
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

521 | P a g e

www.ijacsa.thesai.org

Data Synchronization Model for Heterogeneous

Mobile Databases and Server-side Database

1
Abdullahi Abubakar Imam,

2
Shuib Basri,

3
Rohiza Ahmad,

4
Abdul Rehman Gilal

1,2,3
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS Malaysia

1
Computer Science Department, Ahmadu Bello University, Zaria-Nigeria

4
Department of Computer Science, Sukkur IBA University, Pakistan

Abstract—Mobile devices, because they can be used to access

corporate information anytime anywhere, have recently received

considerable attention, and several research efforts have been

tailored towards addressing data synchronization problems.

However, the solutions are either vendor specific or homogeneous

in nature. This paper proposed Heterogeneous Mobile Database

Synchronization Model (HMDSM) to enable all mobile databases

(regardless of their individual differences) and participate in any

data synchronization process. To accomplish this, an experimental

approach (exploratory and confirmatory) was employed. Also

existing models and algorithms are classified, protracted and

applied. All database peculiar information, such as trigger,

timestamp and meta-data are eliminated. A listener is added to

listen to any operation performed from either side. To prove its

performance, the proposed model underwent rigorous

experimentation and testing. X2 test was used to analyze the data

generated from the experiment. Results show the feasibility of

having an approach which can handle database synchronization

between heterogeneous mobile databases and the server. The

proposed model does not only prove its generic nature to all

mobile databases but also reduces the use of mobile resources;

thus suitable for mobile devices with low computing power to

proficiently process large amount of data.

Keywords—Heterogeneous databases; data synchronization;

mobile databases; mobile devices; NoSQL database; relational

databases

I. INTRODUCTION

Heterogeneity of mobile databases, complexity in mobile
applications development [1] as well as the mobile devices
themselves has engineered several obstructions in data
synchronization. Data Synchronization (DS) can be defined as
record exchange between two different databases [2]. It is the
system that establishes the movement of data between the
mobile device and the server-side databases [3]. On the other
hand, A heterogeneous database is an automated (or semi-
automated) system that has disparate data model for the local
nodes, Operating System, DBMS to present user with a single,
unified query interface [4], [5]. Based on this, numerous works
have been conducted to address the DS concerns with different
techniques. Amongst them are [6], [7] who proposed Synch
Algorithm using Message Digest (SAMD) and [8] who
introduced a stateful DS, all for the purpose of minimizing the
load on the mobile devices. Also, [9] suggested a target based
algorithm which always initiate the synchronization process
from the target database.

In this paper we consider a variation of the DS problem
with slightly different approach from the above. It focuses on
the heterogeneity concept where several databases (regardless
of their individual differences) connect and exchange data
seamlessly. These differences do not stop at only the database
versions or vendors but also different DBMS and data model.

At first the approach eliminates the use of any database
dependent information such as timestamp, trigger and meta-
data. It also pushed the highest percentage of operation
(computations) to the server for calculations and conflict
resolution, thus relieving the mobile devices. In addition, JSON
technology was considered for data packaging and transfer as a
flat file which has no bond to any mobile database. Moreover,
the synchronization process is always initiated by the mobile
device. This is because mobile devices cannot stay connected
to the network all the time so, the server cannot know which
device is online before engaging on any synchronization
process. On the side of starting the synch event, anything in the
mobile device can be set to trigger the synchronization event
such as on-boot-up, on-button-click, and on-application-start. It
is worthy to mention here emphatically and unequivocally that
our approach is flexible, customizable and extendable, it is not
close-ended solution, rather, it gives a blue print on how to
setup a synchronization environment for the heterogeneous
mobile databases and server-side database. The approach
adopts the use of message digest to encode messages before
transmission and decode upon arrival at the destination.

Message Digest (MD) is also called cryptographic hash,
hashes or hash function [10]. It takes a message as input and
produces a fixed-length output. The output is normally smaller
in size than the input (original message) which is generally
referred to as message digest, fingerprint or hash value [11].

The rest of the paper is structured as follows. Section ӀӀ
discusses the related works. Section ӀӀӀ explains the adopted
method. In Section ӀV, the proposed model is presented and
elucidated. The results are discussed in Section V. Finally,
Section VӀ concludes the paper with future focus.

II. RELATED WORKS

As said in the introduction of this paper that, Data
Synchronization is a record exchange between two different
databases or coherently keeping replicated copies of a data-set
[2]. Database synchronization on the other hand, can be a one-
way or a two-way process, and can be real time or periodic
mode, namely, Synchronous and Asynchronous [12]. Based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

522 | P a g e

www.ijacsa.thesai.org

these, varieties of data synchronization solutions are provided
to enable mobile device databases seamlessly communicate
with the server database. Some of these solutions are discussed
below, starting with factors that negatively affect the
synchronization process.

Since synchronization process occur frequently for mobile
devices that house variety of unalike databases with dissimilar
data-models and also have a number of limitations such as
storage space and processing capacity, the factors that
influence the processing speed, allow conflicts, as well as
prevent solution generalization in terms of database vendors
need to be carefully explored and addressed. Therefore, we
retrieved and compartmentalized factors from existing works
which we are believed to have significant negative impact to an
effective synchronization. The factors and their dependencies
are illustrated in Fig. 1.

Fig. 1. Factors influencing data synchronization.

There are three layers in the figure above (Fig. 1). Starting
from the bottom, the lowermost layer contains the factors that
directly influence the main factors shown in the second layer,
which in the end persuade or induce data synchronization
process as a whole. Looking at the factors above, it is believed
that, level two (second layer) has the potential to directly
affect, negatively, the data synchronization process. Several
approaches have been provided to subside the effect of these
factors. Based on the scope of this study, only the factors that
affect mobile database heterogeneity will be our focus of this
research. The approaches that focus on the same or related
concept are painstakingly selected and discussed below in
accordance with the main factors (level 2, Fig. 1. above).

