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Abstract—Despite a variety of programming languages 

adopted in open source (OS) projects, fork variation on some 

languages has been minimal and slow to be adopted, and there is 

little research as to why this is so. We therefore employed a K-

nearest neighbours (KNN) technique to predict the fork visibility 

performance of a productive language from a pool of 

programming languages adopted in projects. In total, 38 

showcase OS projects from 2012 to 2016 were downloaded from 

the GitHub website and categorized into different levels of 

programming language adoption clusters. Among 33 languages, 

JavaScript is one of the popular languages that adopted by 

community. It has been predicted the language chosen when fork 

visibility is high can increase project longevity as a highly visible 

language is likely to occur more often in projects with a 

significant number of interoperable programming languages and 

high language fork count. Conversely, a low fork language 

reduces longevity in projects with an insignificant number of 

interoperable programming languages and low fork count. Our 

results reveal the survival of a productive language is in response 

to high language visibility (large fork number) and high 

interoperability of multiple programming languages. 
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I. INTRODUCTION 

Programming languages constantly evolve to meet the 
demand of the software development industry. However 
variation of programming languages adopted in open source 
(OS) projects must comply with other programming languages 
so that developers can fork (copy) language files into their 
own local development environment. To ensure 
interoperability, programming languages must be expressive, 
generic and compliant, otherwise developers will not be 
interested in downloading or forking new OS libraries, as the 
frameworks are not compatible with their environment. There 
are different ways to define programming language success, 
with programing language interoperability performance being 
a major contributor to success. Despite this, unfortunately, 
most languages are not interoperable. 

To understand when and why developers would fork a 
programming language file, language needs and motivation 
are two important factors. Some developers may fork a 
language because it is a new language that compiles with the 
original language, while other developers may fork a language 

because it is a subset of the original language, with features 
added, removed or amended. 

In spite of these motivating reasons to inspire developers 
to fork languages, many programming languages are 
experiencing a „fork crisis‟, that is, they have low or minimal 
fork counts. This may be due to social factors [1]-[3] and 
environmental reasons [4]-[6], or the languages may lack 
expressiveness, be too generic or have compliance with the 
original or other languages. Interestingly, many OS project 
owners tried to increase programming language 
interoperability by adopting different programming languages; 
however this does not seem to increase forking. 

Our motivation for this paper is firstly to make an 
intelligent recommendation system for developers and project 
owners to adopt programming languages that are compliant 
with other language interoperability. Secondly, to understand 
how a productive language fork may be affected by low 
programming language interoperability and low compliance 
with many programming languages‟ interoperability. 

This paper is organised into the following sections:  
Section 2, literature around language forking prediction, the 
problem and research questions; Section 3 research 
methodology on KNN algorithm, data quantisation methods 
and a case study of OS projects; Section 4 results, Section 5 
outcomes of the four scenarios tested; and lastly, justification 
and conclusions. 

II. PROGRAMMING LANGUAGE FORKING 

A. Language Forking Prediction Problem and Research 

Questions 

We investigated whether it was possible to predict with 
reasonable accuracy the fork visibility performance of any 
programming language with respect to interoperability 
compliance. In addition, we sought to determine the 
probability of new projects adopting a productive language 
where fork visibility performance is impacted by low versus 
high programming language interoperability. 

Two research questions were developed to address these 
aims: 

1) How can we predict, with reasonable accuracy, a 

programming language fork visibility performance in projects 
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that is in compliance to other languages interoperability? 

2) For a new project, how can we predict productive 

programming language fork visibility performance based on 

the level of programming language interoperability? 
In this paper, we define a „more‟ interoperable 

programming language project as a language that has more 
healthy forks in the majority of programming languages, and a 
„less‟ interoperable programming language project as one with 
fewer healthy forks in each language. 

III. METHODS AND DATASET PREPARATION 

A. K Nearest Neighbour (KNN) Algorithm 

The KNN algorithm is based on representation of statistics 
and distributions in training data. While the method was first 
discovered in 1961 by a group of American researchers who 
showed it works effectively on actual instances of training 
data [7], it remains unpublished. It has since been applied to 
machine learning and data mining, and more recently has 
successfully been applied in education research to predict 
student learning success and failure rates [8]-[12]. The KNN 
method is effective at predicting different types of data, is 
simple and versatile, and handles noisy or incomplete data, 
when in many situations a classification is required [13]-[17]. 

