
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

425 | P a g e

www.ijacsa.thesai.org

An Empirical Evaluation of Error Correction Methods

and Tools for Next Generation Sequencing Data

Atif Mehmood

Riphah Institute of Computing and

Applied Sciences (RICAS)

Riphah International University

Lahore, Pakistan

Javed Ferzund, Muhammad Usman Ali, Abbas Rehman,

Shahzad Ahmed

Department of Computer Science

COMSATS Institute of Information Technology

Sahiwal, Pakistan

Imran Ahmad

Riphah Institute of Computing and Applied Sciences (RICAS)

Riphah International University

Lahore, Pakistan

Abstract—Next Generation Sequencing (NGS) technologies

produce massive amount of low cost data that is very much

useful in genomic study and research. However, data produced

by NGS is affected by different errors such as substitutions,

deletions or insertion. It is essential to differentiate between true

biological variants and alterations occurred due to errors for

accurate downstream analysis. Many types of methods and tools

have been developed for NGS error correction. Some of these

methods only correct substitutions errors whereas others correct

multi types of data errors. In this article, a comprehensive

evaluation of three types of methods (k-spectrum based, Multi-

sequencing alignment and Hybrid based) is presented which are

implemented and adopted by different tools. Experiments have

been conducted to compare the performance based on runtime

and error correction rate. Two different computing platforms

have been used for the experiments to evaluate effectiveness of

runtime and error correction rate. The mission and aim of this

comparative evaluation is to provide recommendations for

selection of suitable tools to cope with the specific needs of users

and practitioners. It has been noticed that k-mer spectrum based

methodology generated superior results as compared to other

methods. Amongst all the tools being utilized, Racer has shown

eminent performance in terms of error correction rate and

execution time for both small as well as large data sets. In

multisequence alignment based tools, Karect depicts excellent

error correction rate whereas Coral shows better execution time

for all data sets. In hybrid based tools, Jabba shows better error

correction rate and execution time as compared to brownie.

Computing platforms mostly affect execution time but have no

general effect on error correction rate.

Keywords—Next generation sequencing; bioinformatics;

errors; error correction; execution time; k-spectrum; suffix tree

based; hybrid based

I. INTRODUCTION

Gigantic amount of data is originated with the help of next
generation sequencing technologies at lowest cost and high
throughput. As compared to old generation of sequencing data
(the first-generation technology) for example Sanger NGS
data faces high challenges of error rate. NGS plays a leading

role in the discovery of many applications in bioinformatics
research and changed the way of genomic research [1]. NGS
demands high-power CPU and various algorithms that can
work in parallel mode for bioinformatics studies. It also needs
the spacious memory and execution time for total data that
may cause issues for data management. NGS takes advantage
of big data computing infrastructure that divides the memory
in clusters and provides the batch queue system which helps to
produce large amount of sequencing reads [2]. Errors in
sequencing data mainly occur due to the replacement of
correct bases with incorrect bases and indels. NGS
technologies produce different tools such as Illumina and
Solid to induce the substitution error, whereas the Roche 454
and Ion torrent create the insertion and deletion error. Most of
the tools and methods focus on removing the substitution
errors [3]. There are three types of biases that cause errors in
sequencing data: systematic bias, coverage bias and batch
effect bias. The rate of error in data is also different for
various NGS technologies. It is key step to remove the data
error before any analysis can be made. These errors also
disturb the accuracy of algorithm therefore it is beneficial to
rectify data before analysis to conclude better results in
downstream analysis [4].

Correction of sequencing errors is a critical module for
bioinformatics discovery. The basic concept behind correcting
the sequencing read errors is to correct the erroneous bases.
Many error correction tools subjective of different data
structures related to various methods have been developed.
The error correction methods are classified into four
categories:

1) K-spectrum based method such as Quake (2010),

Lighter (2014) [5], Reptile (2010) [6], BLESS (2014) [7]

hammer (2011), Musket (2013), HECTOR (2014) and

RACER (2013). These tools correct the errors on k-mer

incidence.