Referring to vendor disparity factor (in Fig. 1), in
distributed databases systems and mobile databases, a solution
is considered to be vendor specific if it is based on a particular
functionality or feature that is not standard across all database
vendors that may wish to participate in data synchronization at
any given time [5].

In consideration of the above, several approaches that are
vendor specific as well as database category specific such as
RDBMS only are described. In [7], [13], and [14], the standard
SQL query as certified by the ISO was adopted in their
solutions to enable cross platform synchronization without
having any limitation. However, this does not make it fully
independent to all vendors because it is applicable only to
RDBMS category of databases. Other databases, such as
Analytical Databases, Operational Databases, FlatFile, XML
etc. are not included in the solution. Whereas in [15], a model
was developed to independently establish communication
between the mobile devices and the server; the model‟s
independence makes it adoptable by any system or platform.
Nevertheless, the solution is based on RDBMS only which
operate on a particular data model. It also has some table
structures that must be adopted by both parties that wish to
communicate. In addition, a given function (M=h(H)) is used
to generate message digest that must be the same for both side
to be able to decode the encoded data.

However, many solutions for mobile data synchronization
happened to be vendor specific such as the solution in [14]
which is based on Microsoft SQL Server and [16] whose
solution is solely dependent to MySQLite. Furthermore, others
like [2], [3], and [16] voted timestamp database feature as a
means of determining the most current state of the data on
either side of the databases. So if the timestamp of A is higher
than the timestamp of B, A is considered the most up-to-date
data and it is synchronized with B. Another database feature
that is used by [16] is Trigger which is used to trigger an event
in case of any inconsistency that is discovered using the
timestamp database feature and thus making all the above not
suitable for databases that are fully heterogeneous in nature.
Other solutions such as [17] and [18], have great synch
techniques suitable for server to server communication only.

Having said that it can be concluded that the above
solutions are vendor specific or peculiar to RDBMS only. This
is because some proposed solutions use vendor dependent
functions such as time stamp, trigger or database dependent
information like metadata. To be precise, both vendors of the
mobile database and the server-side database should be
identical or the same entity.

Furthermore, some solutions are dependent to a particular
mobile database vendor only. Such solutions are in most cases
independent of the server-side database vendor and operate on
a separate synchronization server [7], [13]. That is to say, the
solution must match the mobile databases for a synchronization
to take place. For example, when a programmer is to develop
or modify existing mobile application, some particular vendor's
libraries for mobile device databases have to be embedded to
the solution that resides in the synch server (like AnySyn in
Fig. 2) for an effective synchronization.

As a result of these constraints, the flexibility, adaptability
as well as extensibility of mobile business systems have been
noticeably declined. The problems above need to be tackled as
we are heading to the environment where mobile devices will
be further diversified and their databases (DBMS) will be
heterogeneous in nature [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

523 | P a g e

www.ijacsa.thesai.org

Fig. 2. Model development steps.

III. METHODOLOGY

The purpose of this research is to study the state of the art
in the context of mobile databases with respect to data
synchronization as well as to propose a generic model that can
be adopted by heterogeneous mobile databases. The structural
flow and factors that persuade and affect the generality of any
synchronization solution need to be painstakingly identified
and empirically validated. As a result, it is necessary to adopt a
method that allows studies to be carried out in real life context.
Out of the five software engineering methods discussed by
[20], a case study method was found to be the most suitable for
this research.

According to [21], a case study is “an empirical inquiry that
investigates a contemporary phenomenon within its real-life
context, especially when the boundaries between phenomenon
and context are not clearly evident.” This type of method
explains, comprehensively, how and why certain phenomena
occur. To derive new hypotheses and build theories,
exploratory case study is adopted as initial investigations of
some phenomena while confirmatory case study is used to test
existing theories [22]. The clear understanding that
confirmatory case study reveals can be useful in reconciling
between rival theories.

The results obtained when Case Study Method (CSM) is
applied are more valid than when controlled experiment is
applied [20]. This is because the variables under study are
measured from the real world context.

A. Invention Method

In our proposed synchronization method, although the
communication is bidirectional, we consider mobile devices as
the clients and the server as the master. This implies that both
Send-In and Send-Out process are initiated at the client side.
This is because the clients cannot stay connected all the time
[13], thereby making it difficult for the server to know which
among the numerous clients is actually online and ready to
receive a package.

Verifications are done at the beginning of the
synchronization process to confirm whether there is need for

the synchronization and also at the end to verify the successful
completion of the synchronization process; we aim to decrease
the number of tuples retrieved from the source database that
already match their counterpart in the target database.

For each successful transmission, a copy of the hashed data
is saved in the temporary repository which can later be used to
know whether synchronization is fully or partially completed.

In any synchronization process, the source database
horizontally organizes the total order of records in the source
database, summarizes the tuples using the hash function, and
for the same range of tuples, retrieves the equivalent hash
summary from the target database. If the summaries match
then we assume both the target and source databases have the
same content for the selected range. If the summaries do not
match then the same range of records are retrieved from the
source database, summarize and send to the target database.

In comparison, this method differs from the existing
methods in the following ways:

1) Temporary Repository (TR): For each successful

transmission a copy of the generated message digest is saved

in TR until the process is successfully completed and is

removed thereafter.

2) Embedding Data Extraction Formula (DEF) that was

proposed by [23] into the proposed solution: Network might

fluctuate during the synchronization process and the data

might have been partly transmitted. To avoid starting the

process a fresh, the DEF is used to extract only the records

that failed.

