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Abstract—Iterative image reconstruction methods are 

considered better as compared to the analytical reconstruction 

methods in terms of their noise characteristics and quantification 

ability. Penalized-Likelihood Expectation Maximization (PLEM) 

image reconstruction methods are able to incorporate prior 

information about the object being imaged and have flexibility to 

include various prior functions which are based on different 

image descriptions. Median Root Priors intrinsically take into 

account the salient image features, such as edges, which becomes 

smooth owing to quadratic priors. Generally, a 3*3 pixels 

neighborhood support or root image size is used to evaluate the 

median. We evaluate different root image sizes to observe their 

effect on the final reconstructed image. Our results show that at 

higher parameter values, root image size has pronounced effect 

on different image quality parameters evaluated such as 

reconstructed image bias as compared to the phantom image, 

contrast and resolution in the reconstructed object. Our results 

show that for the small-sized objects, small root image is better 

whereas for objects of diameter more than two to three times of 

the resolution of the reconstructed object, larger root image size 

is preferable in terms of reconstruction speed and image quality. 

Keywords—Penalized-Likelihood expectation maximization; 

median root priors; maximum-likelihood expectation 

maximization; full-width-at-half-maximum   

I. INTRODUCTION 

Positron emission tomography (PET) and Single photon 
emission tomography (SPECT) are used to image human body 
functions non-invasively. Data obtained from these scanners, 
is reconstructed by analytical or iterative image reconstruction 
methods to estimate emission object’s activity distribution. 
Analytical image reconstruction methods use line integral 
model and simply ignore any underlying noise distribution [1], 
[2]. It is also not so simple to incorporate emission or 
detection physics model into the reconstruction problem and 
these methods do not take into account the non-negativity 
condition due to Fourier transforms employed. On the other 
hand, statistical iterative image reconstruction methods can 

include modeling for emission and detection processes into the 
system matrix and automatically fulfill non-negativity 
constraint [3]. Owing to this ability, statistical iterative image 
reconstruction methods are claimed to be superior to analytical 
image reconstruction methods with respect to noise 
characteristics and quantification ability [3], [4]. 

A very popular and basic iterative image reconstruction 
method is known as maximum-likelihood expectation maxi-
mization (MLEM) method [5]. Various techniques, such as 
post reconstruction smoothing or method of Sieves, have been 
used to reduce this resultant image noise [7]–[9]. We adopt the 
same definition of the prior derivative in this paper. The 
equally popular class of priors based on median root priors 
(MRPs) is used. MRPs are designed on the basic image 
description that images are locally monotonic. In MRP’s algo-
rithm, neighborhood support of the prior function is termed as 
root image and most frequently a 3*3 pixels neighborhood is 
used as the root image. Median value evaluated on this 
neighborhood is used to penalize image pixels. We evaluate 
the impact of variation of the root image size on the final re-
constructed image by proposing a penalized-likelihood image 
reconstruction algorithm which exploits root prior knowledge. 

To the best of our knowledge, there is not much work done 
to evaluate the impact of root image size on final 
reconstructed image characteristics [15]. It is observed that the 
correlation between image pixels decreases as the distance 
between two pixels is increased. However, the value of the 
median evaluated on different root image sizes may vary. This 
work focuses on analyzing the impact of this variation on the 
properties of the final reconstructed image. 

 
The rest of this paper is organized as follows. In Section II, 

we describe the methodological background. In Section III, we 
outline the proposed algorithm. Experimental results are 
shown in Section IV. In Section V, the discussion on the 
experimental results is presented. Finally, the paper is 
concluded in Section VI 
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II. METHODOLOGICAL BACKGROUND 

MLEM is an iterative optimization method used to 
reconstruct images from scanner data known as sinogram. 
Mathematically, this method attempts to maximize an 
objective function based on the statistical average of the 
logarithm of the likelihood function as follows: 

           ̂                        (1) 

where the objective function L(X,Y) is defined as the 
logarithm of the likelihood function of the emission data Y 
given object X and the statistical expectation of Y is 
considered to be the mean of the independent Poisson 
emission model as given below. Aij is the system matrix 
element and characterizes the probability of an event being 
detected at the i-th bin and emitted from the j-th pixel point.  

   ̅̅ ̅   [    ]     ∑     
 
                        (2) 

However, with increasing iteration number this method is 
known to produce noisier images as image reconstruction is an 
ill-posed inverse problem and this technique attempts to fit the 
solution image to the data and does not consider any priori 
information about the object being imaged [6]. 

