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Abstract—Next Generation Sequencing (NGS) technologies 

produce massive amount of low cost data that is very much 

useful in genomic study and research. However, data produced 

by NGS is affected by different errors such as substitutions, 

deletions or insertion. It is essential to differentiate between true 

biological variants and alterations occurred due to errors for 

accurate downstream analysis. Many types of methods and tools 

have been developed for NGS error correction. Some of these 

methods only correct substitutions errors whereas others correct 

multi types of data errors. In this article, a comprehensive 

evaluation of three types of methods (k-spectrum based, Multi- 

sequencing alignment and Hybrid based) is presented which are 

implemented and adopted by different tools. Experiments have 

been conducted to compare the performance based on runtime 

and error correction rate. Two different computing platforms 

have been used for the experiments to evaluate effectiveness of 

runtime and error correction rate. The mission and aim of this 

comparative evaluation is to provide recommendations for 

selection of suitable tools to cope with the specific needs of users 

and practitioners. It has been noticed that k-mer spectrum based 

methodology generated superior results as compared to other 

methods. Amongst all the tools being utilized, Racer has shown 

eminent performance in terms of error correction rate and 

execution time for both small as well as large data sets. In 

multisequence alignment based tools, Karect depicts excellent 

error correction rate whereas Coral shows better execution time 

for all data sets. In hybrid based tools, Jabba shows better error 

correction rate and execution time as compared to brownie. 

Computing platforms mostly affect execution time but have no 

general effect on error correction rate. 

Keywords—Next generation sequencing; bioinformatics; 

errors; error correction; execution time; k-spectrum; suffix tree 

based; hybrid based 

I. INTRODUCTION 

Gigantic amount of data is originated with the help of next 
generation sequencing technologies at lowest cost and high 
throughput. As compared to old generation of sequencing data 
(the first-generation technology) for example Sanger NGS 
data faces high challenges of error rate. NGS plays a leading 

role in the discovery of many applications in bioinformatics 
research and changed the way of genomic research [1]. NGS 
demands high-power CPU and various algorithms that can 
work in parallel mode for bioinformatics studies. It also needs 
the spacious memory and execution time for total data that 
may cause issues for data management. NGS takes advantage 
of big data computing infrastructure that divides the memory 
in clusters and provides the batch queue system which helps to 
produce large amount of sequencing reads [2]. Errors in 
sequencing data mainly occur due to the replacement of 
correct bases with incorrect bases and indels. NGS 
technologies produce different tools such as Illumina and 
Solid to induce the substitution error, whereas the Roche 454 
and Ion torrent create the insertion and deletion error. Most of 
the tools and methods focus on removing the substitution 
errors [3]. There are three types of biases that cause errors in 
sequencing data: systematic bias, coverage bias and batch 
effect bias. The rate of error in data is also different for 
various NGS technologies. It is key step to remove the data 
error before any analysis can be made. These errors also 
disturb the accuracy of algorithm therefore it is beneficial to 
rectify data before analysis to conclude better results in 
downstream analysis [4]. 

Correction of sequencing errors is a critical module for 
bioinformatics discovery. The basic concept behind correcting 
the sequencing read errors is to correct the erroneous bases. 
Many error correction tools subjective of different data 
structures related to various methods have been developed. 
The error correction methods are classified into four 
categories: 

1) K-spectrum based method such as Quake (2010), 

Lighter (2014) [5], Reptile (2010) [6], BLESS (2014) [7] 

hammer (2011), Musket (2013), HECTOR (2014) and 

RACER (2013). These tools correct the errors on k-mer 

incidence. 

2) Multiple sequence alignment based method such as 

Karect (2015), Coral (2011) and ECHO (2011). 

3) Suffix tree based method such as SHREC (2009) [8]. 
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4) Hybrid based method such as LoRDEC (2014) [9], 

Jabba (2016) and Brownie (2015). 

Different error correction tools and algorithms have 
evolved with the passage of time possessing better accuracy 
and minimum execution time. Evaluation of specific tools is a 
study matter being provided by various educational sources. In 
this comparative study, three methods and six tools are 
selected, each pair of tools belonging to each method.  Musket 
and RACER are selected from the K-spectrum based category, 
Coral and Karect are selected from the multiple sequence 
alignment categories, and Jabba and Brownie are selected 
from the Hybrid based category. These tools run on two 
different computing platforms. This piece of study aims to 
answer the following questions: 

 Do these tools cope with data scalability? 