3) Process Initiator: In some methods, synchronization

process begins from the target database. The target database

can be either client or master database [9]. Whereas in others

such as [2], [14] and [15], the process is initiated by the owner

of changes, i.e. the database that is altered would be the

initiator of the process. While in our method, considering the

fact that mobile devices have no stable connection [24], they

are given the responsibility to initiate the synchronization

process when they are online. The process can be sending to

the server or receiving from the server.

4) Data Bank: Keeps the synchronization history. This

addresses many issues such as resolving conflicts and

comparing whether the source and target databases have

identical content before initiating the synchronization process.

B. Model Development Process

Based on our synchronization procedure, after analyzing
the information retrieved from the literature as well as
outlining the major strength and weaknesses of each of the
existing solutions, the model that aims to mitigate those
weaknesses is developed following the three steps as depicted
in Fig. 3.

At first, we identified the relevant elements for the
proposed model such as entities and attributes from the existing
solutions some which strongly guided our selection criteria for
the appropriate model structure. Also properties that are unique
and common are identified and aggregated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

524 | P a g e

www.ijacsa.thesai.org

Fig. 3. Model development steps.

Secondly, to choose the appropriate model structure to be
adopted, several factors were painstakingly considered such as
the most adopted structure, the one that is closely independent
to database vendors, the one that considered the utilization of
mobile resources like CPU and Memory. Also, date of release
is one of our major factors which determine the most
appropriate model to adopt. Considering the trend in
publications, each proposed model is an upgrade of the existing
ones; therefore, the most recent (latest) model would have
covered some of the loopholes of its predecessors, thereby
providing a strong guide for the development of the proposed
model structure.

Thirdly, reconciliation and construction of the proposed
model is considered for heterogeneous mobile databases. It
should be noted that, the construction of the proposed model
that based on the existing models is iterative in nature,
therefore, this process involves going back to step two (choose
model structure) until we find the structure that best suites our
approach or answer our research questions.

C. Data Analysis

To effectively analyze the data generated from both the
proposed model and the existing model, two different mobile
devices with different specifications were used for the
proposed model as well as the existing model. Besides, a single
computer was considered as a server to house the central
repository. Additionally, the same network was used and at
almost the same time, which means, there was no big interval
in the network speed for all the trials. Having big interval may
result to network inconsistencies which will in the end affect
the accuracy of our measurements. The specifications of the
devices involved as well as the network itself are as follows.

1) Empirical Validation Tools
In this section, the devices used for validating the proposed

model are described. 1) First Mobile Device: ASUS phone
brand was utilized with Wi-Fi of 7.10 and battery of 2000mAp.
It runs on Android 4.4. 2) Second Mobile Device: iPhone 6
was employed which runs on iOS 10.3.2 operating system with
Wi-Fi version of 802.11 and battery of 1810mAh. It also has
32 GB of memory and 1 GB of RAM. 3) Server-side
Computer: HP laptop intel® processor, Core™ i7 was

deployed which runs on windows 10 with CPU speed of
4.20GHz and 8.00GB of RAM. 4) Network: Ralink wireless
network was used with 802.11bgn the network uploads at
3,364,303 and downloads at 58,105,411. Also its speed was at
54.0mbps and 98% of signal quality.

2) Statistical Tool
In this study, we adopted the use of Chi

2
 test as our

analytical tool to analyze the data generated from both the
proposed model and the existing model. As for the level of
significance, α = 0.05 (5%) was used to indicate a 5% risk of
concluding that a difference exists when there is no actual
difference. the following section presents the proposed model.

IV. PROPOSED MODEL

This chapter extensively presents the proposed model.
Based on the findings and the shortcomings identified from the
literature and a review conducted by [25], a generic model is
proposed to address some of the untouched areas with respect
to data synchronization between mobile device databases and
the server-side database.

The ultimate goal of the model is to synchronize server‟s
database with mobile devices heterogeneous databases that are
remotely interlinked with utmost consideration on the usage of
resources of the mobile device. Primarily, the specific concern
is to avoid database vendor dependency approach and provide
a solution that is heterogeneous in nature which can be used to
synchronize data between mobile databases and server-side
database, such that all categories of mobile databases can
participate in the synchronization process regardless of their
individual peculiarities.

The proposed model comprises of several components
which when combined produce a complete working model. In
this section, we started by introducing the three (3)
architectures, followed by the overall concept and finally
elaborate the major components of the architectures one after
the other where applicable.

A. Architectures

The architecture section of the proposed model is
categorized into three different sections. Each section performs
different tasks or responsibilities from the other. First section
presents Send-In Synchronization Architecture, while section
two put forward the Send-Out Synchronization Architecture.
Finally, Server-side Synchronization Architecture is introduced
which illustrates the activities of record bank entity situated on
the synchronization participating server.

1) Synchronization Architecture (Send-In)
The process of Send-In begins from the mobile devices to

avoid information broadcast from the server as the current
practice (see Fig. 4 below).

Referring to Fig. 4 above, the mobile devices listen for any
changes made on the server, if there is any, the mobile sends
request for update along with relevant parameters
(authentication, data required). At this point the server takes
the charge, thus reducing the burden on the mobile. The server
receives request, do the comparison between the record bank
and the server private repository. The latest version of the
records is then sent to the mobile device as requested.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

525 | P a g e

www.ijacsa.thesai.org

Fig. 4. Send in sequence diagram.

2) Synchronization Architecture (Send-Out)
In the send-out phase of the architecture, the mobile

devices create, modify or delete records and need to notify the
server about the changes made. The scenario is depicted in
Fig. 5 as follows:

Fig. 5. Send out sequence diagram.

To start the send-out process, the mobile device retrieves
the affected data using the formula proposed by [23]. The
content is then hashed and sent to the server. Each successful
transfer of record is cataloged in the mobile device temporary
storage area [23] to monitor the synchronization status. The
server does the comparison upon receipt of the data and applies
appropriate operation.