Various techniques such as post reconstruction smoothing 
or method of Sieves, have been used to reduce this resultant 
image noise [7]–[9]. However, penalized-likelihood image re-
construction methods are more favorable due to their 
flexibility to incorporate various penalizing schemes. A 
penalty function is added to the likelihood function based on 
some priori image description or knowledge and logarithm of 
this modified objective function is maximized, instead, as 
described in Eq. (II). These functions induce additional 
constraints to reduce the solution image set [10], [11]. 

 ̂              [ [      ]       ]     (3) 

In relationship given below, R(X) is the prior term and de-
pends on some priori image information or image description 
and is the hyper parameter which controls prior influence on 
the final image. Generally, quadratic prior functions are used 
due to their implementation simplicity [3], [12]. However, 
these priors produce overly smoothed salient image features 
due to their penalizing scheme to modify pixel values on the 
basis of the differences in their values [3], [7], [11], [13]. 
These priors are designed with the basic concept of image 
description that images are locally smooth. Hence, quadratic 
priors attract all image pixels in a local neighborhood which 
are close to each other in values [1]. Following relationship 
describes mathematical form of the quadratic priors: 

     ∑ ∑     
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          (4) 

In the above relationship,     are the weights assigned to 

pixels in a smaller neighborhood and V(x) is energy function 
as defined in Gibbs distribution [14]. Another equally popular 
class of priors based on median root priors (MRPs). MRPs are 

designed on the basic image description that images are 
locally monotonic. Interestingly, this includes the definition of 
local smoothness. Hence, we may observe some level of 
smoothing in the resultant image. MRPs also have their ability 
to automatically preserve edges inside the image without any 
need of an additional tuning parameter which is a 
disadvantage of other non-quadratic edge-preserving priors 
[1], [15], [16]. MRPs can be described as follows: 

 
Fig. 1. An empirical dependence of median in a local neighborhood against 

those pixel values in the same neighborhood. 
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Where Mj is the median in local neighborhood of jth pixel 
and Nb is the number of pixels in the neighborhood of the 
relevant disk. Pixel neighborhoods are generally considered as 
Markov Random Fields (MRFs) and described according to 
Gibbs distribution [14], [17]. These prior functions are 
incorporated into the reconstruction algorithm according to 
Greens very popular One-Step-Late (OSL) algorithm. 
According to this algorithm, we need first derivative of the 
objective function, including log-likelihood and logarithm of 
the prior function, to obtain the current image estimate. 
However, while the current image is being estimated, it is not 
possible to evaluate first derivative at the current image 
estimate. Derivative of the prior function is evaluated for 
image estimated at the previous iteration, hence the name OSL 
algorithm [18]. 

OSL algorithm needs first derivative of the prior function 
and, unfortunately, it is not possible to directly evaluate the 
gradient of the median function as dependence of median on 
local neighborhood is nonlinear. We have to resort to some 
empirical derivation of the gradient of median based priors. 
MRP has been defined as Gaussian distribution of the prior 
function, in the form of Gibbs priors [15], [17]. For the sake of 
the evaluation of the derivative of MRP, authors have assumed 
an empirical dependence of the local median on the image 
values as presented in Fig. 1. They have assumed local median 
to be constant within the functioning limits of the MRP 
function. Under this assumption, it becomes much easier to 
find an empirical derivation of the prior function. We adopt 
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the same definition of the prior derivative in this paper. In 
MRP algorithm, neighborhood support of the prior function is 
termed as root image and most frequently, a 3*3 pixels 
neighborhood is used as the root image.  

        

             
Fig. 2. Data simulation scheme (bottom) simulated Phantom image (left) 

and simulated sinogram data (right) which was used to reconstruct images for 
our analysis evaluated on this neighborhood is used to penalize image pixels. 

III. PROPOSED ALGORITHM  

We use a 128*128 pixels image grid with a circular 
emission object comprised of a main background disk, having 
four small disks inside it placed at the same distance from 
center of the background disk as shown in Fig. 2 (left). The 
simulated phantom image was based on the simulation scheme 
shown in Fig. 2 (bottom). This figure shows a square grid 
encircling reconstruction circle inside its boundaries. A 
random point was generated inside the grid along with a 
randomly generated angle to simulate a random event. This 
simulated event, based on a random point and angle pair, was 
assumed to describe path of a randomly emitted photon pair 
and detected in a particular line-of-response (LOR). Index of 
this LOR was calculated by the following (6) and describes 
perpendicular distance of the assumed path of emitted pair of 
photons. 