The baseline KNN predicts the fork performance of a 
given project by first calculating the actual project (project 
being predicted) similarity to all instances in the training set 
and finds the K most similar ones. The similarity is calculated 
with a simple Euclidean distance between the features of the 
test subject and corresponding features of each instance in the 
training set [12]. 

In this study, KNN was used to predict fork visibility 
performance of languages that were adopted as interoperable 
language in projects to differing degrees („more‟ or „less‟). 
Firstly the algorithm applied Euclidean distance formula (see 
Fig. 1) to calculate the distance of a productive language fork 
for less adopted interoperable language projects. X refers to 
the number of language repositories created in the project and 
Y refers to the number of programming languages adopted in 
the project. X1 is the actual number of language repositories 
from 38 project showcases and X2 is the predicted number of 
new project language repositories. Similarly, Y1 and Y2 are 
the actual and predicted numbers of programming language 
from the 38 project showcases and the new project. 

We classified the outcome of that algorithm into two 
categories: 1) JavaScript in a project with low fork visibility; 
and 2) JavaScript in a project with high fork visibility. Next, 
we used K=3 to predict the language project on JavaScript 
fork visibility outcomes. 

       √                  

Fig. 1. KNN equation. 

B. Case Study: Showcase Projects 

Of the 40 OS show case projects available on GitHub on 
from January 2012 through August 2016 (www.github.com), 
38 projects have complete information such as the type of 
programming languages and the fork count. We rejected 2 
projects because of some programming languages were not 

stated (unknown). As our goal was to predict the language 
fork visibility performance, defined as success or survival of 
different programming languages in a project, the 38 projects 
were classified into types of projects and by different levels of 
programming languages (Fig. 2). 

 
Fig. 2. Programming language project population. 

The types of projects ranged from desktop application, 
enterprise application, systems administration, systems 
programming and website development. 

Next, we categorized productive programming languages 
by types of programming language tier level according to the 
TIOBE programming community index, which ranks various 
programming languages [18], [19]. Fig. 3 shows that projects 
adopted from 2 to 9 programming languages, and JavaScript 
was the most popular. 

 
Fig. 3. Tier levels of programming languages. 

C. Programming Language Fork Visibility Performance and 

Data Quantisation 

Prior to applying the KNN algorithm (see below), we first 
identified the features of programming language fork visibility 
performance that responded to programming language 
interoperability. These included individual programming 
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language type, the number of individual programming 
languages adopted per project, the individual language 
repository number, and individual language fork frequency, 
when available (published on the project webpage). Then, due 
to the large quantity of fork counts, the data underwent 
quantisation, with each feature weighted as per Table 1. 

TABLE I. PROGRAMMING LANGUAGE FORK PERFORMANCE FEATURE  

Feature Range 
Weight 

Min Max 

Number of adopted 
programming languages  

1–10 0.1:1 1.0:10 

Adopted language 

repository file number 
1–10 01:1 1.0:10 

Specific language fork 
number  

300–
200,000 

0.01:1–500 0.2:200,000 

Quantisation produced a total number of 2652 data 
features. An example of each project data that converted to 
data quantisation as follows to each field as: number of 
adopted programming langauges, adopted language repository 
file number, from specific programming language fork 
number 1 to number 33. 

0.1,0.2,0.01,0.1,0.01,0.3, 0.01,0.0001,0,0, 0,0,0,0,0.0.1, 

0.0001,0,0, 0,0,0.0001,0,0,0.01,0.0001,0.01,0.1,0,0,0,0.1,0  

D. Averaging Programming Language Number and 

Programming Language Fork Count 

To confirm the programming language fork visibility 
performance, we set a threshold on programming language 
number and fork count size, with minimum and maximum 
values. To support the threshold, we derived an equation to 
determine the threshold outcome based on two further 
equations: 1) Average Programming Language Number 
(APLN); and 2) Average Programming Language Inter-
operability (APLI), for the APLN and APLI, the formulas 
were: 

      
                                       

                                          
   (1) 

      
                                       

                                         
 (2) 

Next, we compared each APLN against the APLI in the 
project. If the APLN score was greater than the APLI score 
then the project was defined as having adopted high 
programing language interoperability. Conversely, if the 
APLN was less than the APLI score then the project was 
defined as having adopted low programming language 
interoperability. 

