
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

6 | P a g e

www.ijacsa.thesai.org

Unifying Modeling Language-Merise Integration

Approach for Software Design

Issar Arab
1

Department of Informatics, Technical University of Munich,

Garching/Munich, Germany

Safae Bourhnane
2
, Fatiha Kafou

3

School of Science and Engineering

Al Akhawayn University in Ifrane, Ifrane, Morocco

Abstract—Software design is the most crucial step in the

software development process that is why it must be given a good

care. Software designers must go through many modeling steps

to end up with a good design that will allow for a smooth

development process later. For this, designers usually have to

choose between two main modeling methodologies: Merise and

UML. Both methodologies are widely used; however, each one

has its own advantages and disadvantages. This paper combines

both techniques and merges their advantages to come up with an

approach that would help software designers make the best of

both methodologies. This integration mainly targets the software

design step in general but can be specifically applied to database

design. It presents the weaknesses and strengths of each one of

UML and Merise as two techniques used in database modeling

and design. Later in this paper, a comparing of UML and Merise

diagrams is lead and based on it, the decision on which of the two

is the best at each step of the modeling process.

Keywords—UML; Merise; modeling; design; databases

I. INTRODUCTION

Database is what all software developers are concerned
with in the first place. If you have a well-designed database,
you can be sure that the entire development process will go as
smoothly. For the purpose of designing the best database, tools
and frameworks like Merise and UML can be used for data
modeling. However, none of the existing frameworks is
perfect. That is why it is thought that presenting a new
approach based on UML and Merise would help having a good
database design just by applying little effort and avoiding the
drawbacks of each technique.

Although UML is the methodology that is widely used, it,
definitely, has some disadvantages that make its usage tedious
to some extent. UML is very complex with more than 13
diagrams and more than 100 types of classes [1]. This makes it
hard to adopt and even harder to master. UML is also time
consuming. It takes a lot of time to manage and maintain UML
diagrams [2]. On top of that, software developers do not
benefit from UML diagrams as much as you would hope,
because they work with code and programs rather than pictures
and diagrams. UML is rather beneficial for project managers
that are concerned with the way the software tool would
work [3].

Merise, on the other hand, is not as widely used. It also has
a set of advantages and several disadvantages. Merise does a
great job with the modeling and the conception of small
databases. But, when designing large databases, it may not be

the best methodology to opt for. Also, it is limited to the 3
rd

normal form [4]. In addition to that, it is best suited to work
with modeling sequential tasks and does not deliver a good
result when dealing with distributed ones. It is not meant to
model semantic data.

The new approach comes to circumvent the disadvantages
mentioned above for both methodologies through creating a
new process to model the system in general and databases in
particular. This integration of both techniques has less
limitation than each methodology when applied by its own.

The rest of the paper is organized as follows: Section II
presents the work that has been previously done in the same
field. Section III consists of a comparison of UML and Merise.
The description of the work done is presented in Section IV.
Finally, Section V describes the suggested final process to
follow.

II. RELATED WORK

Knowing that MERISE is a methodology that is mainly
used in France and that is being adopted in European
engineering community more than other communities, the
author tries in [5] to make the methodology more suitable for
English speaking users. However, this work does a perfect job
in trying to spread MERISE in English speaking community,
by somehow translating the existing elements of the
methodology, but doesn’t in any way try to hide the
disadvantages and limitations of the methodology itself.

In [6], the author presents the different concepts of UML as
an object-oriented modeling language. These concepts
definitely have many problems and limitations, which actually
don’t exist in the first methodology. But UML does have
advantages that, in contrast, don’t exist in MERISE. Hence,
comes the idea of combining the two approaches by integrating
the diagrams from each to satisfy the user’s need in different
scenarios. In the next sections, the paper will present how the
integration is to be devised.

III. UNIFIED MODELING LANGUAGE VS MERISE

Before getting on with the integrated approach, it is
necessary to look at the comparisons between UML and Merise
that have been done in the literature.