 Does the computing platform affect the performance of 
tools? 

 Which method of error correction is better? 

 Which tool outperforms other tools? 

 Which tool is better within the same category? 

 Which tool has maximum error correction rate? 

 Which tool requires minimum execution time on same 
dataset? 

In addition, performance of different tools will be 
evaluated for different data sets. The rest of the paper is 
organized as follows: Section 2 describes the related work and 
Section 3 presents the experimental details. Results are 
discussed in Section 4 and paper is concluded in Section 5. 

II. RELATED WORK 

Error correction depends on read coverage and error 
correction rate of different tools. These tools are based on 
different approaches and data structures. Three main 
approaches are used to make error correction tools more 
efficient such as k-spectrum based, suffix array based and 
hybrid based approach. Li et al. [5] has developed tool that 
depends on k-mer spectrum based. The authors used 31-55 k-
mer length as well as bloom filter and hash table data 
structure. The authors focused on the removal of substitution 
errors. They also checked the trusted regions and extracted the 
optimal solution by using extension mechanism. In this task of 
material study, the experimental results are targeted on 
achieving maximum error correction rate. Heo et al. [7]  used 
the hash table data structure. They used k-spectrum approach 
for error correction. They determined the solid minimum edit 
path in between solid k-mer. Using the reverse bloom filter, 
they changed false positive rate. During k-mer counting 
Bloocoo used 10 bits for storing solid k-mers. They also 
described the need for 4 GB memory requirement for human 
genome correction.  Song et al. [5] developed memory 
efficient tool based on k-mer spectrum. The authors used 
bloom filter and 23 k-mer length, Sequencing reads were 
processed in three steps and two bloom filters were used for 
error correction. In this work, k-mer subsample is obtained 
using first bloom filter and then test is applied on each read on 

each position to find solid k-mer. These solid k-mers are 
stored and second bloom filter is applied. They used greedy 
approach for error correction which is also used in bless. 
Lighter corrected substitution errors. They used multiple 
sequence alignment method and suffix array based data 
structure. In his paper, two-sided error correction technique 
was used to correct substitutions errors. Salmela et al. [9] 
presented hybrid based error correction using de Bruijn graph. 
They corrected most weak left and right regions by choosing 
traversal paths in graph. The authors argued that LoRDEC 
consumes less memory as compared to other tools and error 
correction rate is 99%. In fiona, used partial suffix array with 
hierarchical statically method to correct errors in sequencing 
reads. They used each read r as reference and corrected first 
overlap reads. It is also able to corrected substitutions errors 
produced by illumina platform. They argued that fiona can 
process the data on inexpensive hardware. The authors used 
the hash table data structure and confusion matrix error model. 
Their technique is sufficient to correct short reads without 
using reference genome. 

III. EXPERIMENTAL DESIGN 

For the experiments, six tools are selected based on their 
reviews. These tools belong to three methods of error 
correction. Two different computing platforms are used to run 
these tools. Four datasets of different sizes are used for the 
experiments. Details are given below: 

A. Tools 

A brief description of the selected tools is presented in 
Table I. 

Coral is used for multiple alignments of short reads to 
correct the error. It is the first approach used for the short-read 
sequencing. Coral can easily understand and run on the data 
produced by different NGS technologies. It can also read data 
coming from single molecule sequencing technology. Coral 
works by first indexing the reads. All the k-mers that are 
valuable in total data are indexed two times into forward and 
reverse directions. After this process the list of k-mers are 
stored in hash table. Next step after indexing is multiple 
alignments; every alignment depends on base that being 
generated from neighborhood based read. This alignment 
helps to correct the overall data and look over the overlapping 
k-mer read [10]. After the comparison, the new reads are 
produced to have minimum error rate. Coral is superior 
approach as compared to SHREC, and Reptile. 