IV. RESULTS 

Fig. 4 shows a simple example illustrating KNN with two 
features (programming language fork size count as the x axis 
and programming language number as y axis) to find the 
JavaScript visibility performance. 

The justification on JavaScript as it produces many 
libraries and frameworks on OS projects that are compliant for 
cross-platform integration. Moreover, the JavaScript language 
community is large because it is familiar to developers who 
learned it during training and qualification. In the context of 

this paper, we were interested to find out the predicted 
outcomes for JavaScript fork performance on low and high 
programming language interoperability for a new project. 

We generated four scenarios to predict their outcomes 
using the KNN algorithm. The first scenario was a project that 
was likely to receive low fork count in JavaScript, which 
adopts low average programming language interoperability 
(APLI). The second scenario was a project likely to 
experience high JavaScript fork in the adopted low APLI. The 
third scenario was a project with low JavaScript fork in a high 
APLI, and the fourth scenario was high JavaScript fork in a 
high APLI. 

Scenario 1: JavaScript low fork visibility performance 
with low adopted programming language interoperability 

The first scenario was a new project that adopted very low 
programming language interoperability, including JavaScript. 
Fig. 4 shows the new project (orange circle) distance is close 
to projects A, C and G. By majority voting, project C was 
predicted as the nearest to the new project, that is, the new 
project JavaScript language fork was predicted to be low if the 
adoption of programming languages interoperability was low. 

 

Fig. 4. Scenario 1: JavaScript low fork visibility performance in a low APLI. 

Project A was a website development that had adopted 
JavaScript and Ruby and, based on their fork population; it 
was very close to the JavaScript fork size on the new project. 
Project C, on the other hand, was an enterprise application and 
adopted only 2 programming languages – JavaScript and CSS. 
The project failed to receive high fork attention because CSS 
is used for formatting structured content on HTML 
documents. As a result, it is less interesting to developers as a 
problem-solving technique. For Project G, despite having 
JavaScript, Python and HTML as marked up languages 
adopted, they face survival problems being unable to find 
developers to fork the language file, possibly because Python 
is less compliant with JavaScript [6], thus lessening JavaScript 
forking. 
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Overall, these project languages failed to pass the average 
adopted programming language interoperability levels and 
average JavaScript fork count size. By majority voting – 
where K=3 – a new project was predicted to fail in a low 
adopted programming languages and low JavaScript fork 
environment. 

Scenario 2: JavaScript high fork visibility performance 
with low adopted programming language interoperability 

The second scenario outlined JavaScript high fork 
visibility performance in a low APLI, which was the reverse 
of the first scenario. Fig. 5 shows the new project (orange 
circle) is close to projects A1, Q and D1. We applied K=3 
which resulted in a tied vote, with a different outcome on the 
three projects. Project A1 had a sufficient APLI number but 
failed to generate a high JavaScript fork. Project Q failed on 
the APLI but passed on the average number of JavaScript 
forks. In contrast, Project D1 satisfied both conditions, passed 
APLI and average number of JavaScript forks. However as the 
data set was small no one single outcome can predict whether 
a new project would be likely to be near to an existing project. 
We further examined each project cause, finding that 
JavaScript language files added new features that attracted 
developer attention. 

 
Fig. 5. Scenario 2: JavaScript high fork visibility performance in a low 

APLI. 

Scenario 3: JavaScript low fork visibility performance 
with highly adopted programming language 
interoperability 

The third scenario was a new project with high APLI and 
low fork count on JavaScript. Based on the majority voting, 
the three projects predicted to the nearest distance of the new 
project were J1, L1 and K1 (Fig. 6). Successfully all passed 
both the average programming language interoperability 
number and the average JavaScript fork number. The results 
showed that low language fork can arise in a project with 
some languages adopted with weak compliance to JavaScript. 
In Scenario 3, non-JavaScript language files focused on back-
end development; as such they were of core project value. 
Consequently, it has a high impact on JavaScript developers‟ 
fork behaviour to download and fork less the JavaScript files. 

