
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

32 | P a g e

www.ijacsa.thesai.org

Predicting Fork Visibility Performance on

Programming Language Interoperability in Open

Source Projects

Bee Bee Chua

University of Technology, Sydney

Australia

Abstract—Despite a variety of programming languages

adopted in open source (OS) projects, fork variation on some

languages has been minimal and slow to be adopted, and there is

little research as to why this is so. We therefore employed a K-

nearest neighbours (KNN) technique to predict the fork visibility

performance of a productive language from a pool of

programming languages adopted in projects. In total, 38

showcase OS projects from 2012 to 2016 were downloaded from

the GitHub website and categorized into different levels of

programming language adoption clusters. Among 33 languages,

JavaScript is one of the popular languages that adopted by

community. It has been predicted the language chosen when fork

visibility is high can increase project longevity as a highly visible

language is likely to occur more often in projects with a

significant number of interoperable programming languages and

high language fork count. Conversely, a low fork language

reduces longevity in projects with an insignificant number of

interoperable programming languages and low fork count. Our

results reveal the survival of a productive language is in response

to high language visibility (large fork number) and high

interoperability of multiple programming languages.

Keywords—Open Source Programming Languages; K-nearest

neighbors (KNN) Algorithm; interoperability; survivability

I. INTRODUCTION

Programming languages constantly evolve to meet the
demand of the software development industry. However
variation of programming languages adopted in open source
(OS) projects must comply with other programming languages
so that developers can fork (copy) language files into their
own local development environment. To ensure
interoperability, programming languages must be expressive,
generic and compliant, otherwise developers will not be
interested in downloading or forking new OS libraries, as the
frameworks are not compatible with their environment. There
are different ways to define programming language success,
with programing language interoperability performance being
a major contributor to success. Despite this, unfortunately,
most languages are not interoperable.

To understand when and why developers would fork a
programming language file, language needs and motivation
are two important factors. Some developers may fork a
language because it is a new language that compiles with the
original language, while other developers may fork a language

because it is a subset of the original language, with features
added, removed or amended.

In spite of these motivating reasons to inspire developers
to fork languages, many programming languages are
experiencing a „fork crisis‟, that is, they have low or minimal
fork counts. This may be due to social factors [1]-[3] and
environmental reasons [4]-[6], or the languages may lack
expressiveness, be too generic or have compliance with the
original or other languages. Interestingly, many OS project
owners tried to increase programming language
interoperability by adopting different programming languages;
however this does not seem to increase forking.

Our motivation for this paper is firstly to make an
intelligent recommendation system for developers and project
owners to adopt programming languages that are compliant
with other language interoperability. Secondly, to understand
how a productive language fork may be affected by low
programming language interoperability and low compliance
with many programming languages‟ interoperability.

This paper is organised into the following sections:
Section 2, literature around language forking prediction, the
problem and research questions; Section 3 research
methodology on KNN algorithm, data quantisation methods
and a case study of OS projects; Section 4 results, Section 5
outcomes of the four scenarios tested; and lastly, justification
and conclusions.

II. PROGRAMMING LANGUAGE FORKING

A. Language Forking Prediction Problem and Research

Questions

We investigated whether it was possible to predict with
reasonable accuracy the fork visibility performance of any
programming language with respect to interoperability
compliance. In addition, we sought to determine the
probability of new projects adopting a productive language
where fork visibility performance is impacted by low versus
high programming language interoperability.

Two research questions were developed to address these
aims:

1) How can we predict, with reasonable accuracy, a

programming language fork visibility performance in projects

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

33 | P a g e

www.ijacsa.thesai.org

that is in compliance to other languages interoperability?

2) For a new project, how can we predict productive

programming language fork visibility performance based on

the level of programming language interoperability?
In this paper, we define a „more‟ interoperable

programming language project as a language that has more
healthy forks in the majority of programming languages, and a
„less‟ interoperable programming language project as one with
fewer healthy forks in each language.