2) Multiple sequence alignment based method such as

Karect (2015), Coral (2011) and ECHO (2011).

3) Suffix tree based method such as SHREC (2009) [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

426 | P a g e

www.ijacsa.thesai.org

4) Hybrid based method such as LoRDEC (2014) [9],

Jabba (2016) and Brownie (2015).

Different error correction tools and algorithms have
evolved with the passage of time possessing better accuracy
and minimum execution time. Evaluation of specific tools is a
study matter being provided by various educational sources. In
this comparative study, three methods and six tools are
selected, each pair of tools belonging to each method. Musket
and RACER are selected from the K-spectrum based category,
Coral and Karect are selected from the multiple sequence
alignment categories, and Jabba and Brownie are selected
from the Hybrid based category. These tools run on two
different computing platforms. This piece of study aims to
answer the following questions:

 Do these tools cope with data scalability?

 Does the computing platform affect the performance of
tools?

 Which method of error correction is better?

 Which tool outperforms other tools?

 Which tool is better within the same category?

 Which tool has maximum error correction rate?

 Which tool requires minimum execution time on same
dataset?

In addition, performance of different tools will be
evaluated for different data sets. The rest of the paper is
organized as follows: Section 2 describes the related work and
Section 3 presents the experimental details. Results are
discussed in Section 4 and paper is concluded in Section 5.

II. RELATED WORK

Error correction depends on read coverage and error
correction rate of different tools. These tools are based on
different approaches and data structures. Three main
approaches are used to make error correction tools more
efficient such as k-spectrum based, suffix array based and
hybrid based approach. Li et al. [5] has developed tool that
depends on k-mer spectrum based. The authors used 31-55 k-
mer length as well as bloom filter and hash table data
structure. The authors focused on the removal of substitution
errors. They also checked the trusted regions and extracted the
optimal solution by using extension mechanism. In this task of
material study, the experimental results are targeted on
achieving maximum error correction rate. Heo et al. [7] used
the hash table data structure. They used k-spectrum approach
for error correction. They determined the solid minimum edit
path in between solid k-mer. Using the reverse bloom filter,
they changed false positive rate. During k-mer counting
Bloocoo used 10 bits for storing solid k-mers. They also
described the need for 4 GB memory requirement for human
genome correction. Song et al. [5] developed memory
efficient tool based on k-mer spectrum. The authors used
bloom filter and 23 k-mer length, Sequencing reads were
processed in three steps and two bloom filters were used for
error correction. In this work, k-mer subsample is obtained
using first bloom filter and then test is applied on each read on

each position to find solid k-mer. These solid k-mers are
stored and second bloom filter is applied. They used greedy
approach for error correction which is also used in bless.
Lighter corrected substitution errors. They used multiple
sequence alignment method and suffix array based data
structure. In his paper, two-sided error correction technique
was used to correct substitutions errors. Salmela et al. [9]
presented hybrid based error correction using de Bruijn graph.
They corrected most weak left and right regions by choosing
traversal paths in graph. The authors argued that LoRDEC
consumes less memory as compared to other tools and error
correction rate is 99%. In fiona, used partial suffix array with
hierarchical statically method to correct errors in sequencing
reads. They used each read r as reference and corrected first
overlap reads. It is also able to corrected substitutions errors
produced by illumina platform. They argued that fiona can
process the data on inexpensive hardware. The authors used
the hash table data structure and confusion matrix error model.
Their technique is sufficient to correct short reads without
using reference genome.

III. EXPERIMENTAL DESIGN

For the experiments, six tools are selected based on their
reviews. These tools belong to three methods of error
correction. Two different computing platforms are used to run
these tools. Four datasets of different sizes are used for the
experiments. Details are given below:

A. Tools

A brief description of the selected tools is presented in
Table I.