UML and Merise are not completely similar. Each one has
a different concept. UML, for example, takes care of the
object-oriented modeling, while Merise works best for
relational databases. Even though UML is more widely used

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

7 | P a g e

www.ijacsa.thesai.org

than Merise, both methodologies can nonetheless be used in
modeling and conceiving databases.

On the one hand, Merise is said to constitute a real
methodology that respects the standards. Earlier, in 2003,
Merise was divided into three main pillars: steps to follow,
formalism, and organization. However, some of these aspects
did not survive in front of the advancement of technology and
needs of the recent applications. The “steps to follow” for
example, is no longer needed in order to have a good
methodology, while the importance of “formalism” persists.

On the other hand, methodologists claim that UML
presents a very good formalism with a high level of
standardization, but it is lacking the process to follow in
addition to the organization to be a real methodology. Besides,
Merise works best with organizational information systems
while UML is designed for object-oriented based information
systems. That is why the two methods actually complement
each other and can be used at the same time.

The purpose of this paper is to combine these two
methodologies and to prove that they can together be leveraged
in the modeling of the same project.

IV. DESCRIPTION OF THE WORK DONE

It goes without saying that the order of the UML diagrams
to be used is not fixed as it depends on the type of the
application and the style of the designer or developer.

In this paper, an attempt to unify the process of software
design is made, by making all the steps standardized and clear.

In the first place, the classes that constitute the system are
identified then the actors of the application are looked at. Right
after that, the exchanged messages between the actors of the
system are studied, their sequence as well as the order in which
these messages appear. Then, further light is shed on the set of
activities that are performed within the application.

At each step, a comparison of the diagrams used in each
methodology is lead, and then the assessment.

The figure below (Fig. 1) summarizes the process as
described above.

Fig. 1. Software design process.

A. UML Class Diagram vs Conceptual Model of Merise

1) UML Class Diagram

a) Definition

It provides a general overview of the final system by
describing the classes involved in the system and by explaining
the relationships between them. It allows the users to go from
domain specific data structures to a detailed design of the final
product. The main components of the class diagram are [7]:

Class: grouping of objects with the same characteristics

Method: part of a class that shows the behaviors of a certain
object of that class

Attribute: part of a class that represents the static properties
of an object of the same class

Multiplicity: indicates that one of the related classes refers
to the other and it can take many values.

Relationship: represent the logical relationship between
classes. There are many types of relationships in the class
diagram of UML.

Object: instances of a specific class

Access Level: data privacy is determined by assigning an
access level to it

b) Example

Fig. 2 shows the different components mentioned in the
previous section.

Fig. 2. UML class diagram.

As shown in the figure above, it represents a simple class
diagram that consists of two classes: Person, and Address.
Each class has attributes (e.g. Name, Address, …) and
operations or methods (in this case only the class Person has a
method that is called BuyCar()). The multiplicities in this
example mean that an address is associated to one person
maximum, while a person does necessarily have one address.

2) Merise Conceptual Model

a) Definition

At this level of the modeling process, the entity/relationship
schema is used in Merise. A typical entity/relationship diagram
would contain two main components as its name suggests:
entity and relationship.

An entity, short for entity type, can be compared to a class
in the context of UML, but it only contains properties
(attributes). In general, an entity can be defined independently
of the rest of the data and corresponds to one row in a database
table [8], [9].

System
Classes

System
Actors

Messages
Exchanged

Sequence
System

Activities

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

8 | P a g e

www.ijacsa.thesai.org

In an E-R diagram, the entity needs to have a unique
identifier which could be one or a set of properties (e.g. orderid
+ date to characteristic of an order).

The relationship (or association) links together one or more
entities and can itself contain additional attributes.

b) Example

Fig. 3 shows a graphical representation of the E-R diagram.

Fig. 3. Merise conceptual diagram.

