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Abstract—Realization of Randomness had always been a 

controversial concept with great importance both from 

theoretical and practical Perspectives. This realization has been 

revolutionized in the light of recent studies especially in the 

realms of Chaos Theory, Algorithmic Information Theory and 

Emergent behavior in complex systems. We briefly discuss 

different definitions of Randomness and also different methods 

for generating it. The connection between all these approaches 

and the notion of Normality as the necessary condition of being 

unpredictable would be discussed. Then a complex-system-based 

Random Number Generator would be introduced. We will 

analyze its paradoxical features (Conservative Nature and 

reversibility in spite of having considerable variation) by using 

information theoretic measures in connection with other 

measures. The evolution of this Random Generator is equivalent 

to the evolution of its probabilistic description in terms of 

probability distribution over blocks of different lengths. By 

getting the aid of simulations we will show the ability of this 

system to preserve normality during the process of coarse 

graining. 

Keywords—Random number generators; entropy; correlation 

information; elementary cellular automata; reversibility 

I. INTRODUCTION TO RANDOMNESS 

Realization of randomness has great importance both from 
theoretical and practical perspective. The successful 
application of randomness for guiding search processes in 
spaces which scales exponentially to the input size shows the 
theoretical importance of having access to a proper source of 
randomness [1]. One can show generally that the existence of 
proof for theorem T with specific length n can be reduced to 
combinatorial problem of finding a tour of length    that 
reaches all   cities while           [2]. 

Although the concept of Randomness has entered literarily 
by the theory of probability, this theory cannot define the 
randomness associated with individual objects whether finite or 
infinite. Probability theory is a theory about sets of objects not 
individual objects. Therefore it cannot distinguish between two 
sequences of length   generated on binary alphabet       in 
which one of them consists of just ones and the other 
corresponds to the tossing of a fair coin. It turns out that 
realization of randomness is very challenging and this concept 
resists theoretical investigation. Historically scientists have 
tried to define it in a specific domain. Fortunately one can 
observe the source of problem as a main thread in all of these 
domain specific approaches. 

Von Mises [3] was the first person who tried to define 
randomness mathematically based on an intuitive aspect of 
unpredictability. He described randomness as an inability to 
predict the elements of an infinite binary sequence over        
with probability better than  while the elements in the string 
are chosen randomly. Then he tried to improve his definition 
by replacing the random selection of elements with an 
acceptable selection rule. Evidently this change did not 
increase the mathematical clarity of his definition. 
Subsequently Wald [4, 5] introduced the notion of countability 
of selection function in order to make this definition more 
clear. Finally Mises’s definition was refined in the light of 
computability of selection functions by Church [6]. Therefore 
acceptable selection rules were replaced by computable 
functions and as such the theoretical realization of randomness 
integrated with the notion of computability. 

This type of evolved definition is known as Mises-Wald-
Church definition [7]. Although Mises-Wald-Church definition 
of randomness was criticized by other thinkers like Ville [8], it 
kept its theoretical effect on subsequent works in this area. 

The relation between randomness and computability has 
been deepened in the light of modern interpretation of defining 
and detecting randomness relatively to the amount of 
computational sources which have been used [9]. The notion of 
randomness is measured in its modern formulation for finite 
objects by Kolmogorov complexity [10], [11] which is the 
result of Solmonof, Kolmogorov and Chaitins theory [12] and 
for infinite objects by the Mrtin-Lof measure of  randomness 
[13], [14]. 

These new definition of randomness are deeply connected 
to the theory of computation. The Kolmogorov complexity of a 
string   is defined as the size of the shortest program that 
produces it. Obviously random strings must have higher 
Kolmogorov complexity due to their incompressibility. 
Therefore the Kolmogorov complexity of random string  , 
denoted by      would be approximately equals to length of 
string . Formally          and random strings cannot be 
compressed [10]. Introducing finite random objects as 
incompressible objects connects the notion of randomness to 
the philosophical interpretation of theory which was presented 
for the first time by Leibniz [15]. 