3) Server-side Synchronization Architecture
One server can have multiple clients (mobile devices), each

of them sends and receives records from the record bank of the
server. For the server to have most up-to-date records in its
private repository, there is need to (from time-to-time)
synchronize with the record bank since clients communicate
with the record bank regularly. The process runs periodically to
check for any discrepancies between the data in the records
bank and the records of the server. If there are changes, an
update operation is applied to the server. Consequently, other
clients that require the same updates will eventually see the
alert and proceed for synchronization. The process is illustrated
in Fig. 6 below.

Fig. 6. Record bank to server synchronization.

B. Overall Concept

The overall concept of this model is similar to the existing
synchronization solutions; where unlimited client devices
connect with the database of the server in order to synchronize
data as shown in Fig. 7 below:

Fig. 7. Overall concept.

With regards to the clients, they are the mobile devices
consisting of different types of mobile databases with a light
weight storage area, mobile applications that are used to create
and manipulate records on the move, and a module where the
proposed model is implemented for an effective
synchronization. Conversely the server is a computer system
that consist of an agent where part of the synchronization
model is implemented, Synchronization Records Bank (SRB)
where the histories of all synchronization processes are kept
regardless of their status (success, failure or removed) in order
to track history and to resolve conflict in the future.

C. Components of the Architecture

Regardless of the architectural categorization, each of the
earlier discussed architecture cannot work alone. Meaning,
they must be merged together to form a complete architecture.
Therefore, the merged architecture has the following
components:

1) Table Structure (Record Bank)
As one of the synchronization staging areas, record bank is

a server-side located repository. It keeps the history of data
exchanged between the devices and the server. Due to its size
and computations (comparisons) involved, it‟s placed on the
server, since the mobile devices have limited storage space.
The structure of the repository is as follows:

Removal

Iteration

Process

Record

Insertion

Insert

Record

Update

Iteration

Update

Record
Remove

Record

Update

Record

Record

Update

Iteration
Insert

Record

Record

Insertion

Iteration

Record

Removal

Iteration
Remove

Record

Mobile App

(Client)

Synchroniza

tion Agent

(Client)

Mobile

Database

(Client)

Synchronizat

ion Agent

(Server)

Database

(Server)

Send In request. Data + Operations

Record Bank

Synchronize

Send

In

Update
Iteration

Removal
Iteration

Data +

Mobile
Database
(Client)

Reque
st

Dat

a

Update

Record
Insert

Insertion
Iteration

Remove

Mobile

App

(Client)
Synchroniza
tion Agent

(Client)

Synchronizat
ion Agent
(Server)

Database
(Server)

Send Out.
Response

Record Bank

Synchronize
Send

Out

Iterative Process
of successful Temp

Storage area
(Client)

Update

Record

Remove

Record

Synchronizatio

n Agent

(Server)

Most Up-to-date Records

Record Update

Iteration Process
Record Removal

Iteration Process

Database

(Server)

Exchanged

Data Record

Bank

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

526 | P a g e

www.ijacsa.thesai.org

a) Record Owner: It is an attribute that uniquely

identifies the actual client that created the record. It is used to

differentiate who amongst clients have the most up-to-date

record in case one record is being used by many clients.

b) Private Key: It is the primary key of a record on the

mobile. It is used to differentiate records on the client side.

c) Public Key: It is a unique identifier of a record on the

server. That is to say, is the primary key of the records on the

server. It is used to determine which record is the most recent

and also resolve conflicts between the data in record bank and

the actual data on the server.

d) Records Message Digest: It‟s the message digest

generated by the hash function at run time where the business

data is the input. Because it is produced at run time, is

considered to be the most recent version of the record.

e) Flag: It‟s an attribute that records the

synchronization outcome (success or failure). The flag is 0

when there I no error in the process and 1 otherwise.

f) Active: This is where the status of a record is stored.

It records 0 if a given entry is no longer in use (removed) or 1

if it‟s still active. Note that, an entry is not completely deleted,

instead, is archived for future reference.

2) Data Extraction Formula
Data Extraction Formula (DEF), is a fomula prposed by

[23] for the purpose of extracting the records that only matter
for synchronization. This formula does the comperison
between records and retrive only the affected records which
will be used as an input of the following hashing formula.

3) Message Digest Formula
Message digest formula is a formula that is used to

compute and produce message digest for transmission to the
target database.

()h H M

The input of this formula is the output of the DEF
explained above. But for the DEF to be able to extract data
correctly it requires the following storage space on the mobile
device.

4) Temporary Storage Area (Client)
Temporary storage area is part of the DFD explained

above. It save any successfully transmitted record so as to ease
the process of locating a starting point for the DEF. it is also
explained in [23].

D. Synchronization Proceedure

In this section, we explain and demonstrate the procedure
that our proposed model follows to synchronize data between
one database to another. Each of the following figures (Fig. 8,
9, 10 and 11) depicts a particular task that might be assigned to
it during the synchronization process. The first (Fig. 8) is the
main procedure that, at some point, branches to link to its sub
procedures for a separate responsibility.

Fig. 8. Data synchronization using HMDS model.

There are four significant procedures involved in the
synchronization process which starts with generation of
message digest, verification of the inconsistencies between the
source and the target databases, perform synchronization, and
finally verify the consistencies between the two databases. At
the outset, message digest generation is explained.

1) Message Digest Generation
The process of generating the message digest is the same

for both the source and the target databases. However, to
minimize the burden on the mobile devices and also keep the
history of all performed synchronizations, a hashed copy of
each dataset is kept in the record bank of the server after any
successful synchronization. The saved hash of any completed
synchronization can be later used to resolve conflicts between
two or more different clients that are meant to manipulate the
same dataset. Please refer to Fig. 9 below:

Fig. 9. Message digest generation.

