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Abstract—In this paper, a novel set of orthogonal crossover 

polynomials for the baseband modelling and linearization of 

MIMO RF Pas is presented. The proposed solution is applicable 

to WCDMA and LTE applications. The new modelling approach 

has considerably reduced the numerical instability problem 

associated with the conventional polynomial model identification. 

In order to validate the efficiency and the robustness of the 

proposed solution, a 2x2 MIMO LDMOS RF power amplifier has 

been measured modelled and linearized. A comparison with the 

conventional polynomial MIMO models showed clearly the 

superiority of the proposed solution in a fixed-point calculation 

environment such as DSP and FPGA boards. 
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I. INTRODUCTION 

Power amplifiers (PAs) are the major source of nonlinearity 
in communication system that causes spectral regrowth as well 
as in-band distortion. Accurate modeling of the RF PAs is 
required which increases the problem size and reduces the 
numerical stability of the model identification procedure. This 
problem is more pronounced in multiple input systems. 
Multiple-input multiple-output (MIMO) transceivers allow 
high service quality and increase the capacity range of wireless 
transmission requiring very high-speed data transfer [1]–[3]. In 
fact, the capacity of MIMO transceivers M times the capacity 
of a single-input-single-output (SISO) equivalent system. 
Volterra series were developed in [4]–[7] and were intensively 
used in modelling power amplifiers and DPD. However, the 
Volterra series involves a great number of coefficients, which 
increases the complexity of the problem in the case of MIMO 
systems. 

In the literature, several attempts reduce the number of 
coefficients for PA models. In [8] a dynamic deviation 
reduction model has been suggested for modelling single input 
PAs. In [9]–[13], reduced polynomial models have been 
proposed for modelling MIMO PAs. Saffar et al. [14], 
addressed the joint mitigation of I/Q modulator impairment and 
PA nonlinearity in MIMO transmitters through an optimized 
memory polynomial model. However, all these published 

models suffer from the increasing numerical instability as the 
problem size increases. This generally happens when a high 
nonlinearity order, a high memory depth, or a big number of 
inputs were considered.  

Radio frequency (RF) PAs presents a challenge to the 
transceiver designers. In fact, designers need to boost two 
contradictory parameters of the PA such as power efficiency 
and linearity. Several linearization techniques are proposed in 
the literature to improve PA‟s linearity. Due to its simplicity 
and efficiency, the digital pre-distortion (DPD) is considered as 
the most popular linearization technique. Hence, the DPD 
approach has been intensively used to compensate for the 
transmitter nonlinearities as in [15]–[17]. However, the DPD 
technique requires an accurate modelling of the PA. In fact, 
high polynomial order leads generally to an accurate model 
with high complexity. This generally increases the numerical 
instability and vulnerability of the model identification 
procedure [18], [19]. Therefore, a tradeoff is always required 
between the model accuracy and complexity. A good metric 
for measuring the model accuracy is the time domain 
normalized mean squared error (NMSE) while the DPD 
performance can be measured using the frequency domain 
adjacent channel power ratio (ACPR) of the compensated 
system [20], [21]. However, the model identification procedure 
is based on the inversion of an observation matrix that has to be 
well conditioned in order to avoid numerical instability. The 
condition number is a metric to test the conditioning of this 
matrix by measuring the linear dependence of its columns [18], 
and is generally related to the distribution of the input signal 
envelope, as well as the dimensionality of the problem. In 
MIMO PAs, the problem size increases drastically with the 
number of input signals, making the instability issue more 
pronounced. This is mainly due to the high correlation that can 
exist between the input data resulting in ill-conditioned 
observation matrix with a high condition number. In this work, 
the numerical instability of the model identification procedure 
is addressed through the development of a complex multi-input 
orthogonal polynomial model.  

The organization of the paper is as follows. In Section. 2, 
we introduce the reference crossover conventional polynomials 
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for modelling the MIMO PAs. In Section 3, we present the 
derived novel robust orthogonal polynomial model. The 
experimental validation and performance assessment of the 
proposed model is given in Section 4. Finally, the conclusion is 
drawn in Section 5. 