Philosophically, theory is recognized as a compression 
form of statements which can describe a set of large 
experimental data in the shortest way. Otherwise the theory 
with the same size of data set, which it explains would be 
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useless. In section V of Discourse de Metaphysique, Leibniz 
explains the comprehensibility of the world as the result of 
God’s creation, in which the greatest possible diversity of 
phenomena are controlled by the smallest set of ideas. Today 
this fact can be rephrased in the language of algorithmic 
randomness. It means in spite of this apparent diversity in the 
world the set of rules which are responsible for all these 
phenomena is small. Therefore we can follow a scientific 
method to discover the theory which explains a set of wide 
natural phenomena. Based on this perspective the set of 
random data would be theory-less. Chaitin’s Ω number is 
recognized as an incompressible sequence of zeros and ones. 
This number is the probability of halting for program P 
generated by a successive independent tosses of a fair coin. 
Mathematically Ω is defined by (1)[16]. 

  ∑                      
       

Ω is an example of algorithmically irreducible or random 
string. The bits of Ω cannot be compressed. In other words, its 
bits are true for a reason not simpler than itself. This breaking 
of Leibniz’s famous principle of sufficient reason is one of the 
most controversial aspect of randomness in philosophy. It must 
be mentioned that Chaitin’s result about halting probability is 
in fact another type of Godel’s famous Incompleteness theorem 
[16]. Today we know that proving the randomness of a finite 
string , is an example of incompleteness phenomena. 

The computability of selection function in the Mises-Wald-
Church definition of randomness for finite objects can be 
observed in terms of effective measure for continuous objects 
in Martin-Lof definition [14]. A real number   is considered 
random, if   is not contained in any event of effective measure 
zero [14]. 

The unpredictability as an intuitive notion of randomness 
plays a great role in other approaches for defining randomness. 
Ville [8] tried to define randomness by gambling approach. In 
his definition, it is impossible to win an infinite amount of 
money by betting on the bits of a random binary sequence. The 
amalgamation of the theory of randomness and the theory of 
computation has provided the opportunity of using theoretical 
apparatuses developed in the theory of computation to analyze 
the randomness in a deeper way. 

Today we know the set of strings which are random in the 
sense of Kolmogorov complexity is not even computably 
enumerable and because of that, the statement of the form:   is 
a random string, is not provable [16]. 

In addition to the previous results, randomness in its 
modern formulation is considered relatively. In the light of the 
theory of computability, we interpret randomness in contrast to 
the amount of computational sources, used to detect it [17]. 

Although randomness has been always seen as a sign of 
complexity especially in the lack of causal model, in recent 
years, it has been realized that randomness is responsible for 
emergence of many complex phenomena by providing the 
opportunity of having interactions between many agents in 
systems. There is a tendency to disentangle randomness from 
complexity. For a recent work on this please refer to [18]. It is 

believed that complexity in its own true form is the result of 
directed interactions between elements of system. 

Randomness and its mysterious aspects have played a great 
role especially in fertilizing the multidisciplinary studies at the 
crossroad of mathematics, physics and computer science. 
Using random resources for solving hard problems in 
Randomized Algorithms has been very advantageous [19] both 
in substantial reduction of time complexity and also in 
deepening of our understanding of the nature of hard problems. 

After the seminal work of Russel impagliazzo and Avi 
Wigderson about the tradeoff between hardness and 
randomness [20], today we know the importance of having 
randomized algorithm for solving hard problems as a 
theoretical key for designing deterministic algorithms. 

There is no doubt that nature uses randomness extensively 
in the evolution. In recent years, Gregory Chaitin has started 
working on Metabiology [21]. He is studying the random 
evolution of artificial software in order to realize Busy Beaver 
function as a fitness function. The soul of his technique has 
been based on applying randomness as it has been applied in 
evolution in terms of mutation. 

This paper has been organized into 6 sections. After this 
introduction about randomness, Random generators and their 
categorization and applications will be reviewed in Section 2. 
In Section 3, Cellular Automaton is formally defined and its 
application as Random generator will be discussed. Primary 
information Theoretic measures are explained in Section 4. 
These measures are used to analyze our inhomogeneous 
ECA60 as a Random Generator in Section 5 and finally in 
Section 6, concluding remarks will be presented. 