In the example above, the same classes as in the previous
UML class diagram are kept to show the differences that exist
between the two modeling techniques when dealing with
system classes. The first difference that pops up is in the
multiplicities. They still mean the same in both diagrams, but
they inversed. Another difference resides in the fact that
associations in Merise can have attributes, thing which does
not exist in UML.

3) What to use and why
If a translation from the conceptual model to the class

diagram of Merise was to be done, nothing much would be
done: in fact, each relationship will be transformed to an
association, each entity will be a class and relationships with
attributes will be transformed into a class association with the
same attributes.

Although the differences are not that big, it is
recommended to use the UML class diagram for the following
reasons:

 The multiplicities in the class diagram are more
intuitive and make more sense to the designers that are
new to the domain. It is easier to understand that a tutor
has a program rather than a program is owned by a
tutor.

 The class diagram gives a better illustration and
overview of the system because it presents not only the
attributes of the objects but also their data types in
addition to behaviors and their return data types.

 UML class diagram is closer to the implementation as
it lets you think about the code and the things to be
implemented in the coding phase. This saves a huge
amount of time in the implementation.

 The UML class diagram is more for object-oriented
languages (java, visual basic, .net …), and the object-
oriented paradigm is gaining a lot of popularity among
programmers these days.

B. UML use Case Diagram vs Conceptual Model for

Communication of Merise

1) UML Use Case Diagram

a) Definition

Use case diagrams give a general overview of the usage
requirements of the final system [10]. They are mainly used to
represent the stakeholders of the entire project. It is also helpful
in the deployment phase as programmers find it easy to go
from actual use cases from the diagram to functions in the
system. The Use Case diagram consists of the following
components:

Use cases: they are horizontal ellipses that represent the
sequence of actions that are done by a user and that would be
of additional value to them.

Actors: The main users of the system, they can be humans
or external entities (operating systems).

Associations: They represent the relationship between the
actors and the use cases, between use cases (include, extend),
or even between users (inheritance).

System Boundary: Represented by a rectangle drawn
around the use cases. Their main goal is to delimit the scope of
the project.

Packages: Packages are totally optional. They are used to
group use cases of the same type together allowing for a better
organization of the entire diagram [11].

b) Example

Fig. 4 is a simple use case diagram that shows the different
actions performed by the student and professor in a university.

Fig. 4. UML use case diagram.

Concerning the example in the previous figure, it presents
two main actions that are performed within a university by the
professor and the student. It can be inferred from the diagram
that the professor posts and views the grades while the student
can only view the grades.

2) Conceptual Model for Communication

a) Definition

This model is complementary to what is called “Context
Diagram”. The “Context Diagram” shows the external entities
that interact with the system to be designed [12]. The
Conceptual Model for Communication completes this diagram
in the sense that it decomposes the system into many internal
actors who exchanges messages between them.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

9 | P a g e

www.ijacsa.thesai.org

Graphically, the actor is represented by an ellipse whereas
the messages are represented by arrows [13].

b) Example

In Fig. 5, the organization is composed of 2 internal actors
who are the professor and the student, and they are interacting
with the system through performing two main actions that are
Post Grades and View Grades. The actions done by each actor
can be inferred just like in the previous diagram.

Fig. 5. Conceptual model for communication.

3) What to use and why
Both the use case diagram and the conceptual model for

communication show the set of internal actors that exist in the
system and the actions that are performed by those.

It is recommended to use the conceptual model for
communication if there is an extensive interaction not only
between the internal actors, but also between those and other
external entities. The conceptual model for communication
explicitly shows the interaction between the entities. This
implies that even if the system in question has a significant
number of entities that are communicating with each other, it
can easily be represented in a nice and readable diagram.

However, if the focus needs to be done on each individual
actor (to limit the privileges and describe them), then it would
be more suitable to use the use case diagram. This latter
focuses on the user rather than the actions done. It takes a
better care of the privileges given to each actor which
consequently affects the actions to be performed by that actor.