                                                         (6) 

In this expression, t represents perpendicular distance from the 

origin to the LOR, defined by the line of flight of the pair of 

photons emitted at point (x; y) and traveling at an angle with 

the x-axis. To reconstruct images for our analysis, we have 

used One-Step-Late (OSL) algorithm by P. Green [18]. That 

algorithm can be given by the following relationship. 

 
Fig. 3. Zero padding scheme for the application of median. 
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Where CML
k
 is the maximum-likelihood correction factor 

and CPL
k
 is the priors correction factor both evaluated at kth 

iteration. As mentioned by Green [18], prior function needs to 
be a continuous function having continuous derivatives, un-
luckily, median priors do not have its derivatives defined. 
However, Alenius [15] has developed some heuristic approach 

to visualize dependence of median on the local neighborhood 
as shown in Fig. 1. According to this approach, median can be 
considered constant within the operational range of the MRP. 

Our work deals with the effect of root image size on the 
images reconstructed by the PLEM image reconstruction 
methods including MRPs, hence we have used varying size of 
root images. Generally, a 3*3 pixels or 5*5 pixels root image 
is used to reconstruct images with PLEM including MRPs. We 
used 3*3, 5*5, 7*7 and 9*9 pixels root images to analyze 
characteristics of the reconstructed images. It is important to 
note that at the boundaries of the image grid, we need zero 
padding in order to apply MRPs. We have zero-padded the 
images as shown in Fig. 3. 

Initially, for our analysis, to see if size of the root image 
does produce any change in the reconstructed image, we 
evaluate reconstructed image bias (RIB) relative to the true 
phantom image based on the following equation: 

            ∑         
 
                           (10) 

    Where Xk and Phk are the relative pixels in the recon-
structed image and the phantom image respectively and N is 
the total number of pixels in the image. We analyze the 
behavior of MRPs relative to the size of their root image in 
terms of image contrast in a local neighborhood. We select 4 4 
pixels ROIs inside each small disk, at higher activity as 
compared to the background, to obtain positive contrast 
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values. Contrast is evaluated using the following formula: 

               
        

  
               (11) 

In this relation, Xe is the estimated mean value in an ROI 
in the hot disk and Xb is the estimated mean value in the 
background disk of the same size ROI. Finally, we study the 
effect of root image size on the resolution of the reconstructed 
image. We generate two realizations of the sinogram to 
evaluate reconstructed resolution, one with an impulse added 
to the centre pixel of each disk and the other one without an 
added impulse. These sinograms are then reconstructed to 

obtain two images f(X +X) and f(X). Resolution in Full-
Width-at-Half-Maximum (FWHM) is calculated from the 
differential image evaluated using the following formula: 

  

  
       

              

 
                  (12) 

Where X is a very small quantity and logically tends to 

zero for the differential image. A Matlab Function fwhm2.m, 

developed by J. A. Fessler is used to calculate resolution in 

pixels at the centre of each small disk. The proposed algorithm 

is outlined in Algorithm 1. 

Algorithm 1: Penalized-Likelihood Image Reconstruction 

Algorithm for PET 
 

1: Input: Take an image Xj
k
   

2: Output: Resolution  
3: For each iteration number k, update image using Eqs. (7-

9).  

4: Reconstruct image with varying neighbourhood size 3*3, 

5*5, 7*7, 9*9 in PLEM.   
5: Evaluate image bias using Eq. (10) for each reconstructed 

image to evaluate hyper parameter values for optimum 
reconstructed resolution.  

6: for  each beta do   
7: for each disc do   
8: Evaluate contrast using Eq. (11).   
9: Evaluate reconstructed resolution by FWHM of impulse 

response.  

10: Next   
11: end for   
12: Next  

13: end for  

IV. EXPERIMENTAL RESULTS  

We evaluate reconstructed image bias relative to the true 
phantom image, to observe any effect of root image size on 
reconstructed images, and presented our results in Fig. 4. We 
use (10) to calculate image bias and this figure displays bias 
values for different beta values and root image sizes. We 
observe that image bias reduces with decreasing value of beta 
parameter value, reconstructed image moves more and more 
towards its MLEM solution, hence reducing effect of the prior 
and, consequently, of the root image size. 

 
Fig. 4. Reconstructed image bias relative to the true phantom image using 

MRPs for different root-image sizes and beta parameter values. 

It is clear that at low beta values, there is not much 
difference in bias values for different root image sizes. 
However, as beta value increases, and gets near 1, image bias 
increases and clearly is affected by different root image sizes 
in penalized-likelihood image reconstruction method using 
MRPs. We also analyze the effect of root-image-size in MRPs 
on the reconstructed contrast values inside each small disk, 
using (4), and present our results in Fig. 5. 

