
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

563 | P a g e

www.ijacsa.thesai.org

Agent based Architecture for Modeling and Analysis

of Self Adaptive Systems using Formal Methods

Natash Ali Mian1,2

School of Computer Science, National College of Business

Administration and Economics, Lahore 1

School of Computer and Information Technology,

Beaconhouse National University, Lahore2

Farooq Ahmad

Department of Computer Sciences, Comsats Institute of

Information Technology, Lahore3

Abstract—Self-adaptive systems (SAS) can modify their

behavior during execution; this modification is done because of

change in internal or external environment. The need for self-

adaptive software systems has increased tremendously in last

decade due to ever changing user requirements, improvement in

technology and need for building software that reacts to user

preferences. To build this type of software we need well establish

models that have the flexibility to adjust to the new requirements

and make sure that the adaptation is efficient and reliable.

Feedback loop has proven to be very effective in modeling and

developing SAS, these loops help the system to sense, analyze,

plan, test and execute the adaptive behavior at runtime. Formal

methods are well defined, rigorous and reliable mathematical

techniques that can be effectively used to reason and specify

behavior of SAS at design and run-time. Agents can play an

important role in modeling SAS because they can work

independently, with other agents and with environment as well.

Using agents to perform individual steps in feedback loop and

formalizing these agents using Petri nets will not only increase

the reliability, but also, the adaptation can be performed

efficiently for taking decisions at run time with increased

confidence. In this paper, we propose a multi-agent framework to

model self-adaptive systems using agent based modeling. This

framework will help the researchers in implementation of SAS,

which is more dependable, reliable, autonomic and flexible

because of use of multi-agent based formal approach.

Keywords—Formal methods; self-adaptive systems; agent based

modeling; feedback loop; Petri nets

I. INTRODUCTION

As the complexity has increased, hence, existing
approaches do not suffice the requirements of modeling,
managing and developing software systems. This has
motivated the research community to explore new dimensions
in software engineering and integrate other fields like biology,
psychology; nature inspired computing, robotics, artificial
intelligence and more. The change in the way the software is
used needs that it has the capability of self-adaptation [1]
which is one of the hot areas of research since last decade.

SAS [2] are capable of modifying their behavior due to
change in environment at run time. Modeling of these types
of systems is either very difficult or not possible by the use of
conventional software engineering approaches. One of the
major difference in requirement engineering is that the „shall‟
statements become „may‟ statements when developing a SAS
that has the capability to adapt in accordance with the external

environment [1]. Uncertainty is one of the most certain thing
in modeling and development of SAS. [2]. This aspect
motivates the practitioners and researchers to use multiple
existing approaches or develop new approaches [3] to handle
uncertainties of the system [4].

There has been a lot of research in SAS including software
engineering, requirements engineering, software architectures,
middleware, component-based development and programming
languages [5]. In addition to these some research has been
done in other areas of Computer Science which includes fault-
tolerant computing, biologically inspired computing, multi-
agent systems, distributed artificial intelligence and
robotics [6].

Formal methods are very effective and concrete
mathematical techniques and methods in specifying,
modeling, verifying and developing systems. Formal methods
have been majorly applied in modeling of SAS [7].
Application of formal methods for verification, model
checking and theorem proving is less for SAS [8]. To utilize
the formal methods according to its strengths, there is a need
to apply them in validation and verification [9] of SAS, this
will consequently produce systems that are more reliable and
tested [6] at an early stage of development [10].

Use of agents in modeling system [11] that have capacity
and capability to adapt to a new behavior at runtime has been
very effective and efficient [12]. Agents [13] help the systems
to perform all the tasks autonomously and efficiently, this
increases the overall productivity of the system. We use agents
to perform the tasks autonomously with well-defined and
concrete rules which have been developed, analyzed and
tested by use of formal methods. More specifically Petri nets
will be used to model all these agents.