C. UML Sequence Diagram vs Merise Data Flow Diagram

1) UML Sequence Diagram

a) Definition

Sequence Diagram is a high-level interaction diagram that
shows how operations are carried out between the different
parts that exist in the system [14]. Graphically, the messages
exchanged during the interactions are ordered vertically in an
increasing chronological order. The vertical line that represents
time is called the lifeline. It extends as long as the life of the
actor in question within the system. The horizontal axis shows
the different objects involved in the interactions the diagram
shows. Each of those objects is called a participant and has its
own lifetime [15].

b) Example

Fig. 6. UML sequence diagram.

The example above (Fig. 6) has the same actors as the use
case diagram. The sequence diagram shows the messages that
are exchanged between the two actors and the system. The
professor posts the students’ grades to the system which saving
them later to the database. To view their grades, the students
request the grades from the database which then replies by
displaying the grades.

The messages shown in the diagram follow a chronological
order, meaning that the first message sent is displayed in the
top of the diagram and has the ID number 1 and so on.

2) Merise DataFlow Diagram

a) Definition

This diagram shows which activities are related to each
other and how they are involved in solving the problem stated
[16]. At this stage, this diagram is done without taking into
consideration the actual behavior of the system (scheduling,
synchronization …). It shows the activities and relationships
between them in a non-sequenced manner [17].

b) Example

Fig. 7 shows an example of a Merise Data Flow Diagram.

Fig. 7. Merise data flow diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

10 | P a g e

www.ijacsa.thesai.org

3) What to use and why
It is clear that both diagrams are about exchanging

messages. The main and obvious difference would be that
UML’s sequence diagram looks more structured and organized
because it takes into consideration the time and it shows the
activities in a chronological order.

However, it can be observed that the use of the data flow
diagram brought by Merise will do a better job in giving a
general view about the communication of the objects within the
system:

 The sequence diagram somehow gives an idealistic
representation of the messages exchanged between
instances, while the view given by the data flow
diagram is more realistic.

 In the data flow diagram, there is no need to follow a
specific order the thing that allows for a certain level of
flexibility. This way, the user will be able to see
different scenarios and choose a specific instance to
initiate the scenario.

 The data flow diagram is easy to master with few
symbols and notations compared to the complex UML
sequence diagram. Plus, it is more intuitive and easy to
explain to project managers or clients who, not
necessarily have a computer science background.

D. UML Collaboration Diagram vs Merise Dataflow

Diagram of Merise

1) UML Collaboration Diagram

a) Definition

The collaboration diagram is similar to the sequence diagram.

The difference is that the collaboration diagram is object-

centered whereas the sequence diagram is time-oriented [18],

[19].

b) Example

Fig. 8 shows a simple example of a UML collaboration
diagram.

Fig. 8. UML collaboration diagram.

2) What to use and why?
In this step of the modeling, no Merise diagram is

introduced. However, one can opt for an intermediate solution
in this case. It is recommended to use the UML collaboration

diagram, and if not applicable (for the specifications of the
application in question), simply replace the objects by the usual
entities used in Merise.

That is because:

 The collaboration diagram shows more details about
the messages between objects/entities.

 There might be a chronological order introduced to the
diagram.

 Actors can be included in the diagram

 It gives a clear and structured overview of the system
in a later step of the design

E. UML Activity Diagram vs Merise MCT

1) UML Activity Diagram

a) Definition

The activity diagram consists of activities, states and
transitions between those. It shows how activities coordinate to
achieve and provide certain services and defines the main
events of the system needed to make a given service, and how
those events relate to each other.

It is an advanced flowchart that combines other details such
as the actors, the starting point, and the finishing point of the
system.

In addition to that, it captures the dynamic flow of the
system [20], [21].

b) Example

Fig. 9 illustrates an example of UML’s activity diagram.