Coral is used for multiple alignments of short reads to
correct the error. It is the first approach used for the short-read
sequencing. Coral can easily understand and run on the data
produced by different NGS technologies. It can also read data
coming from single molecule sequencing technology. Coral
works by first indexing the reads. All the k-mers that are
valuable in total data are indexed two times into forward and
reverse directions. After this process the list of k-mers are
stored in hash table. Next step after indexing is multiple
alignments; every alignment depends on base that being
generated from neighborhood based read. This alignment
helps to correct the overall data and look over the overlapping
k-mer read [10]. After the comparison, the new reads are
produced to have minimum error rate. Coral is superior
approach as compared to SHREC, and Reptile.

Karect also belongs to the same category as Coral;
however, its working differs from it. Karect uses each read as
a reference and stores results in partial order graph (POG). It
is also used for multiple-alignment. It is able to correct
different type of errors and handles data generated by different
NGS technologies. It uses less peak memory during data
processing. Its performance is outstanding against low-
coverage region and high error rate of data. Karect depends on
POG that accumulates partial alignment results. Alignment
and normalization are performed based on correction
reference reads with respect to alignment of each read [11].
Musket uses the k-spectrum based method. It provides more
accurate results against the correction reads and has the ability

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

427 | P a g e

www.ijacsa.thesai.org

to execute the large read length of data and provides high
coverage level. It mainly comprises of three techniques; one-
sided aggressive correction, two-sided conservative method
and voting based refinement method. Its time and space
complexity are good for large dataset. When compared to
other programs like Reptile, SHREC and Musket, it is three
times faster than these tools [12].

TABLE I. ERROR CORRECTION TOOLS

Tools Methods Overview of Algorithm
Error Correction

Type

Karect

Multiple

sequence

alignment

Partial order graph is used

to accumulate partial

alignment results. It

considers each read r as

reference.

Substitution

Insertion

Deletion

Coral

Multiple

sequence

alignment

Correction with alignment

uses bases from the error in

the correction process.

Indexing k-mers that occur

in reading are connected

with a hash table.

Substitution

Insertion

Racer
K-mer

based

Racer is linked with k-mer

counting program. It also

uses 2-bit encoding

nucleotide and arbitrary

replacement of the

unknown position and K-

mer stored in the hash table.

Substitution

Musket
K-mer

based

It is multi-threaded

program, uses a master

slave model and

demonstrates superior

parallel scalability. One

sided aggressive and voting

based refinement.

Substitution

Jabba
Hybrid

based

Pseudo alignment approach

with seed and extend

method using maximal

exact matches. This method

corrects third generation

reads by mapping on de

Bruijn graph.

Substitution

Insertion

Deletion

Brownie
Hybrid

based

It depends on de Bruijn

graph and works with the

help of Jabba and Karect

tool. It also needs extra

libraries to run the

algorithm.

Substitution

RACER is another efficient tool that shows maximum
error correction accuracy, time and space complexity. RACER
ignores installation of extra software for processing the data,
whereas other tools have two or three extra software libraries
to process data. It uses the hash table for storing the k-mer
because it introduces 2-bit encoding of nucleotides for random
replacement of unknown position. It has the capability to
process different data formats such as fastq and fasta data.
Jabba uses hybrid method to correct the alignment and error
in third generation sequencing to map the reads on de Bruijn
graph which is made for second next generation sequencing.

Seudo alignment approach is mostly used by this tool. Jabba
processes the data in two phases: in the first phase smaller k-
mer size (K=13) are used, in the second phase results are
processed on de Bruijn graph that provide the extra accuracy
for given data. Jabba also uses larger k-mer size (k=75) for
long reads and thus repeating the entire process. It uses less
time as compared to Proovread and time consumption is more
like RACER.

Brownie also uses hybrid method and supports Jabba in its
methodology and techniques being adopted. It also creates the
de Bruijn graph for Jabba as a result the resultant file is stored
in Jabba directory and then different commands are applied to
find the result of error correction (Releases. biointec/brownie.
GitHub). This tool requires three extra libraries for processing
the data. It provides exceptional results on small dataset.