In this paper we propose an initial architecture of the
system that will use the strengths and rigor of formal methods,
autonomous working of agents and the effectiveness of
feedback loop to model a self-adaptive system [14]. This
model will further be extended for distributed systems where
most of the components will be reused with some additional
components like distributed feedback loop manager,
distributed agent manager and distributed application manager
will be added. Fig. 1 depicts the scope of the work and the
gives an idea of the proposed integration. This is an initial
attempt to propose an architecture which integrates agents,
formal methods and feedback loop. This paper is introduced in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

564 | P a g e

www.ijacsa.thesai.org

Section I, literature review is given in Section II, Section III
introduces SAS, Section IV gives an overview of feedback
loop, Section V elaborates formal methods, followed by the
proposed architecture in Section VI, and finally we conclude
the paper and give pointers to future work.

II. RELATED WORK

Life patterns have changed, consequently having a huge
impact on working environment [15] and the way software is
used in ever changing environment [4]. Improvement in
technology, change in working environment, improvement in
technology, increase in storage capacity, need of high
processing, and availability of variety of data is causing
fundamental change in software development, testing and
performance [8]. This gives rise to systems that can adapt to
the working environment; these systems are categorized as
SAS. Development of SAS has increased the flexibility of
software systems, however, this has also led increased the
complexity of systems resulting in a lot of challenges [16] for
software engineering community [4]. Methods as well as
processes of engineering software systems have also evolved
for development of SAS [17].

Fig. 1. Scope of work.

One of the major problems in the current approaches is
that focus on quality of the output is much less [18] , this may
be due to the variety of problems, uncertainty and changing
environment [15] that had to be handled by SAS. Many model
based approaches [19] have been proposed in literature which
address the problem of requirement engineering in SAS . A
context aware methodology is proposed in literature, this
approach performs the adaption at run time considering the
context, not only this but a complete mechanism of
verification [20] and validation is also proposed, the focus of
this work is done on the basis of image processing algorithms
[21]. Goal based [22] and requirement driven architecture [1]
for systems are proposed in literature which can adapt
themselves to a better configuration by monitoring and
analyzing the current actors in the system [23].

Non-functional requirements play vital role in self-
adaptive approach which takes information that is not easily
identifiable and overwhelmingly against the static nature of
information [24]. Although, functional requirements are also
important, but non-functional requirements have more
infringement in software development and software quality

assurance, using self-adaptive approach [20]. One of the major
problems in the current approaches is that focus on quality of
the output is much less, this may be due to the variety of
problems, uncertainty and changing environment [15] that had
to be handled by SAS. Many model based approaches [25]
have been proposed in literature which address the problem of
requirement engineering in SAS. A context aware
methodology which performs the adaption at run time
considering the context, not only this but a complete
mechanism of verification [20] and validation is also
proposed. A lot of work has been done in identifying the key
areas of research, challenges faced, architecture problems,
design techniques available, implementation issues in
engineering [26] of SAS [10]. Many papers discuss the
importance of adaption and propose architecture based
adaptation [25], goal based adaptation [26], feature oriented
adaptation [4], parameter based adaptation, requirement driven
adaptation [1] and much more. Software agents have been
used to model [27] and implement the adaptation process.

It has been observed that formal methods has mostly been
used in modeling of SAS [7] and not in model checking and
theorem proving which are major strengths of formal methods,
hence, the need to apply formal methods for these is positively
required to make the overall process of designing the SAS
more reliable [6]. A combination of formal and semi-formal
methods is also used in modeling of SAS [8] and the results
have been very encouraging [6]. There have been a few
studies where formal methods are used successfully in model
checking [9] and domain specific languages [14] and design
patterns [3] are proposed for development of SAS.

III. SELF-ADAPTIVE SYSTEMS

SAS can alter their behavior during operation [4]. These
systems fall under the category of context aware systems [28].
Adjusting as per needs of the user at run-time is one of the
major strength of these systems [29]. The adaptations that
these systems perform during executions are not included in
the requirements for which these systems are developed [24].
This variability makes the development of these systems
challenging as the development team has to plan for the
uncertainties that may arise at run time [30], [15]. Hence,
major part of the requirement engineering has to completed at
run time [31]. Not only the requirement engineering, but
testing is also done at run time, all this is done by use of
feedback loops [32]. To enhance the efficiency and reliability
of these systems, all these steps are performed autonomously
by agents [33].

Almost all major systems that exist today have the
capability of adaptation; however, in some systems the
adaptations are planned at design time and in other it is done
at run time. In case, the adaptations are implemented at design
time, the systems are categorized as simple adaptive systems
and when the adaptation is done at rum time, the systems are
classified as self-adaptive [34].