 
Fig. 6. Scenario 3: JavaScript low fork visibility performance in a high 

APLI. 

Scenario 4: JavaScript high fork visibility with highly 
adopted programming language interoperability 

The fourth scenario was a new project that adopted a 
variety of programming languages; the JavaScript language is 
one of the most well-known languages that contain a high fork 
count. Fig. 7 shows the distance of a new project status 
(orange circle) and existing projects D1, Q and L1. The three 
existing projects passed the average adopted programming 
language interoperability number and the average JavaScript 
fork count. We applied K=3 to detect the possible outcome for 
the new project. The result shows by majority voting in this 
case all 3 projects have the same outcome and they are 
predicted the nearest projects to the new project. 

These projects seemed to perform better because they were 
compliant with other programming languages, such as Ruby, 
PhP, Python C and C++. As JavaScript shows a high 
connectivity with Ruby and PHP [20], JavaScript can fetch a 
high fork count from developers. From the project 
development perspective, the topic domain or field interest to 
developers, and the selective programming languages, 
contribute to the high fork frequency. From our observation on 
the three projects‟ fork aggressiveness, the languages adopted 
in these projects are compatible to cross platforms. 

 
Fig. 7. Scenario 4: JavaScript high fork visibility performance in a high 

APLI. 
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V. JUSTIFICATION 

1) Positioning a productive language in a pool of 

compliant language interoperability: 
Our previous work [21] introduced a technique to detect 

the chance of programming languages used in Apache, 
Mozilla and Ubuntu surviving from a forking perspective. The 
current work from the evidence, the productive language, 
JavaScript, showed less difficulty to survive when placed in a 
pool with low APLI. In addition, a low survival of JavaScript 
could be expected in conjunction with high APLI because 
JavaScript is less compliant with other languages‟ 
interoperability, except Ruby and PhP [19], [20]. 

2) Programming languages fork visibility performance: A 

new perspective on survivability and longevity: 
The scenario-based evidence presented here provides a 

new perspective on developers‟ fork behaviour – particularly 
on programming language interoperability number adopted in 
a project and how they might influence each other, especially 
the productive languages. However, there is no certainty on 
which programming language can survive longer in terms of 
emerging technology, except it must be compliant with other 
language interoperability. Due to an increased change in 
emerging technology – such as mobile application and cloud 
development – more projects will increasingly add more 
programming languages for interoperability. As such, the 
more a language is compliant, the more likely a language will 
increase fork visibility, and in turn increase language 
survivability. 

Previous work [22]-[29] showed OS variables‟ impact on 
developers‟ fork behaviour is generally related to project 
topics and domains, developers‟ language preference, and 
programming language popularity. However, our findings 
show another possible cause, that is, poor fork visibility in a 
low APLI is less compliant. A language with low fork 
visibility is likely to decline its longevity and survivability 
whereas a language with high fork visibility is likely to 
increase its longevity and survivability, which will serve to 
keep the project viable and accessible by developers. 
Understanding programming language fork success or failure 
draws a new perspective out of the literature, highlighting that 
fork success is highly dependent on specific language 
domination [1] and/or a productive language [20]. 

3) The relationship between visibility and vulnerability in 

the context of open source programming languages: 
The term „visibility‟ is described in the context of 

meteorology as transparency of air, in the dark, etc. In a 
disruptive or sustainable technology, visibility is a metric used 
to determine factors such as project vulnerabilities, consumer 
confidence, or purchasing pattern or behaviour. In the context 
of OS programming languages, visibility exposes the 
vulnerability of a language, which can become less significant 
as a result to sustain frameworks and libraries, front-end, 
back-end, etc. As such, new programming languages with 
better implementation performance are likely to dominate and 
replace existing language source codes. 

VI. CONCLUSION 

This research focused on applying an algorithm to a case 
study of four scenarios. The preliminary findings require 
further validation in a larger dataset to examine programming 
language strength, in terms of compliance, compatibility and 
connectivity. This paper introduced a new perspective to OS 
programming language survivability research, particularly the 
fork visible performance that different programming 
languages exhibit and their interoperability performance 
across different ecosystems and environments. 
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