II. RANDOM GENERATOR 

The difficulties of giving a complete definition of 
randomness were discussed briefly in the previous section. 
Randomness in its modern formulation is considered as a 
relative concept. Therefore Random Generators must satisfy 
criteria which guarantee their efficiency for the specific 
application. 

The success of simulations which are based on Monte 
Carlo method is highly dependent on the quality of their 
random generators [22]-[25]. The security of information 
transfer on internet and the cryptography need random 
generators [26]. Randomness and Random generators are used 
extensively in solving hard problems in the framework of 
stochastic optimization and naturally inspired algorithm in 
order to bypass the problem of getting stuck in local extremes 
[27]-[29]. 

Random generators play a key role in many techniques of 
program validation [30] and Machine learning [31]. The 
rational behavior in strategic zero sum games needs to use 
randomness and Random Generators to mislead the opponent 
[32]. In recent years, Random Generators are used for 
Analyzing and simulation of interactions in complex social, 
economical and political systems at different scales [33]-[35]. 

Historically three approaches have been followed for 
generating randomness although there are many controversial 
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issues about the possibility of producing intrinsic randomness. 
True Random Number Generators (TRNG) use physical 
phenomena with inherent stochastic mechanism for generating 
random numbers [36]. There are many phenomena which can 
be used for TRNGs, for example unstable nuclear decay 
processes [37], cosmic background radiation [38], quantum 
based systems [39]-[41] and more exotic examples like 
superconducting nanowires and Josephson junctions near 
superconducting critical current [42]. 

The randomness of physical source can be amplified in 
some cases [43] provided that fundamental theoretic limits are 
preserved [44], although Santha and Vazirani proved that 
randomness amplification is impossible using classical 
resource [45]. 

The next family of generators is called Random Number 
Generators (RNG). In these generators randomness is 
transformed from a priori distribution in source to the desired 
posterior distribution [46], therefore these generators have an 
access to sources of randomness. 

RNGs are categorized to three main groups: Von Neumann 
RNG [47] in which an identically independent priori 
distribution is transformed to the unbiased random numbers. 
Knuth and Yao RNG [48], in which an identically independent 
prior distribution is transformed to any desired distribution in 
output and finally Roche and Hoshi RNG [49], [50] which 
transform an arbitrary random distribution in source to an 
arbitrary distribution in output. 

The third family of generators for generating randomness is 
called Pseudo-Random Number Generators (PRNG) in which 
arithmetical methods are used in order to produce randomness. 
Although John Von Neumann once said [47] “Anyone who 
considers arithmetical methods for producing random digits is, 
of course, in the state of sin”, Chaos theory shows how 
randomness can emerge from deterministic systems, while we 
have a hypersensitive dynamic to the initial states [51], [52]. 

Therefore, in the light of Chaos Theory, there is a deep 
dichotomy between order and randomness. This fact provides 
the opportunity of applying deterministic algorithms for 
generating randomness. Hence, PRNGs try to generate 
randomness without having access to any source of 
randomness [53]-[56]. 

III. CELLULAR AUTOMATA AND RANDOM GENERATORS 

Cellular Automata were created by John Von Neumann, in 
his attempt to create a self-replicating machine [57]. He tried to 
show that, these machines are universal constructors and can 
generate even themselves. Cellular Automata have found a 
better place in theoretical studies when Stephen Wolfram 
published his book, called A New Kind of Science [58]. In this 
book he tried to present an extensive analysis of these systems 
and their effectiveness to realize a wide range of natural 
phenomena which are common to exhibit a particular type of 
behavior known as Emergent behavior. 

Elementary Cellular Automata (ECA) is defined on 
alphabet set         as 1-dimensional cellular array of 

size . The state of each cell   at time   is denoted by   
     

The global state or lattice configuration of Cellular Automaton 

at time t is represented by  , where       
    

         
   

  (  is the size of lattice) [59]. 