Karect also belongs to the same category as Coral; 
however, its working differs from it. Karect uses each read as 
a reference and stores results in partial order graph (POG). It 
is also used for multiple-alignment. It is able to correct 
different type of errors and handles data generated by different 
NGS technologies. It uses less peak memory during data 
processing. Its performance is outstanding against low-
coverage region and high error rate of data. Karect depends on 
POG that accumulates partial alignment results. Alignment 
and normalization are performed based on correction 
reference reads with respect to alignment of each read [11]. 
Musket uses the k-spectrum based method. It provides more 
accurate results against the correction reads and has the ability 
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to execute the large read length of data and provides high 
coverage level. It mainly comprises of three techniques; one-
sided aggressive correction, two-sided conservative method 
and voting based refinement method. Its time and space 
complexity are good for large dataset. When compared to 
other programs like Reptile, SHREC and Musket, it is three 
times faster than these tools [12]. 

TABLE I. ERROR CORRECTION TOOLS 

Tools Methods Overview of Algorithm 
Error Correction 

Type 

Karect 

Multiple 

sequence 

alignment 

Partial order graph is used 

to accumulate partial 

alignment results. It 

considers each read r as 

reference. 

Substitution 

Insertion 

Deletion 

Coral 

Multiple 

sequence 

alignment 

Correction with alignment 

uses bases from the error in 

the correction process. 

Indexing k-mers that occur 

in reading are connected 

with a hash table. 

Substitution 

Insertion 

Racer 
K-mer 

based 

Racer is linked with k-mer 

counting program. It also 

uses 2-bit encoding 

nucleotide and arbitrary 

replacement of the 

unknown position and K-

mer stored in the hash table. 

Substitution 

 

Musket 
K-mer 

based 

It is multi-threaded 

program, uses a master 

slave model and 

demonstrates superior 

parallel scalability. One 

sided aggressive and voting 

based refinement. 

Substitution 

 

Jabba 
Hybrid 

based 

Pseudo alignment approach 

with seed and extend 

method using maximal 

exact matches. This method 

corrects third generation 

reads by mapping on de 

Bruijn graph. 

Substitution 

Insertion 

Deletion 

Brownie 
Hybrid 

based 

It depends on de Bruijn 

graph and works with the 

help of Jabba and Karect 

tool. It also needs extra 

libraries to run the 

algorithm. 

Substitution 

 

RACER is another efficient tool that shows maximum 
error correction accuracy, time and space complexity. RACER 
ignores installation of extra software for processing the data, 
whereas other tools have two or three extra software libraries 
to process data. It uses the hash table for storing the k-mer 
because it introduces 2-bit encoding of nucleotides for random 
replacement of unknown position. It has the capability to 
process different data formats such as fastq and fasta data. 
Jabba uses hybrid method to correct the alignment and error 
in third generation sequencing to map the reads on de Bruijn 
graph which is made for second next generation sequencing. 

Seudo alignment approach is mostly used by this tool. Jabba 
processes the data in two phases: in the first phase smaller k-
mer size (K=13) are used, in the second phase results are 
processed on de Bruijn graph that provide the extra accuracy 
for given data. Jabba also uses larger k-mer size (k=75) for 
long reads and thus repeating the entire process. It uses less 
time as compared to Proovread and time consumption is more 
like RACER. 

Brownie also uses hybrid method and supports Jabba in its 
methodology and techniques being adopted. It also creates the 
de Bruijn graph for Jabba as a result the resultant file is stored 
in Jabba directory and then different commands are applied to 
find the result of error correction (Releases. biointec/brownie. 
GitHub). This tool requires three extra libraries for processing 
the data. It provides exceptional results on small dataset. 

B. Error Correction Methods 

Tools selected for this study implement different error 
correction methods. These methods are presented in Table 2.. 

K-spectrum based method decomposes the reads and 
makes the set of k-mer. Mostly NGS technology introduces 
substitution error, so k-mer set has small distance to each 
other if they belong to same genome location. k-spectrum is 
then constructed using hashing and k-mer frequency is 
counted to determine the error threshold. During this process, 
threshold of each type of k-mer (solid k-mers and weak k-
mers) is determined. Then both k-mers are compared with the 
help of bloom filter and results are stored in hash table [1]. 
These results are converted into the high multiplicity k-mers 
and algorithm corrects the error in erroneous regions and 
provides with corrected reads. 