Message Digest generation

End

Load data

Calculate message digest using the

loaded data

Output message digest

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

527 | P a g e

www.ijacsa.thesai.org

In this phase, the first activity is to load the data that is to
be hashed, after that, a hashing formula is applied to the loaded
data which calculates the message digest, and finally the
computed message digest is produced for the first and final
verifications as well as synchronization process.

2) Verification of inconsistencies between the target and

the source databases
This is the second procedure which the proposed model

follows to verify whether the records of both the source and the
target databases have identical values. This process confirms if
the data to be synchronized is not available in the target
databases. The figure below depicts the verification process:

Fig. 10. Verification process.

When the verification process starts, a cryptographic
representation of the data in both databases (source and target)
are produced which are further compared to see whether the
two defined data ranges are different. If they are the same, the
process ends there, otherwise, the synchronization is performed
to fill the identified missing information in the target databases
as explained in the next section below.

3) Synchronization Process
In this phase, after all necessary verifications have been

made and confirmed that, there is need for the synchronization
to take place, the following process is called to administer the
changes accordingly.

The process begins with comparing the two generated
hashes (the source and the target) if the verification was not
called in the main procedure. This might be possible when
there is more data to be synchronized immediately after the
first assignment. After the comparison, if the records are the
same, it calls for more data, otherwise the synchronization
process continues.

Fig. 11. Synchronization process.

Using data extraction formula, the nonmatching records are
copied to the target database, thereafter; appropriate action is
applied to the copied records. If there are more data to
synchronize the process is repeated, else, the process is ended.
The verification is repeated in this phase because there is need
to localize the verification at some points such as when there is
more data to be synchronized immediately after the completion
of the assigned tasks. Meaning the loop within the phase
should be maintained until the data to be synchronized is
exhausted.

4) Final Verification Process
This time, the verification process is to confirm the status

of the most recent (just completed) synchronization whether is
successfully completed or an error occurred during the process.
If there was an error, the synchronization process is repeated,
otherwise, the process is tagged to at rest, which means the
process is disabled for now until there are more changes from
either side.

The process uses the same diagram as shown in Fig. 10.
Checking and comparison of data is repeated at multiple points
due to the need to confirm that there is no more data to be
synchronized before putting the entire process at rest. Putting
the process at rest after a successful synchronization greatly
minimizes the consumption of batteries and other mobile
valuable resources such as CPU and Memory.

Verification process

End

Message Digest
Generation (Target)

Perform synchronization

process again

 Source Message

Digest =

Target MD?

Y

Message Digest
Generation (Source)

S
im

ilarity
 S

tatu
s =

 „Y
‟

Similarity

Status = „N‟

Synchronization

process

End

Verification Process

Update target database

with new records

Copy non matching data to the

target database using the Data

Extraction Formula

Similarity Status

= „Y‟?

 More data?

Y

Y

N

N

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

528 | P a g e

www.ijacsa.thesai.org

V. RESULTS AND DISCUSSION

This section presents and discussed in details the results of
the proposed model and its counterpart. After subjecting the
proposed model to a proper implementation, thorough testing
was conducted to ascertain its capability and reliability in
different aspects. These aspects are in-line with our goal in
making data synchronization possible between the different
mobile database vendors and the server-side database. At first
the hypothesis are presented and tested, and results are
produced for the null and alternative hypothesis. For clarity and
easy reference, results are discussed immediately after they are
presented.

The data obtained from the proposed and existing model
were analyzed using the Chi

2
 test which produces the P value

used to measure whether the null hypothesis (Ho) should be
accepted or rejected. As for the level of significance, α = 0.05
(5%) was used to indicate a 5% risk of concluding that a
difference exists when there is no actual difference.
Considering the formulated hypothesis, two-tailed comparison
was considered. The tow-tailed test allows the comparison
process to be fair to all the participating groups. Meaning, the
proposed model could be better than the competitor‟s model or
vice versa.

After examining the process repeatedly, the proposed
model yields outstanding, profound and remarkable
improvements from the existing solutions, mostly in the
utilization of mobile resources due to the incorporation of DEF
[23]. It also showed the prospect in multiple mobile database
vendors‟ involvement in the synchronization process. The
results are categorized and presented based on the aim of this
study (mobile database heterogeneity).

Database heterogeneity refers to having different databases
of different data model, DBMS, Vendors, and OS. Since there
are varieties of mobile database vendors, a solution that neglect
their individual differences and permit standard uniformity is
required to be able to synchronize data limitlessly. The results
of the proposed model in this regard are thereby presented in
two scenarios: the first being the records exchange from
Mobile Device Databases (MDD) to Server Side Database
(SSD) while the second takes the opposite direction. In this
context therefore, we aim to provide a general solution that can
be used for data synchronization regardless of the
aforementioned individual differences. One (latest) of the
existing solutions was used to measure our proposed solution
based on the following hypothesis.

HO: Database dependent information such as time-stamp,
trigger or stored procedure have no impact in making any
solution heterogeneous, i.e. vendor specific.

H1: Database dependent information such as time-stamp,
trigger or stored procedure have impact in making any solution
heterogeneous, i.e. vendor specific.

To answer these hypotheses, experiments are conducted
and results were analyzed in two different scenarios. Scenario
one (1) shows and discussed the results obtained from both the
models when records are sent from Mobile Device Database
(MDD) to Server Side Database (SSD), while scenario 2

present and discussed the results when records are sent from
SSD to MDD. At first we begin by presenting scenario 1.