III. METHODS AND DATASET PREPARATION

A. K Nearest Neighbour (KNN) Algorithm

The KNN algorithm is based on representation of statistics
and distributions in training data. While the method was first
discovered in 1961 by a group of American researchers who
showed it works effectively on actual instances of training
data [7], it remains unpublished. It has since been applied to
machine learning and data mining, and more recently has
successfully been applied in education research to predict
student learning success and failure rates [8]-[12]. The KNN
method is effective at predicting different types of data, is
simple and versatile, and handles noisy or incomplete data,
when in many situations a classification is required [13]-[17].

The baseline KNN predicts the fork performance of a
given project by first calculating the actual project (project
being predicted) similarity to all instances in the training set
and finds the K most similar ones. The similarity is calculated
with a simple Euclidean distance between the features of the
test subject and corresponding features of each instance in the
training set [12].

In this study, KNN was used to predict fork visibility
performance of languages that were adopted as interoperable
language in projects to differing degrees („more‟ or „less‟).
Firstly the algorithm applied Euclidean distance formula (see
Fig. 1) to calculate the distance of a productive language fork
for less adopted interoperable language projects. X refers to
the number of language repositories created in the project and
Y refers to the number of programming languages adopted in
the project. X1 is the actual number of language repositories
from 38 project showcases and X2 is the predicted number of
new project language repositories. Similarly, Y1 and Y2 are
the actual and predicted numbers of programming language
from the 38 project showcases and the new project.

We classified the outcome of that algorithm into two
categories: 1) JavaScript in a project with low fork visibility;
and 2) JavaScript in a project with high fork visibility. Next,
we used K=3 to predict the language project on JavaScript
fork visibility outcomes.

 √

Fig. 1. KNN equation.

B. Case Study: Showcase Projects

Of the 40 OS show case projects available on GitHub on
from January 2012 through August 2016 (www.github.com),
38 projects have complete information such as the type of
programming languages and the fork count. We rejected 2
projects because of some programming languages were not

stated (unknown). As our goal was to predict the language
fork visibility performance, defined as success or survival of
different programming languages in a project, the 38 projects
were classified into types of projects and by different levels of
programming languages (Fig. 2).

Fig. 2. Programming language project population.

The types of projects ranged from desktop application,
enterprise application, systems administration, systems
programming and website development.

Next, we categorized productive programming languages
by types of programming language tier level according to the
TIOBE programming community index, which ranks various
programming languages [18], [19]. Fig. 3 shows that projects
adopted from 2 to 9 programming languages, and JavaScript
was the most popular.

Fig. 3. Tier levels of programming languages.

C. Programming Language Fork Visibility Performance and

Data Quantisation

Prior to applying the KNN algorithm (see below), we first
identified the features of programming language fork visibility
performance that responded to programming language
interoperability. These included individual programming

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

34 | P a g e

www.ijacsa.thesai.org

language type, the number of individual programming
languages adopted per project, the individual language
repository number, and individual language fork frequency,
when available (published on the project webpage). Then, due
to the large quantity of fork counts, the data underwent
quantisation, with each feature weighted as per Table 1.

TABLE I. PROGRAMMING LANGUAGE FORK PERFORMANCE FEATURE

Feature Range
Weight

Min Max

Number of adopted
programming languages

1–10 0.1:1 1.0:10

Adopted language

repository file number
1–10 01:1 1.0:10

Specific language fork
number

300–
200,000

0.01:1–500 0.2:200,000

Quantisation produced a total number of 2652 data
features. An example of each project data that converted to
data quantisation as follows to each field as: number of
adopted programming langauges, adopted language repository
file number, from specific programming language fork
number 1 to number 33.

0.1,0.2,0.01,0.1,0.01,0.3, 0.01,0.0001,0,0, 0,0,0,0,0.0.1,

0.0001,0,0, 0,0,0.0001,0,0,0.01,0.0001,0.01,0.1,0,0,0,0.1,0

D. Averaging Programming Language Number and

Programming Language Fork Count

To confirm the programming language fork visibility
performance, we set a threshold on programming language
number and fork count size, with minimum and maximum
values. To support the threshold, we derived an equation to
determine the threshold outcome based on two further
equations: 1) Average Programming Language Number
(APLN); and 2) Average Programming Language Inter-
operability (APLI), for the APLN and APLI, the formulas
were:

 (1)

 (2)

Next, we compared each APLN against the APLI in the
project. If the APLN score was greater than the APLI score
then the project was defined as having adopted high
programing language interoperability. Conversely, if the
APLN was less than the APLI score then the project was
defined as having adopted low programming language
interoperability.