This image clarifies that the reconstructed contrast varies 
with different root image size at higher beta values for smaller 
objects. This contrast values becomes almost same for 
different root image sizes for the largest disk size having 
highest activity level. However, for lower beta values root 
image size does not have much effect on the reconstructed 
contrast in different objects and for different root image sizes. 

Fig. 6 presents results for reconstructed resolution, in 
FWHM (Pixels), at the centre of each small disk for two 
different beta parameter values. With higher beta value, recon-
structed resolution is much different for different root image 
sizes. However, for lower beta value where priors influence is 
reduced, root image size does not seem to have strong 
influence. This effect is similar to that of different root image 
sizes over the image bias or reconstructed image contrast 
values. 

Average reconstructed resolution also seems to be higher 
(lower FWHM values) in case of lower beta value as 
compared to the one with higher beta values which may be 
considered as higher smoothing at high beta values. This may 
not, strictly, be the same kind of smoothing as produced by 
quadratic priors [2]. It should also be noted that DISK2 and 
DISK4 are on the vertical axis whereas DISK1 and DISK3 are 
on the horizontal axis. This indicates an asymmetrical 
reconstructed resolution response. 
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Fig. 5. Contrast recovery results with MRPs for different size of root 

images. DISK1 to DISK4 present recovered contrast for different activity 

values and different size of the object for two different values of beta hyper 
parameter values. At higher beta values, for the smallest DISK1 with least 

activity, contrast varies for different root-image-sizes, whereas for largest 

DISK4 with highest activity value, contrast is almost same. 

 

 
Fig. 6. Resolution in FWHM (Pixels) with MRPs for different size of root 

images at the center of each small disk. DISK1 to DISK4 present 

reconstructed resolution for different activity values and different size of the 

object for two different values of beta hyper parameter values. At higher beta 
values, for the smallest DISK1 with least activity, contrast varies for different 

root-image-sizes, whereas for largest DISK4 with highest activity value, 

contrast is almost same. 

V. DISCUSSION 

We have analyzed effects of root image size on the final 
reconstructed image using penalized-likelihood image 
reconstruction methods including median root based priors. 
We have evaluated this effect in terms of reconstructed image 
bias as compared to the true phantom image, reconstructed 
contrast in high activity regions and resolution in FWHM (in 
pixels) at certain locations inside the image. 

Our results show that root image size has pronounced 
effect on the bias values for higher beta parameter values. 
Higher beta value, in case of MRPs, means higher priors 
influence on the final reconstructed image which means that it 
is attracted more towards local medians. At higher beta values, 
shape of the prior is more sharply peaked and locally non-
monotonic areas are dragged towards local median with 
stronger force. Moreover, with higher beta values and bigger 
root image size, response of MRPs is farthest from that of any 
local smoothing prior (quadratic priors), hence reduced 
smoothing will be observed. That could be the reason that we 
observe higher bias values with bigger root image size at 
higher beta values. This can also be attributed to less 
correlation between distant pixels. 

Additionally for contrast values, no significant difference 
is observed at lower beta values with different root image size. 
However, at higher beta values, contrast is much reduced for 
bigger root image size for small object size containing low 
activity value as compared to the smaller neighborhood in the 
same object. This may also mark presence of partial volume 
error because this effect is reversed in the bigger size disks 
containing higher activity values where contrast is higher for 
bigger root image size. 
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For higher values of beta parameter, resolution in FWHM 
(Pixels) varies markedly for different size of root image and 
even the trend varies in horizontal and vertical directions. 
DISK1 and DISK 3 are on the horizontal axis where the 
reconstructed resolution is worse (or higher in FWHM) as 
compared to the DISK 2 and DISK 4 that are lying on the 
vertical axis. This effect is totally strange for the smallest root 
image size and could represent a mixture of root image partial 
volume error combined due to the disk size smaller than 2 to 3 
times of the resolution (FWHM in Pixels). 

 
However, at lower beta values (near to zero) difference 

between different root image size disappeared, though the 
effect of object size and activity level still persists in the form 
of varying resolution at the center of these disks. 

VI. CONCLUSION 

We evaluated the effect of varying root image size on the 
final reconstructed image by Penalized-Likelihood image 
reconstruction methods with median root based priors. We 
conclude that higher root image or neighborhood size 
produces higher bias which means reconstructed image is 
farther from the true image as compared to the image 
reconstructed by the smaller root image size. The same is true 
for the reconstructed contrast and reconstructed resolution. It 
should be stressed that the effect of the hyper-parameter 
values be considered along with the effect of root image size. 
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