IV. FORMAL METHODS

Formal methods are mathematical tools and techniques
that are used in analysis and modeling of different hardware
and software systems [35]. Additionally they help us in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

565 | P a g e

www.ijacsa.thesai.org

validation and verification of systems at an early stage of
development [9]. These methods are reliable and help us in
analyzing, modeling, reasoning and testing the systems. As
these methods are based on concrete mathematical principles,
hence the reliability of systems that are developed using
formal methods is increased many folds [36]. Strength of these
methods is that they can be used in combination with existing
software development methods. Most of these methods have
specification languages that are based on first and second
order predicate calculus, temporal logic, algebraic theory and
graph theory. Sets, sequences, relations, functions, mappings
and state machines are the foundation of formal modeling
techniques. Due to the use of precise mathematical symbols
the effective ness of these methods is much more than
conventional methods.

Formal methods are supported by a variety of case tools
which help in model development, model checking and
simulating the overall scenario. We have successfully modeled
a small self-adaptive system by use of Petri Net which is a
formal method and is based on graph theory. The tools help in
development of concrete model efficiently and reliably.
Hence, formal methods are very effective in modeling of
complex system like self-adaptive systems. These methods
have already been successfully applied in development of
many complex industrial systems and many safety critical
systems.

V. FEEDBACK LOOP (MAPE-K LOOP)

Feedback loop comprises of four major steps which are
monitor, analyze, plan and execute, this loop is also referred
as MAPE-K Loop [6]. Each phase is further divided in to
further sub-phases and multiple strategies are used for design
and implementation of each phase. Formal methods have the
capability to model all phases with success and reliability.

Fig. 2. MAPE-K feedback loop.

In the monitor phase the input is received from the external
environment, and after performing the initial transformation of
inputs it is checked against the existing requirements. In case a
match is found, no adaptations are performed and the
requirement is executed. However, if the set of input are new
then analysis of inputs is performed which is followed by the

planning and testing phase. It is to be noted that the possible
adaptations, testing and execution is done at run time. The
execution is executed by the system effectors. In a situation
where the proposed adaptation is not successful, the loop starts
again and this process continues iteratively [37] till a final
adaptation is executed [14]. A simplified version of MAPE-K
feedback loop is shown in Fig. 2.

Fig. 3. Proposed architecture for modelling SAS.

VI. PROPOSED ARCHITECTURE

We have proposed an architecture which not only focuses
on performing the adaptation at run time but it also keeps a
track of the results of adaptation when it is executed. As given
in Fig. 3, the overall system is divided in to four major parts
namely managed system, managing system, data collector and
requirement pyramid. The top most part covers the input and
output channels of the system and is classified as managed
system in our architecture. Generally, input is given by
sensors and is received by monitor agent. Monitor agent
performs the transformation and converts the inputs in to a
form that can be further analyzed. Another step that is
performed by the monitor phase is to check the set of inputs
against the existing knowledge. In case, the input from the
environment matches any existing requirement, no adaptation
is performed and the system acts according to the existing
requirement. If the inputs do not match any of the existing
requirements, then it is passed to the next phase, which
analyzes the input according to the system goals, existing
requirements, system objectives and overall preferences of the
user. All this is available in the knowledge repository. Once
the analysis is completed, all the data is forwarded to the next
agent which is the plan, test and decide agent. Here the
requirements are mapped to the nearest match, fuzzy rules are
applied and possible adaptations are proposed. After
formulating a few possible adaptations, these are tested on the
criterion given in knowledge base, additionally; the capability
of system effectors is also checked. For instance, an
adaptation to take an aerial route to destination will fail the
test for a car. Once the planning and testing is completed, one
proposed adaptation is finalized and sent to the next agent
which transforms the proposed execution in to the form that
can be understood by the output channels. The process does

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

566 | P a g e

www.ijacsa.thesai.org

not end here, the data collector agent continuously monitors
the managed system during its execution and results of
execution are recorded. We may have two possible scenarios
here, either the proposed adaptation has been successful or it
has ended up in failure. In both cases the data is recorded and
knowledge base is updated with a flag of success or failure,
the successful adaptation is also recorded in the variable
requirement part. In case of failure, the process is repeated
iteratively till a final goal is achieved. This is kept for future
enhancement in system and to make sure that all capabilities
of system are available in the requirement set of the system.