A. Scenario 1: Data Exchange Possibility from MDD to SSD

Since our proposed solution is bidirectional (send to the
server and receive from the server) we started answering the
hypothesis by initiating a communication from the Mobile
Device Databases (MDD) to Server Side Database (SSD).
Table Ӏ summarizes the trials that has the highest available
number of records.

TABLE. I. SCENARIO 1 MDD (SQLITE & XML) TO MYSQL SSD

 SQLite XML

Number of Records 10000 10000

Proposed Model AST (ms) 5.74 35.46

Competitor Model AST (ms) 9.93 -

Data received by SSD using the PM True True

Data received by SSD using the CM True False

Table Ӏ shows the possibility of receiving data and the
Average Synchronization Time (AST) of both the proposed
model and the competitor model. Looking at the Proposed
Model (PM), apart from being able to receive the data sent
from different mobile database vendors, it is also faster. While
the Competitor Model (CM) was only able to receive data sent
from SQLite because both SQLite and MySQL have the same
data model and use the same DBMS, but for the case of XML,
the process couldn‟t be completed. Table II below shows the
trails at multiple levels.

TABLE. II. SCENARIO 1 MDD (SQLITE & XML) TO MYSQL SDD

 SQLite XML

Trial 1 Number of Records 500 500

Trial 1 Proposed Model TST (ms) 39010.1 181052.7

Trial 1 Competitor Model TST (ms) 31011.3 -

Trial 1 data received by SSD using PM True True

Trial 1 data received by SSD using CM True False

Trial 2 Number of Records 2000 2000

Trial 2 Proposed Model TST (ms) 48035.7 232311.2

Trial 2 Competitor Model TST (ms) 45501.1 -

Trial 2 data received by SSD using PM True True

Trial 2 data received by SSD using CM True False

Trial 3 Number of Records 5000 5000

Trial 3 Proposed Model TST (ms) 63210.3 291492.9

Trial 3 Competitor Model TST (ms) 69224.8 -

Trial 3 data received by SSD using PM True True

Trial 3 data received by SSD using CM True False

Trial 4 Number of Records 7000 7000

Trial 4 Proposed Model TST (ms) 71563.4 325143.4

Trial 4 Competitor Model TST (ms) 72100.0 -

Trial 4 data received by SSD using PM True True

Trial 4 data received by SSD using CM True False

Trial 5 Number of Records 10000 10000

Trial 5 Proposed Model TST (ms) 79461.3 364660.7

Trial 5 Competitor Model TST (ms) 91433.2 -

Trial 5 data received by SSD using PM True True

Trial 5 data received by SSD using CM True False

Talking of the Table ӀӀ above, scenario 1 shows the
possibility of synchronizing data to the server with a number of
trials in both the

SQLite and XML databases using the Proposed Model
(PM). In trial 1 of the scenario 1, the Mobile Device Database
(MDD) was able to effectively synchronized data to Server

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

529 | P a g e

www.ijacsa.thesai.org

Side Database (SSD) for both the SQLite and XML databases.
This achievement did not stop in trial 1 only, but across the
remaining trails with different number of records, whereas, in
the same trials, the Competitor‟s Model (CM) was able to
synchronize data with SQLite database only. This is a clear
indication that, the proposed model can be embraced by several
database vendors, regardless of their individual difference
because the model considers the interception areas rather than
focusing on their individual differences.

Furthermore, the Total Synchronization Time (TST) taken
for the proposed model to synchronized data to the server was
39010.1(ms) at first trial and 31011.3 (ms) for the competitor
model in the same trial. The increase continued to correspond
to the number of records in the trials diagonally with around
5.5(s).

B. Scenario 2 Data Exchange Possibility from SSD to HMDD

In scenario 2, the opposite direction of the synchronization
was considered where Server Side Database (SSD) sends
records to Mobile Device Databases (MDD). Table ӀӀӀ shows
the summary of the trials conducted in Table ӀV.

TABLE. III. SCENARIO 2 MYSQL SDD TO MDD (SQLITE & XML)

 SQLite XML

Number of Records 10000 10000

Proposed Model ADAT (ms) 3.98 4.73

Competitor Model ADAT (ms) 4.23 -

Data received by MDD using the PM True True

Data received by MDD using the CM True False

Table above shows that, the records sent by the server was
received by Mobile Device Databases (SQLite and XML)
using the Proposed Model (PM). While using the Competitor
Model (CM), only SQLite was able to receive the data. Also,
the Average Data Arrival Time (ADAT) was lower using the
PM. Table below presents the results of the 5 trials.

As the case of scenario 2, the second direction of the
synchronization is considered where the server sends records to
its clients. Using the proposed model, both SQLite and XML
databases were able to receive data composed and sent by the
server crosswise, in all trials. While the competitor model
behaved in contrast, where only the SQLite did received the
records. This is because the competitor‟s model was based on
SQL queries while others use database dependent information
such as timestamp and trigger in the cause of synchronization,
which eliminates some database vendors that do not have such
techniques or mechanisms embedded or do not belong to
RDBMS category at all.

In addition, it can be seen in both the scenarios 1 and 2
above that, using the Proposed Model (PM), the average time
taken to synchronize records using SQLite is way less than the
time taken with XML database even though they both send and
receive data. This is because, in SQLite, multiple rows carry a
fixed number of columns identifiers unlike in XML where
multiple tags are used to wrap each record and group of
records [26].