IV. RESULTS

Fig. 4 shows a simple example illustrating KNN with two
features (programming language fork size count as the x axis
and programming language number as y axis) to find the
JavaScript visibility performance.

The justification on JavaScript as it produces many
libraries and frameworks on OS projects that are compliant for
cross-platform integration. Moreover, the JavaScript language
community is large because it is familiar to developers who
learned it during training and qualification. In the context of

this paper, we were interested to find out the predicted
outcomes for JavaScript fork performance on low and high
programming language interoperability for a new project.

We generated four scenarios to predict their outcomes
using the KNN algorithm. The first scenario was a project that
was likely to receive low fork count in JavaScript, which
adopts low average programming language interoperability
(APLI). The second scenario was a project likely to
experience high JavaScript fork in the adopted low APLI. The
third scenario was a project with low JavaScript fork in a high
APLI, and the fourth scenario was high JavaScript fork in a
high APLI.

Scenario 1: JavaScript low fork visibility performance
with low adopted programming language interoperability

The first scenario was a new project that adopted very low
programming language interoperability, including JavaScript.
Fig. 4 shows the new project (orange circle) distance is close
to projects A, C and G. By majority voting, project C was
predicted as the nearest to the new project, that is, the new
project JavaScript language fork was predicted to be low if the
adoption of programming languages interoperability was low.

Fig. 4. Scenario 1: JavaScript low fork visibility performance in a low APLI.

Project A was a website development that had adopted
JavaScript and Ruby and, based on their fork population; it
was very close to the JavaScript fork size on the new project.
Project C, on the other hand, was an enterprise application and
adopted only 2 programming languages – JavaScript and CSS.
The project failed to receive high fork attention because CSS
is used for formatting structured content on HTML
documents. As a result, it is less interesting to developers as a
problem-solving technique. For Project G, despite having
JavaScript, Python and HTML as marked up languages
adopted, they face survival problems being unable to find
developers to fork the language file, possibly because Python
is less compliant with JavaScript [6], thus lessening JavaScript
forking.

C (both

failed) , 0.2,

0.01

A(both failed)

, 0.2, 0.1

G(failed on

average to

meet the
language

number but

passed the

average

Javascript

fork number)
, 0.3, 0.1

0.01, 0.01

0

0.02

0.04

0.06

0.08

0.1

0.12

0.1 0.2 0.3 0.4

L
an

g
u

ag
e

F
o

rk
 S

iz
e

C
o

u
n

t

Programming Language Number

 A low language fork on low adopted programming

languages

existing

project
new project

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

35 | P a g e

www.ijacsa.thesai.org

Overall, these project languages failed to pass the average
adopted programming language interoperability levels and
average JavaScript fork count size. By majority voting –
where K=3 – a new project was predicted to fail in a low
adopted programming languages and low JavaScript fork
environment.

Scenario 2: JavaScript high fork visibility performance
with low adopted programming language interoperability

The second scenario outlined JavaScript high fork
visibility performance in a low APLI, which was the reverse
of the first scenario. Fig. 5 shows the new project (orange
circle) is close to projects A1, Q and D1. We applied K=3
which resulted in a tied vote, with a different outcome on the
three projects. Project A1 had a sufficient APLI number but
failed to generate a high JavaScript fork. Project Q failed on
the APLI but passed on the average number of JavaScript
forks. In contrast, Project D1 satisfied both conditions, passed
APLI and average number of JavaScript forks. However as the
data set was small no one single outcome can predict whether
a new project would be likely to be near to an existing project.
We further examined each project cause, finding that
JavaScript language files added new features that attracted
developer attention.

Fig. 5. Scenario 2: JavaScript high fork visibility performance in a low

APLI.

