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Abstract—Model estimation is an important step in quadrotor
control design because model uncertainties can cause unstable
behavior especially with non-robust control methods. In this
paper, a modeling approach of a quadrotor prototype has been
proposed. First an initial dynamic model of quadrotor UAV
based on Euler-Lagrange formalism was developed. Then the
roll system has been estimated using closed loop identification
method and frequency domain analysis. An experimental tests
has been performed for the roll system to validate the estimated
dynamic model.
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I. INTRODUCTION

Quadrotor is a Vertical Take-Off and Landing VTOL
aircraft consists on two arms on four rotors placed on the
extremities of its arms as is shown in Fig. 1. Quadrotor motion
is controlled through motors speed variation. In fact changing
simultaneously the speed of all motors with the same average
produces vertical motion. Rotation around yB axis (Pitch) is
provided by adjusting speed of motor (1) or (3), which results
a forward/backward motion. Roll motion is a rotation around
xB axis obtained by varying motor (2) or (4) speeds, thus a
right/left translation motion is acquired. Rotation around zB
axis (Yaw) is given by changing velocity of motor (1) and (3)
against (2) and (4). Modelling of quadrotor UAV has attracted
a lot of interest and there are several methods proposed in
literature. In fact mathematical model of the quadrotor UAV
was developed [1] and [2] using Newton-Euler and Lagrange
formalism resulting a six degree of freedom DOF equations
system describing quadrotor motion. Whereas in [3] quaternion
method was used to get the quadrotor model. In [4] a non
linear model was developed using Euler-Lagrange formalism,
then the unknown model parameters has been identified using
mathematical calculations and experimental tests. The quadro-
tor system was described with an ARMAX model obtained
by the closed loop identification method [5]. Authors in [6]
have used Black-box approach for a variable-pitch quadrotor
identification was also developed and explained. In [7] a non
linear dynamic model of a quadrotor UAV was detailed by
considering the aerodynamic effects into account, to cover a
wide flight regime not only hovering position. [8] used the
Prediction Error Method PEM with blak box model approach
to identify Linenar Time Invariant LTI model exploring ex-
perimental flight data. In [9] identification of linear parametric
model of quadrotor UAV is developed using frequency domain
method. [10] developed system identification of translation for
a cost open-source quadrotor prototype MikroKopter.

This paper presents an identification method to estimate
dynamic model of quadrotor roll loop basing on initial double
integration model. This paper is organized as follows: Mathe-
matical modeling of quadrotor attitude is elaborated in Section
II. Section III describes Sunbird quadrotor prototype. Section
IV presents the frequency identification method for quadrotor
roll loop. Simulation results and discussion is shown in Section
V. Finally, conclusion and future work are given in Section VI.

II. MATHEMATICAL MODELLING

This section describes the quadrotor mathematical model
developed using Euler-Lagrange formalism.

Denoting q the generalized coordinates of the quadrotor

q = (x, y, z, φ, θ, ψ) ∈ <6 (1)

where ξ = (x, y, z) is the positions of the quadrotor center
of mass relative to the fixed inertial frame E, the orientation
of the quadrotor are expressed by ϑ = (φ, θ, ψ), where φ is
the roll angle around the xB axis, θ is the pitch angle around
the yB axis and ψ is the yaw angle around the zB axis. The

Fig. 1. Quadrotor UAV coordinate system.

transformation matrix from inertial frame E to the body frame
B is given by

R =

[
cψ cθ cψ sθ sφ− sψ cφ cψ sθ cφ+ sψ sφ
sψ cθ sψ sθ sφ+ cψ cφ sψ sθ cφ− sφ cψ
−sθ cθ sφ cθ cφ

]
(2)
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where sθ = sin(θ) and cθ = cos(θ).

Lagrangian equation is defined as follow

L(q, q̇) = Ep − Ec (3)

where Ec and Ep are respectively the potential and kinetic
energy. {

Ec = mgz

Ep = m
2 ξ̇

T ξ̇ + 1
2 υ̇

T Iυ̇
(4)

where I is the inertia matrix, m is the total mass of the
quadrotor and g is the gravity acceleration.

Euler-Lagrange formulas is

d

dt
(
δL

δq̇
)− δL

δq
=

[
F
τ

]
(5)

where F is the force of translation, τ is the total torque.
Let’s start with the rotational dynamic of the quadrotor. where
τ is the total torques produced by quadrotor system. We can
write

τ = τ1 + τ2 (6)

where τ1 is the roll, pitch and yaw torques produced by
the quadrotor motors

τ1 =

 bl(Ω2
2 − Ω2

4)
bl(Ω2

1 − Ω2
3)

d(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

 (7)

τ2 is the gyroscopic effects given by

τ2 =

θ̇IrotorΩgφ̇IrotorΩg
0

 (8)

where Ωi is the angular speed of the ith motor, b is the
thrust coefficient, d is the drag coefficient, l is the distance
between the motors and the quadrotor center of gravity and
Irotor is the rotor inertia moment.