B. Error Correction Methods

Tools selected for this study implement different error
correction methods. These methods are presented in Table 2..

K-spectrum based method decomposes the reads and
makes the set of k-mer. Mostly NGS technology introduces
substitution error, so k-mer set has small distance to each
other if they belong to same genome location. k-spectrum is
then constructed using hashing and k-mer frequency is
counted to determine the error threshold. During this process,
threshold of each type of k-mer (solid k-mers and weak k-
mers) is determined. Then both k-mers are compared with the
help of bloom filter and results are stored in hash table [1].
These results are converted into the high multiplicity k-mers
and algorithm corrects the error in erroneous regions and
provides with corrected reads.

TABLE II. ERROR CORRECTION METHODS USED BY THE SELECTED

TOOLS

Method Label Method Type Tools

M1 K-spectrum based Musket, Racer

M2
Multi Sequencing Alignment

(MSA)

Coral, Karect

M3 Hybrid based Jabba, Brownie

Multiple sequence alignment (MSA) is used for
biological sequences such as protein, DNA and RNA. Two
approaches are used for MSA; iterative and progressive. MSA
starts working on one sequence and then aligns step by step.
Working parameters and steps differ for each type of MSA. In
the progressive approach, it starts from much similar sequence
and aligns the new sequence to each of the previous
sequences. After that it creates the distance matrix and
phylogenetic guided tree is created from the matrices. Using
the guided tree, it defines the next sequence to be added for
alignment and preserves the gap. These steps are repeated
until the total data is converted into appropriate alignment. In
the iterative approach, it starts the alignment in pair wise
grouping. Selection of these pairs depends on the sequence
relation on the guided tree. Progressive approach is
competitively efficient as compared to the iterative approach.

Hybrid Method is suitable for third generation
sequencing that produces large amount of data with high error

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

428 | P a g e

www.ijacsa.thesai.org

rate. This respective method uses minimum CPU time for data
processing [13].

C. Datasets

In this study, four different datasets are used that are
generated by the Illumina sequencing machine. A detailed
description of the datasets is presented in Table III. These
datasets are selected on the basis of varying attributes such as
read length, number of reads and size. Some of these datasets
were previously used in correction studies. The accession
numbers provide the complete details about datasets.

All the datasets are available on National Center for
Biotechnology www.ncbi.org.

D. Platforms for Running the Tools

Two different computing platforms are used to evaluate
the tools. A brief description of the used platforms is
presented in Table IV.

Machine 1 has 2.10GHz CPU (Intel i3) with 8 GB main
memory. Operating system is Ubuntu Linux version 14.04 and
compiler was g++. Machine 2 has different specification such
as 3.10GHz CPU (Intel i7) and 16 GB RAM. Both machines
used the same version of Ubuntu Linux and compiler.

TABLE III. DATASETS USED FOR THE EVALUATION OF SELECTED TOOLS

Dataset Species
Sequencing

Platform

Accession

Number

No of

Bases
Size

D1 S.aureus Illumina SRR022868 3100M 2.3Gb

D2 S.aureus Illumina SRR022865 821.2M 692.1Mb

D3
Escherichia

coli
Illumina SRR022918 677.2M 386Mb

D4 C.elegans Illumina SRR065887 316.5M 207.7Mb

TABLE IV. LATFORMS USED TO RUN THE TOOLS

Machine

Label
Processor

Installed

memory

System

type

Operating

system
Compiler

Machine1
Core(i3)

2.10GHz
8GB 64 bit

Ubuntu Linux

version 14.04
g++

Machine2
Core(i7)

3.10GHz
16GB 64 bit

Ubuntu Linux

version 14.04
g++

IV. RESULTS

On Machine 1, an experiment was conducted to evaluate
the error correction rate. The results are shown in Figure 1.
The tools comparison shows that Musket, Racer, Coral,
Karect, Jabba and Brownie are best performers on data
structures D2, D1, D4, D1, D4 and D3 respectively. If we take
into account the data sets, for D1 and D2 Racer, for D3 Racer
and Brownie produced best results and for D4 JABBA
produced best results. The result from overall perspective
depicts that, Racer has shown consistent performance in terms
of error correction rate on all data sets. However, on the
largest dataset JABBA outperforms other tools for error
correction rate. On average basis for error correction rate,
Coral and Musket show middle level performance,
respectively.