Scenario 3: JavaScript low fork visibility performance
with highly adopted programming language
interoperability

The third scenario was a new project with high APLI and
low fork count on JavaScript. Based on the majority voting,
the three projects predicted to the nearest distance of the new
project were J1, L1 and K1 (Fig. 6). Successfully all passed
both the average programming language interoperability
number and the average JavaScript fork number. The results
showed that low language fork can arise in a project with
some languages adopted with weak compliance to JavaScript.
In Scenario 3, non-JavaScript language files focused on back-
end development; as such they were of core project value.
Consequently, it has a high impact on JavaScript developers‟
fork behaviour to download and fork less the JavaScript files.

Fig. 6. Scenario 3: JavaScript low fork visibility performance in a high

APLI.

Scenario 4: JavaScript high fork visibility with highly
adopted programming language interoperability

The fourth scenario was a new project that adopted a
variety of programming languages; the JavaScript language is
one of the most well-known languages that contain a high fork
count. Fig. 7 shows the distance of a new project status
(orange circle) and existing projects D1, Q and L1. The three
existing projects passed the average adopted programming
language interoperability number and the average JavaScript
fork count. We applied K=3 to detect the possible outcome for
the new project. The result shows by majority voting in this
case all 3 projects have the same outcome and they are
predicted the nearest projects to the new project.

These projects seemed to perform better because they were
compliant with other programming languages, such as Ruby,
PhP, Python C and C++. As JavaScript shows a high
connectivity with Ruby and PHP [20], JavaScript can fetch a
high fork count from developers. From the project
development perspective, the topic domain or field interest to
developers, and the selective programming languages,
contribute to the high fork frequency. From our observation on
the three projects‟ fork aggressiveness, the languages adopted
in these projects are compatible to cross platforms.

Fig. 7. Scenario 4: JavaScript high fork visibility performance in a high

APLI.

A1 (1 passed

and 1

failed), 0.3,
0.4

Q (1 failed

and 1

passed) ,
0.4, 0.5

D1 (both

passed) ,

0.7, 0.4

unknown,

0.2, 2

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8

L
an

g
u

ag
e

fo
rk

 s
iz

e

Programming language number

A high fork language in low adopted

programming languages existing

project
new project

K1 (both

passed) , 1,

0.0

J1 (both

passed) , 1,

0.1

L1 (both

passed) , 1,

0.1

unknown ,

2.5, 0.01

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0 0.5 1 1.5 2 2.5 3

L
an

g
u

ag
e

F
o

rk
 S

iz
e

Programming Language Number

A Low Language Fork on highly adopted programming

languages

existing

project

Q (both

passed) , 1,

0.25

D1(both

passed) , 1,

0.4

L1(both

passed), 1,

0.1

Unknown

0

0.5

1

1.5

2

2.5

3

0 1 2 3L
an

g
u
ag

e
F

o
rk

 C
o

u
n
t

Programming Language Number

A high language fork on a highly adopted

programming lanaguages project

Existing

Project

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

36 | P a g e

www.ijacsa.thesai.org

V. JUSTIFICATION

1) Positioning a productive language in a pool of

compliant language interoperability:
Our previous work [21] introduced a technique to detect

the chance of programming languages used in Apache,
Mozilla and Ubuntu surviving from a forking perspective. The
current work from the evidence, the productive language,
JavaScript, showed less difficulty to survive when placed in a
pool with low APLI. In addition, a low survival of JavaScript
could be expected in conjunction with high APLI because
JavaScript is less compliant with other languages‟
interoperability, except Ruby and PhP [19], [20].

2) Programming languages fork visibility performance: A

new perspective on survivability and longevity:
The scenario-based evidence presented here provides a

new perspective on developers‟ fork behaviour – particularly
on programming language interoperability number adopted in
a project and how they might influence each other, especially
the productive languages. However, there is no certainty on
which programming language can survive longer in terms of
emerging technology, except it must be compliant with other
language interoperability. Due to an increased change in
emerging technology – such as mobile application and cloud
development – more projects will increasingly add more
programming languages for interoperability. As such, the
more a language is compliant, the more likely a language will
increase fork visibility, and in turn increase language
survivability.