All cells in the lattice are updated according to local update 
function   which generally has      arguments, where   is 
the radius of local function (     in Elementary Cellular 

Automata). Formally   
    is defined by local function . 

  
          

      
        

  

Applying   to all cells simultaneously, leads to the 
formation of next global state and maps    to      under the 
action of global function       . It has been conjectured 
that applying very simple local function    at micro scale can 
give rise to a very complicated behavior in macro scale [58]. 
This highly interesting behavior is called Emergence and has 
inspired an extensive type of studies [60]. 

Cellular Automata were used for the first time as Pseudo-
Random Generator by Wolframe [61], [62]. Actually he used 
the unpredictable emergent behavior of the global function in 
Cellular Automata resulted from simultaneous application of 
local function on different cells, as a main mechanism for 
generating randomness. 

Afterwards, people tried to improve the quality of CA’s 
random generator by using a combination of controllable cells 
[63], increasing the dimensionality of Cellular Automata [64]-
[66], changing the neighborhood of cells [67], using Cellular 
Automata with additive rules [68], applying the evolutionary 
principles for designing Cellular Automata [69] and focusing 
on the parallelism associated with the evolution of global state 
in Cellular Automata for generating randomness [70]. 

Stephen wolfram in his well-known book “The New Kind 
of Science” categorized elementary Cellular Automata into 
four families [58]. The states of cells in elementary Cellular 
Automata are selected from simple binary alphabet set       
and the radius of their local function   is equal to one. It is 
believed that in spite their simplicity, Elementary Cellular 
Automata (ECA) show all types of behaviors which can be 
observed in Cellular Automata in higher dimensions and with 
more complex local functions. Since the number of possible 

Elementary Cellular Automata is limited to   
    , these 

systems have been examined from different perspectives [71], 
[72]. 

As an evidence for the power of ECA  and  the mysterious 
aspects of emergent behavior at macro scale in complex 
systems, like Cellular Automata, coordinated by simple 
interactions between cells at micro scales, please refer to [73] 
in which Emergent behavior has been used in combination with 
other complex system’s properties for generating pseudo-
randomness. It turns out that this strategy can generate 
randomness which does not have any dependency on the initial 
values of the system. 

In this paper, a modified type of an Elementary Cellular 
Automaton (ECA60) would be used as random generator and 
its evolution from random initial state would be analyzed 
information theoretically. In the next section, primary 
Information measures will be introduced briefly. 
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IV. INFORMATION THEORETIC MEASURES 

Our goal in this paper is to analyze the capability of a 
modified type of Elementary Cellular Automaton 60, the 
number of which is assigned according to Wolfram’s rule, as a 
random generator. The system is initialized by a random binary 
sequence on alphabet set {0, 1}. During the evolution of 
Elementary Cellular Automaton, this random initial sequence 
of size   is transformed to other sequence of size , while it 
preserves the initial randomness and simultaneously shows 
dynamical reversibility. It avoids building correlations in the 
evolution while all of the initial information at each time step is 
transformed to the next global state and because of this 
conservative behavior and dissipation-less dynamic the initial 
state of the system would be observed again. The periodicity of 
this conservative behavior is    . In order to analyze this 
behavior, we use information theoretic measures. 

Elementary Cellular Automaton with rule number 60 has 
been used as a random generator in which the central cell in 
local configurations 101,100, 011 and 010 is transformed to 1 
and the central cell in the remaining four configurations 
000,001,110 and 111 is transformed to 0, except for the first 
cell   

 , which is transferred without change to the next 
generation. As we will observe in the following section, this 
direct transfer of first cell is responsible for the reversibility of 
system. The evolution of our random generator from random 
initial state is shown in Fig. 1. 

 
Fig. 1. The evolution of ECA60 from random initial configuration of size 

200 during 50 generations. 