Fig. 9. UML activity diagram.

2) Merise MCT

a) Definition

The conceptual model of treatment is one of the most
famous diagrams in Merise. It allows for the treatment of the
dynamics of the information system meaning the event-driven
operations that are carried out within the system.

This diagram helps then to model the activities of the
system using clear schemas. It simply defines what should be
done without giving any idea about how, when or where.

The components below describe the MCT diagram [22]:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

11 | P a g e

www.ijacsa.thesai.org

Process: A subset of the enterprise activities. This means
that the entity uses many processes within the same activity.

Operation: Is a set of actions executed after an event or a
conjunction of events.

Event: An event represents the change in the external
universe of the information system or in information system
itself.

b) Example

The example showed in Fig. 10 presents a Merise
conceptual treatment model.

Fig. 10. Merise MCT.

3) What to use and why?
Both the activity diagram of UML and MCT of Merise can

be used in the same stage of the conception and design phase.
They both show the flow of activities in the system to be
conceived. But, UML’s activity diagram tends to be more
powerful for the following reason:

 The separation between the actors of the system will be
of a great help in trying to really understand the
system. It makes it clear for the user which activity is
done by which actor.

 The MCT provides the use of some rules that when
added may result in increasing the complexity of the
diagram.

 The MCT does not clearly identify the initial and final
events while it is really important to state when the
flow of activities starts and when it ends.

V. ENTIRE PROCESS TO FOLLOW AND ITS LIMITATIONS

Now that all the recommendations regarding the usage of
UML and Merise diagrams were given, it is time to discuss the
entire process to follow.

This is done through providing the steps of the entire
process that is suggested in this paper. Fig. 11 summarizes the
suggested process.

As mentioned previously in this paper and as shown in the
diagram, It is recommended to start either with UML use case
diagram or the Merise conceptual model for communication.
Then, go for UML class diagram. For the following step, it is
suggested to opt for Merise dataflow diagram. As for the forth
step, UML activity diagram is said to do a better job, then end
up with an integrated approach that combines collaboration and
dataflow diagrams.

Fig. 11. Entire process to follow.

In the process of comparing Merise and UML diagrams,
many challenges were faced. The first one was to find common
aspects and features in both methodologies. This required
closely looking at the applications of each one seperatly. The
second challenge was mainly about keeping the required
functionalities at each stage of the design process. The last
challenge resides in keeping the process as efficient as it
initially is while modifying the diagrams used.

The limitations of this new approach reside in the fact that
it has not been based on experiments. It is based on studying
each step of the design process along with the diagrams
associated with it. Besides, this new approach may not suit all
types of projects and all communities. People used to Merise
digrams will have hard time merging it with another approach,
and the same goes for software designers who are more of
UML users.

VI. CONCLUSION AND FUTURE WORK

UML and Merise are two methodologies that are used by
software designers. Unlike what many practitioners in the
domain think, these two modeling methods are not very
different from each other. UML and Merise complement each
other in a way allowing for their integration which means that
they can be used at the same time with the same application
that is why software designers always have problems choosing
the framework to use.

This paper came up with an approach to unify UML and
MERISE approaches in a way that reduces the drawbacks and
takes advantages of each one of them.

This new approach aims at helping software designers by
simplifying the design process and making it smooth.

UML use case
Diagram/Merise

Concepltual Model for
Communication

UML Class Diagram
Merise Dataflow

Diagram

Merise Activity
Diagram

Integrated
Collaboration/Dataflow

Diagrams

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

12 | P a g e

www.ijacsa.thesai.org

As future work, this new approach needs to be
implemented in a real-world project and tested in terms of
performance. A good way of doing that could be by testing
each approach, MERISE and UML, and comparing it to the
one suggested in this paper. These tests based are to be
performed on a real-life project that is complex to enough in
order to push these methodologies along with the new
approach to the limit, and hence be a proof of concept. An
interesting metric to measure this performance would be the
number of iterations done in each methodology before getting
the appropriate model to implement. Besides, the feedback of
the software designers will also be valuable in assessing the
performance of each technique.