II. MODELLING MIMO SYSTEMS USING CONVENTIONAL 

POLYNOMIALS 

In this section, the crossover polynomial model [13] is 
detailed, and its limitations are discussed for a 2×2 MIMO PA 
case. The conventional polynomial model is a base band model 
that has been developed to characterizing nonlinear radio 
frequency power amplifiers with and without memory effects. 
The closed form expression that relates the input and output 
complex envelope signals of the PA is given in [13] such that 
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memory depths. 

Equations (1) can be expressed in a matrix form such that 


1 2

1,1 1,2

1 2
2,1 2,2

x x

H H
y y

H H

 
       

     
 



For a two-input single output memory less polynomial 
conventional model, the above expression becomes. 
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is a vector of the model coefficients.  
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with ( )K x is given by 
2

( )
K

K x x x  . 

The least-squares estimate (LSE) of H for MIMO 
conventional models can be obtained using the Moore-Penrose 
pseudo inversion such that  

 H -1 H
LS 1H =(Φ Φ) Φ y 

where  .
H

denotes the Hermitian transpose. 

The inversion of the observation matrix HM Φ Φ    is 

often imperfectly conditioned. Thus, the inversion of such 
matrix will undergo numerical errors. This problem is more 
pronounced and leads to erroneous results when the finite 
precision calculation is used. Define the condition number of a 
matrix M as: 
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where max and min are the maximum and minimum 

singular values of M. 

In order to estimate the condition number  of the 

observation matrix HΦ Φ   , two independent sets  1 2,x x of 

184,239 data samples with normalized Gaussian distribution 
are used. 

 

Fig. 1. The condition number of 
HΦ Φ    as a function of K. 
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Fig. 1 shows clearly that the condition number  increases 

exponentially as a function of the model nonlinearity order. 
This implies that, in practice, the model can be unstable. 
Therefore, reduction of the condition number is highly required 
to ensure the numerical stability of the model coefficient 
identification procedure. This can be achieved by substituting 

the set of conventional basis functions ( )K x with an 

orthogonal set ( )K x leading to an observation matrix with 

lower  . 

III. ORTHOGONAL POLYNOMIALS BASED MODEL FOR 

MIMO RF POWER AMPLIFIERS 

In this section, we propose a new set of orthogonal 
polynomial basis functions for modelling PAs excited with two 
independent signals. To adhere to the statistics of the widely 
used communication signals such as WCDMA and LTE, 
Gaussian distributions have been considered for the complex 
envelops of the RF inputs. The proposed solution is expected to 
reduce the condition number of the observation matrix and 
hence ensure the numerical stability of the model identification 
procedure. 

Considering the memory less case and in an attempt to 
alleviate the numerical instability problem associated with the 
inversion of the observation matrix in (6) let‟s consider 

2
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where  and  are the complex envelope input and 

output signals respectively and are the model coefficients,

are the coefficients of the orthogonal model, P and Q are 

the memory depths, K is the model nonlinearity, with

. 

The new data matrix is given by 
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with U is a (2 +2)×(2 +2)k k  matrix.  

We consider the following requirements for the 

orthogonality of the suggested basis functions: ( )k x and 

( )x  to be orthogonal, the following condition has to be 

satisfied: 
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Where, E[.] denotes statistical expectation, and (*) stands 
for complex conjugation. Therefore, finding the appropriate 
orthogonal polynomial basis functions returns to finding the U 
matrix such that 

 

is diagonal, with M H    
 

is a (2 +2)×(2 +2)K K  matrix. 

The resolution of the problem returns to find the elements of 

the matrix U such that U M U=H
dI . 