TABLE. IV. SCENARIO 2 MYSQL SDD TO MDD (SQLITE & XML)

 SQLite XML

Trial 1 Number of Records 500 500

Trial 1 Proposed Model DAT (ms) 21023.4 24663.8

Trial 1 Competitor Model DAT (ms) 26001.3 -

Trial 1 Data received by MDD using PM True True

Trial 1 Data received by MDD using CM True False

Trial 2 Number of Records 2000 2000

Trial 2 Proposed Model DAT (ms) 30331.2 32415.9

Trial 2 Competitor Model DAT (ms) 34311.2 -

Trial 2 Data received by MDD using PM True True

Trial 2 Data received by MDD using CM True False

Trial 3 Number of Records 5000 5000

Trial 3 Proposed Model DAT (ms) 38096.9 39736.1

Trial 3 Competitor Model DAT (ms) 44709.7 -

Trial 3 Data received by MDD using PM True True

Trial 3 Data received by MDD using CM True False

Trial 4 Number of Records 7000 7000

Trial 4 Proposed Model DAT (ms) 46543.1 48280.7

Trial 4 Competitor Model DAT (ms) 47016.3 -

Trial 4 Data received by MDD using PM True True

Trial 4 Data received by MDD using CM True False

Trial 5 Number of Records 10000 10000

Trial 5 Proposed Model DAT (ms) 52206.4 55113.9

Trial 5 Competitor Model DAT (ms) 59236.8 -

Trial 5 Data received by MDD using PM True True

Trial 5 Data received by MDD using CM True False

For example, in SQLite, if you have 10000 rows of records
and have 5 columns then you would have 5 columns identifies,
one for each column. However, for the same number of records
using XML, you would have 100,000 wrappers (that is to say,
10,000 rows * 5 records par row * 2 opening and closing tags).
This adds so much load to the data, thus make heavy for
mobile devices to manipulate easily.

Chi
2
 test was used to analyze the above data that states the

possibility of synchronizing records between mobile
heterogeneous databases. Since our data in this case is TRUE
or FALSE, a statistical tool that will allow the probabilities to
be counted and aggregated is selected which works as follows.

TABLE. V. CHI
2
 TEST DATA FROM SCENARIO 1 AND 2

 Number of True Number of False
Grant

Total

Proposed Model 20 0 20

Competitor Model 10 10 20

Grant Total 30 10 40

Table V shows the data (True and False count) retrieved
from scenario 1 and scenario 2 as presented in Table ӀӀ and
Table ӀӀӀ. Therefore, the (column total * row total) /grant total
formula was used to calculate the expected values for the data
presented in Table V. The results of the computation are as
shown in Table VӀ.

TABLE. VI. EXPECTED VALUE RESULTS

 Number of

True

Number of

False

Grant

Total

Proposed Model 15 5 15

Competitor Model 15 5 10

Grant Total 20 5 25

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

530 | P a g e

www.ijacsa.thesai.org

After computing the Expected Values (EV) as indicated
above, the Actual Values (AV) and the EV were included in
the Chi

2
 test formula to obtain the probability value. On the

other hand, 0.05 was set to be the alpha (α) value. These values
can be used to either accept or reject the null hypothesis. Ho
can be only rejected if the probability value is less than the
alpha value. Results of the analysis shows that, the p value is
0.00026073 for both the two scenarios, which is less than the
alpha (α) value of 0.05.

Based on this therefore, the null hypothesis is fully rejected
since the probability value is less than the alpha value. The
outcome shows the possibility of sharing data across multiple
mobile databases when database dependent information such as
timestamp, triggers and Meta data are excluded in the solution.
Solutions that adopt any of these techniques are thereby
considered vendor specific or solution that is homogenous in
nature.

VI. CONCLUSION

We have presented a model for purpose of addressing the
problem of data synchronization between the heterogeneous
mobile devices databases and server-side database with
significant consideration to the limitations of the mobile
devices such as memory, CPU, power supply and continuous
network fluctuations. Based on the goals of this study,
experimental method which allows study to be carried out in a
real life context was considered to be the most suitable for this
research. This method was selected out of the five methods
discussed by Easterbrook [20] for the empirical software
engineering research. The study explored and investigated
numerous solutions from the existing literature where various
incredible research contributions were found. However, mobile
database heterogeneity was uncared for in spite of its great
importance. Thus hinders other types of databases to
participate in the synchronization process since they were not
considered as part of the solution in the first place.

Based on the review outcome, existing solutions properties
were identified which guided the construction of the proposed
model. To empirically validate the proposed model, a
prototype was developed which implemented the model in a
real-life context. Also one latest existing solution was
implemented for the purpose of performance analysis.

The proposed model further weighs against the existing
model to mark the improved areas. Results indicate that the
objectives of this study have been achieved where the proposed
model proved feasibility of engaging multiple mobile databases
in a synchronization process; thus delivering substantial
evidence to repudiate the null hypothesis. Moreover, the
proposed model displayed some strength in the synchronization
speed and also the utilization of the mobile resources.

Looking at the unique intensity that the competitor model
and proposed model offer, there is need to consider the
significance of heterogeneity and resource consumption when
making the decisions between the models. The actual potency
of the proposed model lies in the aforementioned variables.
The study has provided a clear benchmark that can be used to
compare these models when adopting a synchronization
solution for mobile devices. Unstructured data are another key

important component that will be given due consideration in
the nearby future since mobile devices are now one of the
major sources of big data [27].

ACKNOWLEDGEMENT

This paper/research was fully supported by Ministry of
Higher Education Malaysia, under the Fundamental Research
Grant Scheme (FRGS) with Ref No of:
FRGS/1/2015/ICT01/UTP/02/1. Any opinions, findings, and
conclusions stated in this paper are those of authors and do not
necessarily reflect those of the MOHE.

REFERENCES

[1] M. Nayebi, B. Adams, and G. Ruhe, “Release Practices for Mobile Apps
-- What do Users and Developers Think?,” 2016 IEEE 23rd Int. Conf.
Softw. Anal. Evol. Reengineering, pp. 552–562, 2016.