An important contribution of this work that the system is
designed in way that performs the adaptation at run-time,
monitors the quality of output produced by the proposed
adaptation and regular update of the knowledge and
requirement base. All these modules will be analyzed,
modeled and verified using formal methods.

VII. CONCLUSION AND FUTURE WORK

This research has two major contributions, firstly we have
proposed an integration of formal methods, agent based
modeling and SAS for successfully analyzing, testing and
implementing the systems that have the capability to adapt at
run time. Secondly, an overall architecture of the complete
system is given, which includes four major components. It is
to be noted that we have successfully modeled the first phase
using Petri Nets, the results have been very encouraging and
the complete system will be analyzed, modeled, simulated,
verified and tested by using formal methods. The given
architecture gives a concrete base for the researchers and
practitioners to implement systems that have the capability to
adapt during execution. This is the first step toward
development of a multi-agent autonomous formal model for
self-adaptive system. We have successfully applied Petri nets
to model feedback loop [12] and the work will be extend for a
complete model for SAS using formal methods.

This architecture will be further be extended for distributed
systems where the variability of inputs in more and there are
multiple feedback loops at each node. Further, each agent will
be implemented and the task will be further sub divided in to
multiple agents where each agent will be designed to perform
an atomic task.

REFERENCES

[1] G. Tallabaci and V. E. Silva Souza, “Engineering adaptation with
Zanshin: An experience report,” in ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2013, pp. 93–
102.

[2] F. Kneer and E. Kamsties, “A framework for prototyping and evaluating
self-adaptive systems - A research preview,” in CEUR Workshop
Proceedings, 2016, vol. 1564.

[3] Y. Abuseta and K. Swesi, “Design Patterns for Self Adaptive Systems
Engineering,” Int. J. Softw. Eng. Appl., vol. 6, no. 4, pp. 11–28, 2015.

[4] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive Software
Systems,” in Lecture Notes in Computer Science, 2013, pp. 214–238.

[5] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
Mob. Comput., vol. 17, no. PB, pp. 184–206, 2015.

[6] D. G. D. La Iglesia and D. Weyns, “MAPE-K Formal Templates to
Rigorously Design Behaviors for Self-Adaptive Systems,” ACM Trans.
Auton. Adapt. Syst., vol. 10, no. 3, pp. 1–31, 2015.

[7] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, and M. Mousavi, “Formal
modeling of evolving self-adaptive systems,” in Science of Computer
Programming, 2012, vol. 78, no. 1, pp. 3–26.

[8] M. Luckey and G. Engels, “High-quality specification of self-adaptive
software systems,” in ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, 2013, pp. 143–152.

[9] P. Arcaini, E. Riccobene, and P. Scandurra, “Formal Design and
Verification of Self-Adaptive Systems with Decentralized Control,”
ACM Trans. Auton. Adapt. Syst., vol. 11, no. 4, pp. 1–35, 2017.

[10] R. De Lemos et al., “Software engineering for self-adaptive systems: A
second research roadmap,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2013, vol. 7475 LNCS, pp. 1–32.

[11] C. Macal and M. North, “Introductory tutorial: Agent-based modeling
and simulation,” in Proceedings - Winter Simulation Conference, 2015,
vol. 2015–Janua, pp. 6–20.

[12] N. A. Mian and F. Ahmad, “Modeling and Analysis of MAPE-K loop in
Self Adaptive Systems using Petri Nets,” vol. 17, no. 12, pp. 158–163,
2017.

[13] M. I. Tariq, S. Tayyaba, M. U. Hashmi, M. W. Ashraf, and N. A. Mian,
“Agent Based Information Security Threat Management Framework for
Hybrid Cloud Computing,” vol. 17, no. 12, pp. 57–66, 2017.

[14] F. Krikava and P. Collet, “A Reflective Model for Architecting
Feedback Control Systems,” in Proceeding of the 2011 International
Conference on Software Engineering and Knowledge Engineering,
2011, p. 7.