To find the U matrix elements for the proposed 2×2 MIMO 

model consider and two independent complexes Gaussian 

input signals with zero means and variances σx1 and 

σx2respectively. The matrix can then be given by  



where 0k+1is a (k+1)×(k+1) sub matrix with zero elements. 
R1 and R2 are two (k+1)×(k+1) symmetric sub-matrices such 
that for i={1,2} we have 



To construct the required set of basis functions the U 
matrix is proposed to be a (2k+2)×(2k+2) matrix such that 
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and 10k is a null  (k+1)×(k+1) sub matrix. For the proposed 

2×2 MIMO model with two independent inputs 1x and 2x with 

zero mean and 
ix  variances. The ui,lk elements of the matrix 

Ui can be given by [19]. 
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A. N×N MIMO Orthogonal Crossover Model 

The suggested Crossover orthogonal model can be 
extended to N×N MIMO transmitters such that: 
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with N is the number of inputs and outputs of the MIMO 
transmitter. 

For MISO transmitters with N inputs and a single output, 
expression (9) leads to the following matrix form: 
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In order to convert the observation matrix to a diagonal one 
that ensures the numerical stability of the model identification 
procedure, the F matrix is substituted with a Y matrix such that 
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B. Numerical Validation 

In this paper, we proposed a closed-form expression for 
orthogonal polynomials to model MIMO Pas excited by RF 
signals with Gaussian complex envelops such as WCDMA and 
LTE signals. To demonstrate the efficiency of the proposed set 
of basis functions in reducing the risk of numerical instability, 
the condition number of the resulting observation matrix has 
been calculated. To do so 184,239  independent realizations of 
a four-channel WCDMA1001 and a four-channel WCDA1111 
have been generated as input signals x1 and x2 respectively and 

used to calculate the
H  and 

H  observation matrices for 
different non-linearity orders K. The „1‟ refers to an ON 
channel while the „0‟ refers to an OFF channel. Fig. 2 shows 
the condition number for the memory less 2×2 MIMO. 

 

Fig. 2. The condition number of H  and H   for the 2×2 MIMO case. 

Fig. 2 shows clearly that for the conventional model the 
condition number grows exponentially with the non-linearity 
order K to reach 10

30
 for K=11. However, for the proposed 

orthogonal model, the condition number increases at a much 
lower rate without exceeding 100 for the same range of K. 

Hitherto, the above-described numerical simulations have 
proven the remarkable performance of the proposed orthogonal 
polynomial basis functions for crossover 2×2 MIMO models. 
However, an experimental validation is required to verify the 
impact of the numerical stability on the model accuracy. 

IV. EXPERIMENTAL VALIDATION 

The performances of the proposed set of orthogonal basis 
functions have been evaluated by modelling and linearizing a 
2x2 RF power amplifier. To do so the experimental setup 
shown in Fig. 3 has been developed. We generated two signals 
using two vector signal generators (VSG) ESG1 and ESG2 of 
type E4438C in order to excite the MIMO transmitter. The 
latter is equivalent to two drivers followed by two class-AB RF 
PAs and two attenuators. Two couplers have been used to 
introduce a non-linear cross talk as shown in the figure. A 
vector signal analyzer (VSA) of type E4440A is then used to 
collect and analyze one of the two attenuators‟ outputs through 
the RF switch.  

 
Fig. 3.  Block Diagram of a MIMO PA measurement setup. 
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The measurement is performed by connecting the sources 
via a (GPIB) bus. The I/Q components of the two multi-carrier 
wideband code division multiple access (WCDMA) signals 
(WCDMA1001 and WCDMA1111) are generated using 
Matlab then downloaded to the source with an average power 
equal to 9 dBm and a bandwidth of 20 MHz. The output signal 
is down-converted, sampled and digitized at a sampling 
frequency of (fs= 92.16MHz) for a time window of 2ms 
leading to a data set of 184,239 samples. The non-linear 
crosstalk is set to −20 dB 

C. Key Performance Metrics 

To evaluate the accuracy of the proposed MIMO model in 
predicting the transmitter output the time domain normalized 
mean square error (NMSE) has been used. The NMSE [20], 
[21] is expressed in the logarithmic scale as shown in the 
following equation: 

  

where and are respectively the complex 

envelopes of the measured and modelled output signals. In the 
other hand, a frequency domain metric such as the adjacent 
channel power ration (ACPR) can be used to evaluate the 
spectral regrowth in the output spectrum as well as the 
performances of the proposed model based digital predistorter. 
The ACPR   defined as follows [20], [21]: 

 

The adjacent channel power ration (ACPR) is measured for 
the adjacent channels below and above the main carrier in dBc. 