TABLE II. ERROR CORRECTION METHODS USED BY THE SELECTED 

TOOLS 

Method Label Method Type Tools 

M1 K-spectrum based  Musket, Racer 

M2 
Multi Sequencing Alignment 

(MSA) 

Coral, Karect 

 

M3 Hybrid based Jabba, Brownie 

Multiple sequence alignment (MSA) is used for 
biological sequences such as protein, DNA and RNA. Two 
approaches are used for MSA; iterative and progressive. MSA 
starts working on one sequence and then aligns step by step. 
Working parameters and steps differ for each type of MSA. In 
the progressive approach, it starts from much similar sequence 
and aligns the new sequence to each of the previous 
sequences. After that it creates the distance matrix and 
phylogenetic guided tree is created from the matrices. Using 
the guided tree, it defines the next sequence to be added for 
alignment and preserves the gap. These steps are repeated 
until the total data is converted into appropriate alignment. In 
the iterative approach, it starts the alignment in pair wise 
grouping. Selection of these pairs depends on the sequence 
relation on the guided tree. Progressive approach is 
competitively efficient as compared to the iterative approach. 

Hybrid Method is suitable for third generation 
sequencing that produces large amount of data with high error 
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rate. This respective method uses minimum CPU time for data 
processing [13]. 

C. Datasets 

In this study, four different datasets are used that are 
generated by the Illumina sequencing machine. A detailed 
description of the datasets is presented in Table III. These 
datasets are selected on the basis of varying attributes such as 
read length, number of reads and size. Some of these datasets 
were previously used in correction studies. The accession 
numbers provide the complete details about datasets. 

All the datasets are available on National Center for 
Biotechnology www.ncbi.org. 

D. Platforms for Running the Tools 

Two different computing platforms are used to evaluate 
the tools. A brief description of the used platforms is 
presented in Table IV. 

Machine 1 has 2.10GHz CPU (Intel i3) with 8 GB main 
memory. Operating system is Ubuntu Linux version 14.04 and 
compiler was g++. Machine 2 has different specification such 
as 3.10GHz CPU (Intel i7) and 16 GB RAM. Both machines 
used the same version of Ubuntu Linux and compiler. 

TABLE III. DATASETS USED FOR THE EVALUATION OF SELECTED TOOLS 

Dataset Species 
Sequencing 

Platform 

Accession 

Number 

No of 

Bases 
Size 

D1 S.aureus Illumina SRR022868 3100M 2.3Gb 

D2 S.aureus Illumina SRR022865 821.2M 692.1Mb 

D3 
Escherichia 

coli 
Illumina SRR022918 677.2M 386Mb 

D4 C.elegans Illumina SRR065887 316.5M 207.7Mb 

TABLE IV. LATFORMS USED TO RUN THE TOOLS 

Machine 

Label 
Processor 

Installed 

memory 

System 

type 

Operating 

system 
Compiler 

Machine1 
Core(i3) 

2.10GHz 
8GB 64 bit 

Ubuntu Linux 

version 14.04 
g++ 

Machine2 
Core(i7) 

3.10GHz 
16GB 64 bit 

Ubuntu Linux 

version 14.04 
g++ 

IV. RESULTS 

On Machine 1, an experiment was conducted to evaluate 
the error correction rate. The results are shown in Figure 1. 
The tools comparison shows that Musket, Racer, Coral, 
Karect, Jabba and Brownie are best performers on data 
structures D2, D1, D4, D1, D4 and D3 respectively. If we take 
into account the data sets, for D1 and D2 Racer, for D3 Racer 
and Brownie produced best results and for D4 JABBA 
produced best results. The result from overall perspective 
depicts that, Racer has shown consistent performance in terms 
of error correction rate on all data sets. However, on the 
largest dataset JABBA outperforms other tools for error 
correction rate. On average basis for error correction rate, 
Coral and Musket show middle level performance, 
respectively. 

 
Fig. 1. Error correction rate on Machine 1. 