Previous work [22]-[29] showed OS variables‟ impact on
developers‟ fork behaviour is generally related to project
topics and domains, developers‟ language preference, and
programming language popularity. However, our findings
show another possible cause, that is, poor fork visibility in a
low APLI is less compliant. A language with low fork
visibility is likely to decline its longevity and survivability
whereas a language with high fork visibility is likely to
increase its longevity and survivability, which will serve to
keep the project viable and accessible by developers.
Understanding programming language fork success or failure
draws a new perspective out of the literature, highlighting that
fork success is highly dependent on specific language
domination [1] and/or a productive language [20].

3) The relationship between visibility and vulnerability in

the context of open source programming languages:
The term „visibility‟ is described in the context of

meteorology as transparency of air, in the dark, etc. In a
disruptive or sustainable technology, visibility is a metric used
to determine factors such as project vulnerabilities, consumer
confidence, or purchasing pattern or behaviour. In the context
of OS programming languages, visibility exposes the
vulnerability of a language, which can become less significant
as a result to sustain frameworks and libraries, front-end,
back-end, etc. As such, new programming languages with
better implementation performance are likely to dominate and
replace existing language source codes.

VI. CONCLUSION

This research focused on applying an algorithm to a case
study of four scenarios. The preliminary findings require
further validation in a larger dataset to examine programming
language strength, in terms of compliance, compatibility and
connectivity. This paper introduced a new perspective to OS
programming language survivability research, particularly the
fork visible performance that different programming
languages exhibit and their interoperability performance
across different ecosystems and environments.

REFERENCES

[1] Nyman, L. 2013. Freedom and forking in open source software.
Proceedings of the Nordic Academy of Management Conference
,Reykjavik, Iceland

[2] Tsay, J. Dabbish, L. and Herbsleb, J. 2014. Influence of Social and
Technical Factors for Evaluating Contribution in Github, Proceeding of
ICSE'14, Hyderabad, India, ACM.

[3] Khondhu, J. Capiluppi.A , Stol, K.J. 2013. Is It All Lost? A Study of
Inactive Open Source Projects. In Proceedings of the 9th International
Conference on Open Source Systems

[4] Crowston, K. Howison, J. and Annabi, H. 2006. Information Systems
Sucess in Free and Open Source Development : Theory and Measures "
Software Process and Practice, Vol. 11, No 2, Pp. 123-148

[5] V. Midha and P. Palvia, “Factors affecting the success of open source
software,” The Journals of Systems and Software, vol. 85, no. 4, pp. 895–
905, 2012.

[6] S. Comino and F. M. Manenti, “Government policies supporting open
source software for the mass market,” Journal Review of Industrial
Organization, vol. 26, no 2, pp. 217–240, 2005

[7] Johns, M. V. (1961) An empirical Bayes approach to non-parametric two-
way classification. In Solomon, H., editor, Studies in item analysis and
prediction. Palo Alto, CA: Stanford University Press

[8] Tanner, T. and Toivonen, H. (2010). Predicting and preventing student
failure – using the k-nearest neighbour method to predict student
performance in an online course environment. International Journal of
Learning Technology 5(4):56–377. https://www.cs.helsinki.fi/u/
htoivone/pubs/ijlt2010.pdf

[9] Ishii, N., Hoki, Y., Okada, Y. and Bao, Y. (2009). Nearest neighbor
classification by relearning. In: Proceedings of the 10 International
Conference on Intelligent Data Engineering and Automated Learning
(IDEAL'09), pp. 42–49.

[10] Kotsiantis, S., Pierrakeas, C. and Pintelas, P. (2003). Preventing student
dropout in distance learning systems using machine learning techniques.
In: Proceedings of 7th International Conference on Knowledge-Based
Intelligent Information & Engineering Systems, Lecture Notes in
Artificial Intelligence, Springer-Verlag. 2774:267–274.

[11] Minaei-Bidgoli, B., Kashy, D.A., Kortmeyer, G. and Punch, W.F. (2003).
Predicting student performance: an application of data mining methods
with an educational Web-based system. In: Proceedings of the 33rd
Annual Frontiers in Education,1:T2A–18.