[2] D. Sethia, S. Mehta, A. Chodhary, K. Bhatt, and S. Bhatnagar,
“MRDMS-Mobile Replicated Database Management Synchronization,”
2014 Int. Conf. Signal Process. Integr. Networks, pp. 624–631, 2014.

[3] J. Sedivy, T. Barina, I. MOrozan, and A. Sandu, “MCSync – Distributed
, Decentralized Database for Mobile Devices,” IEEE 2012, pp. 1–5,
2012.

[4] M. F. Qaisrani, “Types of Distributed Database Management System,”
Benazir Bhutto Shaheed University, 2014. [Online]. Available:
http://www.slideshare.net/TAHAROC/types-of-data.

[5] G. Thomas, G. R. Thompson, C.-W. Chung, E. Barkmeyer, F. Carter, M.
Templeton, S. Fox, and B. Hartman, “Heterogeneous Distributed
Database Systems for Production Use,” ACM Comput. Surv. - Spec.
issue Heterog. databases, vol. 22, no. 3, pp. 237–266, 1990.

[6] M. Choi, E. Cho, D. Park, J. Bae, C. Moon, and D. Baik, “A
Synchronization Algorithm of Mobile Database for Ubiquitous
Computing,” Fifth Int. Jt. Conf. INC, IMS IDC, NCM 2009., p.
pp.416,419, 25-27, 2009.

[7] M. Choi, E. Cho, D. Park, C. Moon, and D. Baik, “A database
synchronization algorithm for mobile devices,” IEEE Trans. Consum.
Electron., vol. 56, no. 2, pp. 392–398, May 2010.

[8] B. S. Ramya, S. B. Koduri, and M. Seetha, “A Stateful Database
Synchronization Approach for Mobile Devices,” Int. J. Soft Comput.
Eng., vol. 2, no. 3, pp. 316–320, 2012.

[9] M. Ahluwalia, R. Gupta, A. Gangopadhyay, and M. Mcallister, “Target-
Based Database Synchronization,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, 2010, pp. 1643–1647.

[10] H. Preston and M. Narayan, “Message digest based data
synchronization,” US 09/896,321.

[11] P. Bottorff, C. L. Allen, A. Hudson, and M. R. Krause, “Distributed
database synchronization,” US 12/911,356.

[12] L. Zhenyu, C. Zhang, and L. Zunfeng, “Optimization of Heterogeneous
Databases Data Synchronization in WAN by Virtual Log Compression,”
Futur. Networks, 2010. ICFN ‟10. Second Int. Conf., pp. 98–101, Jan.
2010.

[13] V. Balakumar and I. Sakthidevi, “An Efficient Database
Synchronization Algorithm for Mobile Devices Based on Secured
Message Digest,” 2012 Int. Conf. Comput. Electron. Electr. Technol.
[ICCEET] Messag., pp. 937–942, 2012.

[14] T. A. Alhaj, M. M. Taha, and F. M. Alim, “Synchronization Wireless
Algorithm Based on Message Digest (SWAMD) For Mobile Device
Database,” 2013 Int. Conf. Comput. Electr. Electron. Eng.
Synchronization, pp. 259–262, 2013.

[15] J. Domingos, N. Sim??es, P. Pereira, C. Silva, and L. Marcelino,
“Database synchronization model for mobile devices,” in Iberian
Conference on Information Systems and Technologies, CISTI, 2014.

[16] G. P. Zaia, C. R. C. Messias, R. G. Eduardo, and C. J. Olivete,
“MySQLite Sync : Middleware for stored data synchronization in
mobile devices and DBMSs,” 2014 XL Lat. Am. Comput. Conf. 2
agente, pp. 1–7, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

531 | P a g e

www.ijacsa.thesai.org

[17] A. A. Imam, S. Basri, and R. Ahmad, “Synchronization Algorithm for
Remote Heterogeneous Database Environment.pdf,” in Advances in
Intelligent System and Computing, 2014, pp. 55–65.

[18] A. Stage, “Synchronization and replication in the context of mobile
applications,” in ICFN ‟10. Second International Conference on, 2012,
p. 98,101.

[19] H. Chen, J. Yu, C. Hang, B. Zang, and P. Yew, “Dynamic software
updating using a relaxed consistency model,” Softw. Eng. IEEE Trans.
on, Vol. 37(5), pp. 679–694, 2011.

[20] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” Guid. to Adv.
Empir. Softw. Eng., pp. 285–311, 2008.

[21] R. K. Yin, “Case Study Research: Design and Methods.,” Sage, 2002.

[22] D. Perry, A. Porter, and L. Votta, “Empirical Studies of Software
Engineering: A Roadmap,” Int. Conf. Softw. Eng., pp. 345–355, 2000.

[23] A. A. Imam, S. Basri, and R. Ahmad, “Data Extraction Formula for
Efficient Data Synchronization between Mobile Databases and Server-
side Database,” in International conference on Computer and
Information Science (IEEEC 2016), 2016.

[24] N. Banivaheb, “Mobile Databases,” Slide Presentation, 2012. [Online].
Available:
http://www.cse.yorku.ca/~jarek/courses/6421/F12/presentations/Mobile-
Databases_ Presentation.pdf.

[25] A. A. Imam, S. Basri, and R. Ahmad, “Data Synchronization Between
Mobile Devices and Server-side Databases : A Systematic Literature
Review,” J. Theor. Appl. Inf. Technol., vol. 81, no. 2, pp. 364–382,
2015.

[26] J. Fong, H. K. Wong, and Z. Cheng, “Converting relational database into
XML documents with DOM,” Inf. Softw. Technol., vol. 45, no. 6, pp.
335–355, 2003.

[27] B. B. Mehta, “First Credit Seminar Presentation on ” Privacy and Big
Data : Issues and Challenges”, 2014.