Ωg = (Ω1 − Ω2 + Ω3 − Ω4) (9)

The generalized moments are

d

dt
(
δL

δφ̇
)− δL

δφ
= Ixxφ̈+ (Izz − Iyy)θ̇ψ̇

d

dt
(
δL

δθ̇
)− δL

δθ
= Iyy θ̈ + (Ixx − Izz)φ̇ψ̇

d

dt
(
δL

δψ̇
)− δL

δψ
= Izz θ̈ + (Iyy − Ixx)φ̇θ̇

(10)

Where I is the inertia matrix:

I =

[
Ixx 0 0
0 Iyy 0
0 0 Izz

]

The rotational dynamic equations can deduced from (4),
(5) and (7)

φ̈ = θ̇ψ̇(
Iyy − Izz
Ixx

) +
Irotor ˙θΩg

Ixx
+

1

Ixx
U2

θ̈ = φ̇ψ̇(
Izz − Ixx
Iyy

) +
Irotor ˙φΩg

Iyy
+

1

Iyy
U3

ψ̈ = φ̇θ̇(
Ixx − Iyy

Izz
) +

1

Izz
U4

(11)

where (U1, U2, U3, U4) are the model inputs which given
by the following expressions

U1 = b (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = bl (Ω2
2 − Ω2

4)

U3 = bl (Ω2
1 − Ω2

3)

U4 = d (Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

(12)

In order to reduce complexity of calculus, gyroscopic
effects and moments of inertia terms can be neglected in the
motion (8). Thus the roll

φ̈ =
1

Ixx
U2

θ̈ =
1

Iyy
U3

ψ̈ =
1

Izz
U4

(13)

To estimate moment of inertia, the quadrotor can be
decomposed into several parts (Arm, Battery, Card, Rotors).
Then using the formulas (14) the inertia moment of each part
relative to his axis can be calculated. After that by applying
the Huygens-Steiner theorem (15) we can get the moment of
inertia of each part through the quadrotor center of gravity.
The quadrotor moment of inertia is given by the sum of the
moment of each parts.

I0 =

∫
x2dm (14)

Ig = I0 +md2 (15)

Denoting G(s) as the dynamic model of the roll axis

G(s) =
1

Ixxs2
(16)

III. SUNBIRD QUADROTOR PROTOTYPE

In this paper a quadrotor prototype is used as a test platform
named Sunbird Shown in Fig. 2. Sunbird is a home-made
quadrotor platform designed at MACS research laboratory.

Sunbird quadrotor is composed as follows:

• Arduino DUE card used as flight controller. It based on a
32-bit ARM core micro-controller with 54 digital input/output,
2 analog output and 12 analog inputs.
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Fig. 2. Sunbird quadrotor prototype.

• FlySky 2.4 Ghz 4 channels Radio Control Transmitter
and Receiver used to remotely control the quadrotor.

• Rotor composed with Hextronik DT750 brushless DC
motor, 10×4.5 propellers and Electronic Speed Controller ESC
30A operating with Pulse Width Modulation (PWM) signal
generated by Arduino Due card.

• Ultrasonic sensor HC-SR 05 for altitude measuring with
a 4.5 meter of measurement range.

• Measurement Processing Unit MPU6050 is also used
to estimate attitude. MPU-6050 is a six axis IMU sensor
containing 3 axis gyroscope ITG 3200 giving the angular
velocities and 3 axis accelerometer ADXL 345 measuring
linear accelerations. Arduino Due board receives data from
MPU-6050 via I2C-bus. Then a complementary filter is used
to attenuate high frequency signals affecting accelerometer
like vibration and compensates the drifts affecting gyroscope
measurements. The composition of quadrotor prototype is
described in Fig. 3.

Fig. 3. Sunbird quadrotor prototype architecture.

IV. ROLL SYSTEM FREQUENCY IDENTIFICATION

In this section we interested on roll system modeling using
the closed loop identification method. It is based on frequency
domain analysis in order to estimate the process model.

The roll system described in (13) is unstable, hence the
necessity of a control loop.

A. Control loop identification

A Proportional Integral Derivative controller was used to
ensure the roll loop stability. The PID control loop used in this
section was described in Fig. 4.

Fig. 4. Process model in a PID control loop.

The PID controller is described by the following expres-
sion:

C(s) = kp +
ki
s

+ kds (17)

where (kp, ki, kd) are respectively the proportional, integral
and derivative factors.
The control system is based on reverse model technique. In
fact the control signals was used to calculate the desired motors
speed (Ωd1,Ωd2,Ωd3,Ωd4) from (12).

Ωd1 =
√

U1

4b + Uθ
2bl +

Uψ
4d

Ωd2 =
√

U1

4b +
Uφ
2bl −

Uψ
4d

Ωd3 =
√

U1

4b −
Uθ
2bl +

Uψ
4d

Ωd4 =
√

U1

4b −
Uφ
2bl −

Uψ
4d

(18)

Then using the desired motor speed, we can deduce the
PWM signal. The relation between PWM and motor speed
was experimentally estimated. Fig. 5 illustrates the relation of
PWM signal over the motor speed, which can be expressed by
the following second order equation using “polyfit” Matlab
function

PWM = a2Ω
2

+ a1Ω + a0 (19)

where a2 = 1.2093 10−5, a1 = 6.5776 10−2 and a0 =
948.2.
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Fig. 5. Measured and approximated PWM signal and motor speed charac-
teristics.