 
Fig. 2. Error correction rate on Machine 2. 
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On Machine 2, identical experiment was conducted to 
evaluate the error correction rate. The results are shown in Fig. 
2. Comparison of various tools shows that Musket, Racer, 
Coral, Karect, Jabba and Brownie performed best on D2, D1, 
D4, D1, D4 and D3 data sets respectively.  Analysis of data 
structures shows that for D1 and D2 RACER produced best 
results, for D3 Racer and Brownie produced best results and 
for D4 JABBA produced best results as compared to other 
tools. If we look at overall results, Racer has shown consistent 
performance in terms of error correction rate on all data sets. 
However, on the largest dataset JABBA is the winner for error 
correction rate. If we consider the average error correction 
rate, Coral and Musket are poor performers respectively. So, 
improvement in processing speed and memory does not affect 
the error correction rate. 

On Machine 1, another experiment was conducted to 
evaluate the execution time required to process the data for 
error correction. The results are shown in Fig. 3. The 
comparative analysis of tools shows that, Musket, Racer, 
Coral, Karect, Jabba and Brownie best performed on D4, D1, 
D3, D1, D3, and D3 respectively. Consideration of data 
structures shows us that for D1 and D2 Racer produced best 
results, for D3 and D4 Brownie produced best results. From 
overall perspective, Racer has shown consistent performance 
in terms of time on all data sets. However, on the largest 
dataset Racer is at its peak of performance for execution time. 
On low to average basis Karect and Musket are poor 
performers respectively. So, enhancement in processing speed 
and memory reduces the execution time required for error 
correction. The difference is evident in the case of D4 which is 
the largest data set used in this study. 

 
Fig. 3. Execution time on Machine 1. 

 
Fig. 4. Execution time on Machine 2. 

 

Fig. 5. Execution time on Machine 1 for three methods. 
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terms of execution time on all data sets. However, on the 
largest dataset Racer acts as best performer for execution time. 
On low to average basis, Coral and Karect are poor 
performers, respectively. On Machine 1, Browine used the 
minimum execution time, whereas on Machine 2, Racer used 
the minimum execution time for D4. 

On Machine 1, average execution time was calculated for 
each method. The results are shown in Fig. 5.. If we consider 
the methods, M3 (Hybrid) based tools produced best results 
for all data sets as compared to M1 (K-spectrum) based tools. 
Whereas, M2 (Multi Sequencing Alignment) based tools 
performed poorly. 

On Machine 2, average execution time was also calculated 
for each method. The results are shown in Fig. 6. If we take 
into account various methods, M1 (K-spectrum) based tools 
produced best results for all data sets, as compared to M3 
(Hybrid) based tools. Whereas, M2 (Multi Sequencing 
Alignment) based tools performed poorly. So, improvement in 
processing speed and memory affects the execution time 
required by different methods. K-Spectrum based tools 
perform better on high performance machines, whereas 
Hybrid based tools can produce better results even on lower 
specification machines. 

 
Fig. 6. Execution time on Machine 2 for three methods. 

 
Fig. 7. Error correction rate on Machine 1 for three methods. 
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Fig. 8. Error correction rate on Machine 2 for three methods. 
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 Does the computing platform affect the performance of 
tools? 

Yes, the computing platform affects the execution time 
required to process data. However, it does not affect the error 
correction rate. 

Which method of error correction is better? 

K-spectrum based method produced best results with 
Hybrid based method at second position. 

Which tool outperforms other tools? 

Racer has outperformed other tools both in execution time 
and error correction rate. JABBA is the second-best 
performer. 

Which tool is better with in the same category? 

Racer is better than Musket in k-spectrum based category. 
Karect is better than Coral in terms of error correction rate, 
whereas Coral is better than Karect in terms of execution time 
in the Multiple Sequence Alignment based category. Jabba is 
better than Brownie in the hybrid based category. 

V. CONCLUSIONS AND FUTURE WORK 

Among the three methods studied, k-spectrum based 
method generated good results as compared to other methods. 
Racer can perform well in error correction rate and time 
execution on small as well as large data sets. In multi 
sequence alignment based tools, Karect performed better in 
error correction rate whereas Coral performed better in 
execution time for all data sets. Jabba performs well in error 
correction rate and time execution; however, brownie 
provided good results in terms of execution time on 
Machine 2. These tools depend on hybrid based method. 
Computing platform has effect on execution time but has not 
significant effect on error correction rate. In future, we want to 
evaluate tools that can process large datasets in shorter time. 
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