D. Forward Model Experimental Results 

The importance of a low condition number resides in the 
fact that the PA model is generally used in the PAs 
linearization operation. The linearization algorithm runs on a 
fixed-point processor like DSP or FPGA with a limited number 
of bits. In fact, the fixed-point processors are efficient with low 
computation time, cost and power consumption. However, 
during the modelling process, the model is generally simulated 
with a floating-point processor. 

The nonlinearity order is set to 11 and the memory depths 
P and Q are set to 2 and 3 respectively. Under these conditions, 
three different calculation environments have been considered. 

 Scenario   1: floating point calculation. 

 Scenario 2: fixed point calculation with a fraction length 
of 32 bits. 

 Scenario 3: fixed point calculation with a fraction length 
of 24bits. 

As a first test, the coefficients of the conventional and the 
proposed orthogonal models for the PA under test have been 
identified in a floating calculation environment. The models‟ 
outputs are then compared to the measured PA output and the 
NMSE have been calculated. Fig. 4(a) shows the NMSE of the 
two models. The figure reveals that the two models exhibit a 
comparable accuracy with a pretty similar NMSEs that reached 
-47.5dB for K = 10. However, the NMSE of the conventional 
model bounced back to -42dB for K = 11 while the one of the 
proposed models continued its fall to -48.53dB. 

 
(a) 

 
(b) 

Fig. 4. Measurement of the NMSE of scenario 1(a), scenario 2 and  

scenario 3(b). 

In a second test, the same procedure has been repeated 
using a 64 bits fixed-point processor with fractional lengths of 
32 bits and 24 bits. Fig. 4(b) shows The NMSEs for the two 
models and for the two fraction lengths. The figure 
demonstrates clearly that the performance of the conventional 
model deteriorates for the two cases leading to NMSEs 
diverging to near -3dB for K = 11. However, the proposed 
orthogonal model maintained its accuracy with NMSEs below 
-40dB for the whole range of K. 
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E. Digital Pre-Distorter Experimental Results 

Once the coefficients of the model are identified, the PA 
output can be predicted under different excitation signals. 
However, in an attempt to linearize the PA and improve its 
efficiency-linearity compromise, a reverse model can be 
developed and a digital predistorter (DPD) can be obtained 
using the indirect learning architecture (ILA). As shown in 
Fig. 5, the ILA consists of identifying and updating the DPD 
coefficients using the LS algorithm while exchanging the PA 
inputs and outputs.  The resulting DPD can then linearize the 
PA and improve the quality of its output spectrum. To validate 
the effectiveness of the proposed orthogonal model in the 
linearization of MIMO PAs, a nonlinearity order of 11 and 
memory depths P and Q of 2 and 3, respectively were 
considered. The DPD is then developed and applied using the 
three different scenarios of calculation environment. 

 

Fig. 5. Block Diagram of a MIMO PAs + DPD measurement setup. 