The PID controller was implemented on the Arduino DUE
board and then was experimentally adjusted. The chosen
controller parameters are

kp = 0.35 ki = 0.28, kd = 0.46

B. Frequency Identification

The The closed loop system in Fig. 4 was excited by a
varied sine setpoint with a magnitude of 5◦ and a frequency be-
tween

[
10−2, 102

]
Hz. The PID control loop is implemented

in the Arduino due card operating with a sample time of 0.01
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second. The quadrotor was placed on a test bench ensuring
rotation around the roll axis with minimum friction effects
shown in Fig. 6.

Fig. 6. Quadrotor prototype placed on a test bench ensuring rotation around
roll axis.

Fig. 7, 8 and 9 illustrate the setpoint and the output signals
with a frequency of respectively 10−2, 10−1 and 1Hz. As
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Fig. 7. Roll angle response for a sine setpoint with a frequency of 0.01Hz.
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Fig. 8. Roll angle response for a sine setpoint with a frequency of 0.1Hz.

can be seen, for low frequency the input and the output signals
are quietly non phases and gains are observed. However for
frequency around 1Hz the output amplitude increases locally
then decreases for a highest frequencies, and a lag behavior
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Fig. 9. Roll angle response for setpoint frequency f = 1Hz.

is also observed. From several sine responses, the phase and
magnitude can be measured for a each frequency. Then the
Bode diagram can be plotted. Bode plot of the quadrotor
proposed control loop is shown in Fig. 10.
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Fig. 10. Bode plot of the closed loop.

Basing on bode plot in Fig. 10 the closed loop transfer
function can be calculated. From the Bode diagram the closed
loop system can be estimated as a second order system with
resonance. Denoting F (s) the control loop transfer function
described in Fig. 4.

F (s) =
1

1
ω2
n
s2 + 2ξ

ωn
s+ 1

(20)

where ωn is the normal frequencies and ξ is the damping
factor.
Denoting Q the resonance factor of the closed loop system
which can be described by the following expression:

Q =
1

2ξ
√

1− ξ2
(21)

Thus
4Q2ξ2(1− ξ2) = 1 (22)
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We can write also

4Q2ξ4 − 4Q2ξ2 + 1 = 0 (23)

The damping factor ξ is given by solving the second order
differential equation (23).
We denotes ωr as the resonance frequency. Equation (24)
describes the relation between the resonance ωr and normal
frequencies ωn.

ωn =
ωr√

1− 2ξ2
(24)

We obtained the following normal frequency and damping
factor:

ξ = 0.24, ωn = 10rad/s (25)

The transfer function control loop can be written as

F (s) =
C(s)G(s)

1 + C(s)G(s)
(26)

where C(s) is the PID controller and G(s) is the process
model transfer function.

G(s) =
F (s)

C(s)(1− F (s))
(27)

Replacing C(s) and F (s) with their expression we can
write

G(s) =
1

(
kds2+kps+ki

s )( s
2

ω2
n

+ 2ξs
ωn

)
(28)

Thus the open loop roll model is following third order
transfer function

G(s) =
1

kds3

ω2
n

+ s2( 2ξkd
ωn

+
kp
ω2
n

) + s( kiω2
n

+
2ξkp
ωn

) +
2ξkp
ωn

(29)

The deduced process model is a third order transfer func-
tion system

G(s) =
1

c3s3 + c2s2 + c1s+ c0
(30)

where 

c3 = kd
ω2
n

c2 = 2ξkd
ωn

c1 = ki
ω2
n

+
2ξkp
ωn

c0 =
2ξkp
ωn

(31)

Fig. 11. Step responses of estimated dynamic model and experimental
prototype.

V. RESULTS AND DISCUSSION

To evaluate the performances of the proposed identification
method. The quadrotor has been placed in a PID control loop
to compare the real prototype responses and simulations of the
estimated process model. Fig. 11 illustrates the experimental
simulation step responses of the roll system. We can remark
that both of these responses are very close, and the rise and
settling time are nearly the same.

In addition the quadrotor roll axis was tested with sine
response. Fig. 12 shows the measured response and simulation
of the identified dynamic model for sine setpoint. We can see
that the responses are approximately superposed. Basing on
these results we can judge the validity of estimated process
model by the proposed identification method.
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Fig. 12. Roll response of experimental prototype and simulation of process
model.

VI. CONCLUSION

In this work the frequency identification method is pro-
posed to estimate the quadrotor roll model. A non linear model
is firstly developed using Euler-Lagrange formalism. Then the
proposed identification method is applied to Sunbird quadrotor
prototype using a PID control loop. Frequency domain analysis
is then used for roll loop model. Finally, a comparison of
experimental and simulated results in order to validate the
estimated model. For the future work, the other quadrotor
components (θ, ψ, x, y, z) should be estimated using the
frequency identification to validate the effectiveness of this
method in quadrotor system full modeling.
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