Fig. 1. Error correction rate on Machine 1.

Fig. 2. Error correction rate on Machine 2.

7
4

.4

9
2

.3

6
9

.7
2

8
0

.1
3

7
2

.3
8

6
6

.3
1

7
9

.9
 8
4

.3
6

6
9

.0
2

7
9

.1
4

7
8

.1
8

6
5

.7
5

6
4

.9

8
9

.1
3

7
7

.1
8

7
8

.1
9

7
3

.8
4

9
0

.5
4

6
2

9
0

.1
8

7
8

.1
1

7
9

.1
4

9
4

.0
2

8
3

.2
2

7
0

.3

8
8

.9
9

2
5

7
3

.5
0

7
5

7
9

.1
5

7
9

.6
0

5

7
6

.4
5

5

Musket Racer Coral Karect Jabba Brownie

D1 D2 D3 D4 Averagr Accuracy

7
5

.6

9
4

.5

7
2

.3
 8

1
.1

3

7
5

.3

6
7

.1
7

8
1

.9

8
6

.2

7
1

.2

8
0

.5
2

8
3

.1
8

6
6

6
6

9
0

7
8

.3

7
9

.7
8

7
5

.1
2

9
1

.4
2

6
5

.0
3

9
1

.8

7
9

.1
2

8
0

.4
5

9
6

.2

8
4

.2

7
2

.1
3

2
5

9
0

.6
2

5

7
5

.2
3

8
0

.4
7

8
2

.4
5

7
7

.1
9

7
5

Musket Racer Coral Karect Jabba Brownie

D1 D2 D3 D4 Average Accuracy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

429 | P a g e

www.ijacsa.thesai.org

On Machine 2, identical experiment was conducted to
evaluate the error correction rate. The results are shown in Fig.
2. Comparison of various tools shows that Musket, Racer,
Coral, Karect, Jabba and Brownie performed best on D2, D1,
D4, D1, D4 and D3 data sets respectively. Analysis of data
structures shows that for D1 and D2 RACER produced best
results, for D3 Racer and Brownie produced best results and
for D4 JABBA produced best results as compared to other
tools. If we look at overall results, Racer has shown consistent
performance in terms of error correction rate on all data sets.
However, on the largest dataset JABBA is the winner for error
correction rate. If we consider the average error correction
rate, Coral and Musket are poor performers respectively. So,
improvement in processing speed and memory does not affect
the error correction rate.

On Machine 1, another experiment was conducted to
evaluate the execution time required to process the data for
error correction. The results are shown in Fig. 3. The
comparative analysis of tools shows that, Musket, Racer,
Coral, Karect, Jabba and Brownie best performed on D4, D1,
D3, D1, D3, and D3 respectively. Consideration of data
structures shows us that for D1 and D2 Racer produced best
results, for D3 and D4 Brownie produced best results. From
overall perspective, Racer has shown consistent performance
in terms of time on all data sets. However, on the largest
dataset Racer is at its peak of performance for execution time.
On low to average basis Karect and Musket are poor
performers respectively. So, enhancement in processing speed
and memory reduces the execution time required for error
correction. The difference is evident in the case of D4 which is
the largest data set used in this study.

Fig. 3. Execution time on Machine 1.

Fig. 4. Execution time on Machine 2.

Fig. 5. Execution time on Machine 1 for three methods.