[12] Shih, B. and Lee, W. (2001). The application of nearest neighbour
algorithm on creating an adaptive on-line learning system. In: 31st
Annual Frontiers in Education Conference, 1:T3F–10–13.

[13] Manning, C., Raghavan, P. and Schütze, H. (2008). Introduction to
Information Retrieval. Cambridge University Press: Cambridge, UK.

[14] Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998). Inductive
learning algorithms and representations for text categorization. In:
Proceedings of the International Conference on Information and
Knowledge Management,. pp. 148–155.

[15] Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998). Inductive
learning algorithms and representations for text categorization. In:
Proceedings of the International Conference on Information and
Knowledge Management, pp. 148–155.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

37 | P a g e

www.ijacsa.thesai.org

[16] Han, Y. and Lam, W. (2006). Exploring query matrix for support pattern
based classification learning. Advances in Machine Learning and
Cybernetics, Lecture Notes in Computer Science 3930:209–218.

[17] Zou, Y., An, A. and Huang, X. (2005). Evaluation and automatic
selection of methods for handling missing data. In: Proceedings of the
IEEE International Conference on Granular Computing, 2:728–733.

[18] Cover, T. and Hart, P. (1967). Nearest neighbour pattern classification‟,
IEEE Transactions on Information Theory 13(1):21–27.

[19] TIOBE. TIOBE programming community index definition. 2016,
http://www.tiobe.com/index.php/content/ paperinfo/
tpci/tpcidefinition.html

[20] Bissyande, T.F., Thung, F., Lo, D., Jiang, L.X. and Réveillère, L. (2013).
Popularity, interoperability, and impact of programming languages in
100,000 open source projects. In: Proceedings of COMPSAC '13: 2013
IEEE 37th Annual Computer Software and Applications Conference, 22–
26 July, 2013, Kyoto, Japan. pp. 303–312. Research Collection School of
Information Systems.

[21] Chua, B. 2015, 'Detecting Sustainable Programming Languages through
Forking on Open Source Projects for Survivability', IEEE, The 26th IEEE
International Symposium on Software Reliability Engineering (ISSRE)
2015 in conjunction with a WOSAR workshop, IEEE, Gaithersburg,
USA, pp. 120-124.

[22] Samoladas, I. Angelis, L. and Stamelos, I. 2010. Survival duration on the
duration of open source projects. Journal of Software and Information
Technology, Vol.52, No.1, Pp 902-922.

[23] Chen, S. 2010. Determinants of Survival of Open Source Software: An
Empirical Study. Academy of Information and Management Sciences
Journal, Vol.13, No.2, Pp119-128.

[24] Wang, J.2012.Survival factors for Free Open Source Software projects: A
multi-stage perspective," European Management Journal, Vol.30, No.1,
Pp352-371.

[25] Wu, J. and Tang, Q. 2007. Analysis of Survival of Open Source Projects:
a Social Network Perspective. In proceedings of Australian Conference of
Information Systems (ACIS).

[26] Angelis, L. Sentas, P. 2005. Duration Analysis of Software Projects. In
Proceedings of the 10th Panhellenic Conference on Informatics, 258-269.

[27] Raja, U. and Tretter, M. J. 2012. Defining and Evaluating a Measure of
Open Source Project Survivability. Journal of IEEE ,Transactions on
Software Engineering, Vol.38, No.1,Pp163-174.

[28] Chengalur-Smith, I., Sidorova, A. and Daniel, S. Sustainability of
Free/Libre Open Source Projects: ALongitudinal Study. Journal of
Association For Information Systems (JAIS), Vol.11, No. 11/12.Pp657-
683.

[29] Oskar, J., Gruszka, B., Jaroszewicz, S., Bukowski, L. and wierzbicki, A.
2014. GitHub Projects. Quality Analysis of Open-Source Software. In
the proceeding of 6h International Conference, Soclnfo. Barcelona,
Spain,Lecture Notes in Computer Science Volume 8851.