TABLE I.  MEASURED ACPR IN DBC FOR THE FIRST SCENARIO 

Signal 
WCDMA1001 WCDMA1111 

L R L R 

Without DPD -33.42 -32.76 -34.42 -34.61 

With DPD 

(conventional model) 
-42.25 -42.60 -43.56 -43.81 

With DPD 

(orthogonal model) 
-49.16 -49.31 -50.21 -50.30 

TABLE II.  MEASURED ACPR IN DBC FOR THE SECOND SCENARIO 

Signal 
WCDMA1001 WCDMA1111 

L R L R 

Without DPD -28.52 -28.92 -28.76 -28.33 

With DPD 

(conventional model) 
-20.29 -20.32 -20.34 -20.79 

With DPD 

(orthogonal model) 
-42.97 -43.1 -43.52 -43.86 

TABLE III.  MEASURED ACPR IN DBC FOR THE THIRD SCENARIO 

Signal 
WCDMA1001 WCDMA1111 

L R L R 

Without DPD -27.58 -27.92 -27.77 -27.91 

With DPD 

(conventional model) 
-18.37 -18.41 -19.21 -19.34 

With DPD 

(orthogonal model) 
-41.87 -41.62 -42.64 -42.32 

Tables I, II and III show the adjacent channel power ratios 
(ACPR) of the 2x2 MIMO PA outputs with and without DPD. 
The table revealed the high values (above -28dBc) of the 
ACPR for the different scenarios when the DPD is turned OFF. 
Under the floating-point environment calculation, the 
conventional and the proposed orthogonal model based DPDs 
performed pretty well with an ACPR below -42dBc for the two 
PA outputs. In addition, the results revealed a better 
performance of the orthogonal model based DPD with an 
ACPR as low as -49dBc.  

Under the fixed-point calculation environment, the 
performance of the conventional model-based DPD 
deteriorates significantly, leading to an ACPR exceeding -
19dBc. However, the orthogonal model based DPD maintained 
its good performance with an ACPR below -41dBc for the two 
PA outputs and for the two fraction lengths of 24 and 32 bits 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 6. Frequency domain performance for two channels for 2×2 MIMO 

transmitter (a) and (b) outputs of DPD for scenario 1, (c) and (d) outputs of 

DPD for scenario 2 and 3. 

In Fig. 6 the power spectral densities of the PA outputs has 
been plotted for the different scenarios where Yi_w/o_DPD are 
the measured PA outputs when the DPD is turned OFF 
(Black); Yi_C_fl_DPD are the predicted PA outputs when the 
conventional model based DPD is applied using a floating 
point calculation environment (Blue); Yi_O_fl_DPD are the 
predicted PA outputs when the orthogonal model based DPD is 
applied using a floating point calculation environment (Red); 
Yi_C_fx(24b)_DPD are the predicted PA outputs when the 
conventional model based DPD is applied  using a fixed point 
calculation environment with a fraction length of 24 bits 
(Orange); Yi_C_fx(32b)_DPD are the predicted PA outputs 
when the conventional model based DPD is applied using a 
fixed point calculation environment with a fraction length of 32 
bits (Yellow); Yi_O_fx(24b)_DPD are the predicted PA 
outputs when the orthogonal model based DPD is applied using 
a fixed point calculation environment with a fraction length of 
24 bits (Violet); Yi_O_fx(32b)_DPD are the predicted PA 
outputs when the orthogonal model based DPD is applied using 

a fixed point calculation environment with a fraction length of 
32 bits (Green), with i = {1,2} denotes the number of outputs. 

Fig. 6 shows the power spectral densities of the predicted 
PA outputs for the different scenarios. The measured outputs of 
the nonlinearity PA, shown in Fig. 6(a)-(b), confirm the 
spectrum regrowth caused by the PA nonlinearity. In the same 
time, the figures reveal quite similar and perfect PA 
linearization when using a floating-point processor (scenario 1) 
regardless of the DPD model. However, Fig. 6(c)-(d) shows the 
spectra of the same signals in the cases of scenario 2 and 3. The 
figures reveal that when using a fixed-point processor, the 
conventional model-based DPD loses completely its 
performance and fail to linearize the PA. However, the 
proposed orthogonal model based DPD maintains its good 
performances and succeeds to linearize the PA for the 32 bits 
and 24 bits fraction lengths. 

V. CONCLUSION 

In this paper, we proposed closed-form expressions for 
orthogonal polynomials for MIMO PA modelling under RF 
signals with Gaussian complex envelopes. The numerical and 
experimental validations have confirmed the robustness and 
stability of the proposed model identified in fixed-point 
calculation environments. The proposed orthogonal model 
based DPD outperformed the conventional model-based DPD 
in terms of adjacent channel emission reduction in the presence 
of a nonlinear coupling in the MIMO PA.  Due to its simplicity 
and closed-form expression, the proposed model can be tuned 
to fit special cases such as massive MIMO PAs where only the 
coupling between adjacent inputs needs to be considered. 
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