profile
Approximated with 4 Subsets

(b) 4 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=5 Subset Approximation Error 3.0364

 

 

Actual Profile
Approximated with 5 Subsets

(c) 5 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=10 Subset Approximation Error 2.4189

 

 

Actual Profile
Approximated with 10 Subsets

(d) 10 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=20 Subset Approximation Error 1.0732

 

 

Actual Profile
Approximated with 20 Subsets

(e) 20 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Num Subsets=25 Subset Approximation Error 0.99329

 

 

Actual Profile
Approximated with 25 Subsets

(f) 25 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=2 Subset Approximation Error 16.5741

 

 

Actual Profile
Approximated with 2 Subsets

(g) 2 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=4 Subset Approximation Error 16.6144

 

 

Actual Profile
Approximated with 4 Subsets

(h) 4 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=5 Subset Approximation Error 13.1989

 

 

Actual Profile
Approximated with 5 Subsets

(i) 5 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=10 Subset Approximation Error 7.0086

 

 

Actual Profile
Approximated with 10 Subsets

(j) 10 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=20 Subset Approximation Error 3.5353

 

 

Actual Profile
Approximated with 20 Subsets

(k) 20 subsets

20 40 60 80 100
0

50

100

150

200

250

300

350

Num Subsets=25 Subset Approximation Error 3.0864

 

 

Actual Profile
Approximated with 25 Subsets

(l) 25 subsets

Fig. 5. Subset based signal representation to reduce the dimensions of the feature vector. It can be observed from a pairwise comparison that both normal
(top) and abnormal (below) segments can be adequately represented using 20-25 subsets. The top row represents normal segment and bottom row represents
abnormal segments.
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Fig. 6. illustration for the segment descriptor features. (a, c) shows stable
values for moving mean and deviation for a normal segment, whereas (b, d)
shows unexpected jumps for a soft plaque effected segment. Moreover (e, f)
reflects the discriminatory power of mid lumen intensity i.e normal segment
(e) assumes higher HU in contrast to abnormal segment (f) effected with low
density soft plaque.

resistant to the feature vector dimensions at a certain point
due to the redundancy of features.

IV. DISCUSSION

It can be observed from the performance graph (Fig. 7) that
the overall performance for proposed SVM detection model
is 84.6% with respect to the clinician based manual detected
ground truth, with a sensitivity of 92% and specificity of
80.3%. Moreover, it can be observed from Fig. 8 that plaque
detection performance remain consistent around 82% for three
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Fig. 7. Plaque detection performance of the SVM classifier. Leave one OUT
based cross correlation shows an overall detection accuracy around 84.6%,
with reasonable sensitivity, specificity, PPV and NPV rates.

0

20

40

60

80

100

No
rm

ali
ze

d (
%

)

 

 

Se
ns

itiv
ity

Sp
ec

ific
ity

PP
V

NP
V

Ac
cu

ra
cy

Rotterdam
St. Thomas
Semmelweis

Fig. 8. SVM classifier performance for three individual datasets. The overall
accuracy is centred at 80% with a consistent sensitivity and specificity ratio
for three datasets.

individual datasets. The detection performance for three in-
dividual datasets can be further explained based on the fact
that a “significant dip” in the segment profile ensures greater
accuracy for the classifier. Accordingly, a large number of
severe plaque instances in the Rotterdam data results in higher
sensitivity, whereas the relative low accuracy for Semmelweis
CTA data indicates the absence of severe plaque instances.
In addition to the manual ground truth based validation, the
efficiency of the proposed model is compared with state-of-
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the-art plaque detection methods of Wei et al. [14] (sensitivity
of 93%), Lankton et al. [16] (sensitivity of 88%) and Tessmann
et al. [17] (sensitivity of 79%) to establish a correlation with
the reported literature. The future work aims to extend this
work for a quantitative analysis of plaque in abnormal marked
coronary segments. One possible extension is the use of deep
learning framework to avoid the computation of hand crafted
features for SVM model. Accordingly, we believe that the
automated detection of non-calcified plaque can significantly
increase the diagnostic of clinical experts to reduce cardiac
fatalities.

V. CONCLUSION

We proposed an efficient method for automated detection of
non-calcified plaques in cardiac CTA imagery. The innovation
of this work is statistical representation of coronary segments,
and the support vector machine based 2-class interpretation of
respective segments. Accordingly, the proposed model delivers
a very good detection rate for non-calcified plaques with
respect to manual expert detections. In context of the future
expansion of this work, there exists many potential extensions.
An important aspect is to use the detected plaques for precise
voxel-wise quantification of total plaque volume, which is the
most important indicator of coronary heart disease. Another
possible extension is to employ the deep learning in plaque
detection process. This can allow auto feature extraction and
minimize the user burden by eliminating the need of hand
crafted features. In addition, one potential extension is to
obtain the ground truth from multiple human experts and
evaluate the plaque performance of the proposed method with
respect of independent observers in context of inter-observer
agreement.
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