[15] F. D. Macías-Escrivá, R. Haber, R. Del Toro, and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications,” Expert Systems with Applications, vol. 40, no. 18. pp.
7267–7279, 2013.

[16] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” Softw. Eng. Self-Adaptive Syst., pp. 1–26,
2009.

[17] M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari,
“Achieving dynamic adaptation via management and interpretation of
runtime models,” J. Syst. Softw., vol. 85, no. 12, pp. 2720–2737, 2012.

[18] J. C. Muñoz-Fernández et al., “Capturing ambiguity in artifacts to
support requirements engineering for self-adaptive systems,” in CEUR
Workshop Proceedings, 2017, vol. 1796.

[19] S. Kounev et al., “The Notion of Self-aware Computing,” in Self-Aware
Computing Systems, 2017, pp. 3–16.

[20] M. Ahmad, N. Belloir, and J. M. Bruel, “Modeling and verification of
Functional and Non-Functional Requirements of ambient Self-Adaptive
Systems,” J. Syst. Softw., vol. 107, pp. 50–70, 2015.

[21] Y. Brun et al., “A Design Space for Self-Adaptive Systems,” Softw.
Eng. Self-Adaptive Syst. II SE - 2, vol. 7475, pp. 33–50, 2013.

[22] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A goal-based
modeling approach to develop requirements of an adaptive system with
environmental uncertainty,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2009, vol. 5795 LNCS, pp. 468–483.

[23] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Adaptive socio-technical
systems: A requirements-based approach,” Requir. Eng., vol. 18, no. 1,
pp. 1–24, 2013.

[24] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-explanation in
adaptive systems,” in Proceedings - 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems, ICECCS
2012, 2012, pp. 157–166.

[25] J. Cámara et al., Self-aware computing systems: Related concepts and
research areas. 2017.

[26] N. A. Qureshi, A. Perini, N. A. Ernst, and J. Mylopoulos, “Towards a
continuous requirements engineering framework for self-adaptive
systems,” in 2010 First International Workshop on
Requirements@Run.Time, 2010, pp. 9–16.

[27] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli, “SOTA: Towards
a general model for self-adaptive systems,” in Proceedings of the
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, WETICE, 2012, pp. 48–53.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

567 | P a g e

www.ijacsa.thesai.org

[28] Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang, “Context-Aware
sequential recommendation,” in Proceedings - IEEE International
Conference on Data Mining, ICDM, 2017, pp. 1053–1058.

[29] B. Ciloglugil and M. M. Inceoglu, “User Modeling for Adaptive E-
Learning Systems,” in ICCSA, 2012, pp. 550–561.

[30] J. Andersson, R. De Lemos, S. Malek, and D. Weyns, “Modeling
dimensions of self-adaptive software systems,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5525
LNCS, pp. 27–47.

[31] L. Gherardi and N. Hochgeschwender, “Poster: Model-based Run-time
Variability Resolution for Robotic Applications,” in Proceedings -
International Conference on Software Engineering, 2015, vol. 2, pp.
829–830.

[32] Y. Brun et al., “Engineering self-adaptive systems through feedback
loops,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2009, vol. 5525 LNCS, pp. 48–70.

[33] J. Levinson et al., “Towards fully autonomous driving: Systems and
algorithms,” in IEEE Intelligent Vehicles Symposium, Proceedings,
2011, pp. 163–168.

[34] S. Sucipto and R. S. Wahono, “A Systematic Literature Review of
Requirements Engineering for Self-Adaptative Systems,” in Journal of
Software Engineering, vol. 1, no. 1, 2015, pp. 55–71.

[35] Y. Zhao, Z. Yang, and D. Ma, “A survey on formal specification and
verification of separation kernels,” Frontiers of Computer Science, vol.
11, no. 4. pp. 585–607, 2017.

[36] S. M. Edgar and S. A. Alexei, “Power and limitations of formal methods
for software fabrication: Thirty years later,” Informatica (Slovenia), vol.
41, no. 3. pp. 275–282, 2017.

[37] G. Su, T. Chen, Y. Feng, D. S. Rosenblum, and P. S. Thiagarajan, “An
iterative decision-making scheme for markov decision processes and its
application to self-adaptive systems,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2016, vol. 9633, pp. 269–286.