On Machine 2, same experiment was conducted to
evaluate the time required to process the data for error
correction. The results are shown in Fig. 4.. Figure illustrates
that, Musket, Racer, Coral, Karect, Jabba and Brownie are
best performers on D4, D1, D3, D4, D3 and D3, respectively.
Looking on structures of data sets, it is obvious from figure
that for D1 and D2 Racer produced best results, for D3
Brownie produced best results and for D4 Racer produced best
results with Brownie and Musket at second position. Overall
results show that Racer has shown consistent performance in

2
5

8

7
8

2
2

2

4
9

0

1
1

8

1
7

4

2
8

2

7
9

1
7

8

5
3

0

1
3

4
 1

7
0

1
5

6

1
1

7

1
7

2

5
5

4

7
8

7
3

1
3

8

1
6

1

1
7

8

6
1

2

1
0

8

7
3

2
0

8
.5

1
0

8
.7

5

1
8

7
.5

5
4

6
.5

1
0

9
.5

1
2

2
.5

Musket Racer Coral Karect Jabba Browine

 D1 D2 D3 D4 Average Time

1
0

2

1
6

1
0

2

3
1

2

6
2

9
2

8
2

1
9

9
0

3
7

4

1
3

3

7
3

5
8

4
0

6
1

2
8

4

4
6

3
8

 5
4

4
2

6
8

2
7

0

6
4

5
4

7
4

2
9

.2
5

8
0

.2
5

3
1

0

7
6

.2
5

6
4

.2
5

Musket Racer Coral Karect Jabba Browine

D1 D2 D3 D4 Average time

1
5

9

3
6

7

1
1

6

M1 M2 M3

M1 M2 M3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

430 | P a g e

www.ijacsa.thesai.org

terms of execution time on all data sets. However, on the
largest dataset Racer acts as best performer for execution time.
On low to average basis, Coral and Karect are poor
performers, respectively. On Machine 1, Browine used the
minimum execution time, whereas on Machine 2, Racer used
the minimum execution time for D4.

On Machine 1, average execution time was calculated for
each method. The results are shown in Fig. 5.. If we consider
the methods, M3 (Hybrid) based tools produced best results
for all data sets as compared to M1 (K-spectrum) based tools.
Whereas, M2 (Multi Sequencing Alignment) based tools
performed poorly.

On Machine 2, average execution time was also calculated
for each method. The results are shown in Fig. 6. If we take
into account various methods, M1 (K-spectrum) based tools
produced best results for all data sets, as compared to M3
(Hybrid) based tools. Whereas, M2 (Multi Sequencing
Alignment) based tools performed poorly. So, improvement in
processing speed and memory affects the execution time
required by different methods. K-Spectrum based tools
perform better on high performance machines, whereas
Hybrid based tools can produce better results even on lower
specification machines.

Fig. 6. Execution time on Machine 2 for three methods.

Fig. 7. Error correction rate on Machine 1 for three methods.

On Machine 1, average error correction rate was calculated
for each method. The results are shown in Fig. 7.. If we
consider the methods, M1 (K-spectrum) based tools produced
best results for all data sets, with M3 (Hybrid) based tools at
second position. Whereas, M2 (Multi Sequencing. Alignment)
based tools performed poor.

On Machine 2, average error correction rate was also
calculated for each method. The results are shown in Fig. 8. If
we consider the methods, M1 (K-spectrum) based tools
produced best results for all data sets, with M3 (Hybrid) based
tools at second position. Whereas, M2 (Multi Sequencing
Alignment) based tools performed poorly. So, improvement in
processing speed and memory does not affect the error
correction rate of different methods.

Fig. 8. Error correction rate on Machine 2 for three methods.

On the basis of the above findings, answers to the
questions formulated in the Introduction section are presented
below:

Do these tools cope with data scalability?

No, all tools cannot handle data scalability because the
performance of these tools degrades with increase in data size.
However, Racer and JABBA perform equally well on small
and large datasets.

5
1

.6
2

1
9

5
.1

2

7
0

.2
5

M1 M2 M3

M1 M2 M3

7
9

.5
9

7
6

.3
2

7
8

.0
2

M1 M2 M3

M1 M2 M3

8
1

.3
7

7
7

.8
5

7
9

.8
2

M1 M2 M3

M1 M2 M3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

431 | P a g e

www.ijacsa.thesai.org

 Does the computing platform affect the performance of
tools?