REFERENCES

[1] D. E. Avison. (1991). MERISE: A European methodology for
developing information systems. Available online at:
https://link.springer.com/article/10.1057/ejis.1991.33

[2] Bernd Bruegge and Allen H. Dutoit (1999). Object-Oriented Software
Engineering Using UML, Patterns and Java. Available online at:
http://dbmanagement.info/Books/MIX/POO_Software_Engineering_Usi
ng_UML_Patterns_and_Java_3rd_Edition.pdf

[3] Keng Siau, Qing Cao (2003). How complex is the Unified Modeling
Language? Available online at:
https://dl.acm.org/citation.cfm?id=960145

[4] Tom Mens, Ranghild Van Der Straeten, and Jocelyn Simmonds.
Maintaining Consistency between UML Models with Description Logic
Tools. Available online at:
http://www.cs.toronto.edu/~jsimmond/docs/mcc/TomMensEtAl.pdf

[5] Murray Cantor (1998). Object-Oriented Project Management with UML.
Available online at: https://www.wiley.com/en-
us/Object+Oriented+Project+Management+with+UML-p-
9780471253037

[6] Third Normal Form (3NF). Available at:
https://ww.1keydata.com/database-normalization/third-normal-form-
3nf.php

[7] The Class Diagram. Available at:
https://www.ibm.com/developerworks/rational/library/content/RationalE
dge/se04/bell/

[8] UML 2 Class Diagrams: An Agile Introduction (2014). Available at:
http://ww.agilemodeling.com/artifacts/classDiagram.htm

[9] Yann Thierry-Mieg (2007). Database Design & Modeling: Entity /
Relationship. Available at: https://pages.lip6.fr/Yann.Thierry-
Mieg/old/EFREI-DBMS/07-Design-E-R.pdf

[10] Margaret Rouse (2014). Use Case Diagram. Available at:
http://whatis.techtarget.com/definition/use-case-diagram

[11] Edwin Obenauf (2017). UML use case diagram example. Available ate:
http://studiootb.com/uml-use-case-diagram/uml-use-case-diagram-uml-
example-adorable-photo-what/

[12] Chris Adams (2016). What is a system diagram and what are the
benefits of creating one. Available at:
http://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/I
D/1433/What-is-a-Context-Diagram-and-what-are-the-benefits-of-
creating-one.aspx

[13] Sabah Al-Fedaghi, Ala’s Alsaqa, Zahra’a Fadel (2009). Conceptual
Model for Communication. Available online at:
https://arxiv.org/ftp/arxiv/papers/0912/0912.0599.pdf

[14] Donald Bell (2004). The Sequence Diagram. Available at:
https://www.ibm.com/developerworks/rational/library/3101.html

[15] Sequence Diagram. Available at:
https://en.wikipedia.org/wiki/Sequence_diagram

[16] What is a Data Flow Diagram? Available at:
https://www.lucidchart.com/pages/data-flow-diagram

[17] Data flow diagram. Available at: https://www.smartdraw.com/data-flow-
diagram/

[18] Margaret Rouse. Collaboration Diagram. Available at:
http://searchsoftwarequality.techtarget.com/definition/collaboration-
diagram

[19] UML 2 Communication Diagramming Guidelines. Available at:
http://agilemodeling.com/style/collaborationDiagram.htm

[20] UML – Activity Diagrams. Available at:
https://www.tutorialspoint.com/uml/uml_activity_diagram.htm

[21] Activity Diagram for Inventory Management System (UML). Available
at: https://www.lucidchart.com/pages/activity-diagram-for-inventory-
management-system-UML

[22] Merise (data-processing). Available at:
http://wikipedia.qwika.com/fr2en/Merise_(informatique)