Yes, the computing platform affects the execution time
required to process data. However, it does not affect the error
correction rate.

Which method of error correction is better?

K-spectrum based method produced best results with
Hybrid based method at second position.

Which tool outperforms other tools?

Racer has outperformed other tools both in execution time
and error correction rate. JABBA is the second-best
performer.

Which tool is better with in the same category?

Racer is better than Musket in k-spectrum based category.
Karect is better than Coral in terms of error correction rate,
whereas Coral is better than Karect in terms of execution time
in the Multiple Sequence Alignment based category. Jabba is
better than Brownie in the hybrid based category.

V. CONCLUSIONS AND FUTURE WORK

Among the three methods studied, k-spectrum based
method generated good results as compared to other methods.
Racer can perform well in error correction rate and time
execution on small as well as large data sets. In multi
sequence alignment based tools, Karect performed better in
error correction rate whereas Coral performed better in
execution time for all data sets. Jabba performs well in error
correction rate and time execution; however, brownie
provided good results in terms of execution time on
Machine 2. These tools depend on hybrid based method.
Computing platform has effect on execution time but has not
significant effect on error correction rate. In future, we want to
evaluate tools that can process large datasets in shorter time.

REFERENCES

[1] Isaac Akogwu, Nan Wang, Chaoyang Zhang, and Ping Gong, "A
comparative study of k-spectrum-based error correction methods for
next-generation sequencing data analysis," Human Genomics, pp. 49-59,
2016.

[2] Xiao Yang, Sriram , Chockalingam , and Srinivas Aluru, "A survey of
error-correction methods for next-generation sequencing," BRIEFINGS
IN BIOINFORMATICS, vol. 14, pp. 56-66, 2012.

[3] Leena Salmela and Jan Schröder, "Correcting errors in short reads by
multiple alignments," bioinformatics, vol. 27, pp. 1455-1461, 2011.

[4] Margaret A Taub, Hector Corrada Bravo, and Rafael A Irizarry,
"Overcoming bias and systematic errors in next," genome medicine, pp.
1-5, 2010.

[5] Li Song, Liliana Florea, and Ben Langmead, "Lighter: fast and memory-
efficient sequencing error correction without counting," Genome
Biology, pp. 1-13, 2014.

[6] Xiao Yang, Karin S Dorman, and Srinivas Aluru, "Reptile:
representative tiling for short read error correction," bioinformatics, vol.
26, pp. 2526-2533, 2010.

[7] Yun Heo, Xiao Long Wu, Deming Chen, Jian Ma, and Wen Mei Hwu,
"BLESS: Bloom filter-based error correction solution for high-
throughput sequencing reads," bioinformatics, vol. 30, pp. 1354-1362,
2014.

[8] Jan Schröder, Heiko Schröde, Simon J Puglisi, and Ranjan Sinha,
"SHREC: a short-read error correction method," bioinformatics, vol. 25,
pp. 217-2163, 2009.

[9] Leena Salmela and Eric Rivals, "LoRDEC: accurate and efficient long
read error correction," Bioinformatics, pp. 3506-3514, 2014.

[10] Leena Salmela and Jan Schröder, "Correcting errors in short reads by
multiple alignments," bioinformatics, vol. 27, pp. 1455-1461, 2011.

[11] Amin Allam, Panos Kalnis, and Victor Solovyev, "accurate correction of
substitution,insertion and deletion errors for next-generation sequencing
data," bioinformatics, pp. 3421-3428, 2015.

[12] Yongchao Liu, Jan Schro der, and Bertil Schmidt, "Musket: a multistage
k-mer spectrum-based error corrector for Illumina sequence data,"
bioinformatics, vol. 29, pp. 308-315, 2013.

[13] Giles Miclotte et al., "Jabba: hybrid error correction for long sequencing
reads," Algorithms Mol Biol, pp. 1-12, 2016.