The system is initialized by random global state, consisting 
of zeroes and ones (here our alphabet set is        ). 
Randomness implies that, starting from the beginning of 
system, one cannot predicate the next symbol in the sequence 
by observing its previous symbols. Statistically it means: 

                               
 

   


Here, randomness has been interpreted as a uniform 
distribution on the characters of alphabet which is led to the 
maximum possible entropy rate. 

The entropy function which measures the average of 
uncertainty can be defined over substring of global state of 
length , provided that conditions in (4) and (5) are satisfied 
[74]. 

                   

∑             

Furthermore, it is assumed that sequences are generated by 
the stationary stochastic process. The Ergodicity of generator is 
preserved due to the nature of local function in Elementary 
Cellular Automata [74]. 

These substrings are in fact the microstates of the system 
upon which macro state    is built. Technically, the famous 
method of describing macro state in terms of probabilistic mass 
function over its constituent microstates in statistical physics 
has been applied. Therefore, the probabilistic description of the 
system’s global state called           

 , defines the 
Probability Mass Function (PMF) over system’s microstates. 

Having in mind such probabilistic description of the 
system, the entropy of system is defined by (6) provided 
    [75]. 

    [  ]  ∑          
 

       


Actually    quantifies the disorder of n-length 
subsequences of the global string    at generation . Usually     
increases as  (the size of substrings or microstates) grows, but 
the action of local function  makes certain correlations, which 
mitigates the growth of disorder proportional to the length of 
microstates. The maximum entropy associated with each 
character which is selected from alphabet set , is         and 
consequently in the case of pure randomness, the maximum 
entropy of          for sequence    of length   over alphabet 
set  is expected to be observed. 

The correlation can be detected as the result of         
becomes less than         (the maximum amount of entropy 
per symbol when the characters are chosen from set ). But this 
reduction (          may be the result of correlations which 
have been built at much lower lengths. In order to detect the 
correlation specifically at length n, one can compare the 
consecutive gaps in entropy, computed on blocks of lengths 
        and . Consequently, correlation at length  in (7) 
is calculated. 

                                  

All correlations which have been formed at lengths less 
than   are considered in      , hence if there is correlation at 
length  ,     must be less than       and their difference is 
purely related to   (Correlation at length  ). Although there 
are different approaches for calculating correlations, one can 
observe the simple phenomenon which produces it at specific 
distance. Formally the emergence of correlation at length   
requires (8) to be met. 

                                  

The maximum amount of entropy per symbol is 
decomposed to the entropy rate of the system and all the 
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correlations which have formed at different lengths. 
Mathematically it means [74]: 

                 ∑    

V. ANALYZING THE RANDOM GENERATOR 

The modified version of ECA60 has been used as a 
Random Generator which transforms an initial random 
sequence into another random sequence in the next generation. 
This transformation is done against our normal expectation to 
observe the increment of regularity in the sequence, due to the 
applying of deterministic local function. Fortunately the system 
is able to preserve the initial randomness during its evolution in 
spite of having a considerable hamming distance between 
consecutive global states of the system. It means that, this 
conservation of randomness would not decrease the activity of 
system. 

As Lindgren [74] showed in Elementary Cellular 
Automata, due to the deterministic nature of local function, we 
expect the global entropy to be decreased during the evolution 
of system. Mathematically it means               
        this fact can be realized intuitively, since applying 
local function                in Elementary Cellular 
Automata is usually accompanied with the omission of 
variations in the system’s global state and would force system 
to converge to the very small subset of all possible global 
states. Obviously moving toward regularity and reduction of 
variations would lead to decrementing of the initial 
randomness. This behavior is not suitable for our purpose. On 
the other side it can be shown that        is zero for systems 
with conservative nature [74]. 

It is not hard to realize that        would be zero for 
almost reversible systems, i.e. entropy is constant during the 
evolution. A Cellular Automaton with rule R and range r is 
called almost reversible if R can be decomposed in the 
following way [74]: 

                                         

Or 

                                        

It means R is one to one if one can support it by giving it 
the information about its first or last argument. It is easy to 
show that our random generator is an almost reversible rule 
since its local function can be written as: 

      
    

      
     

        
       

    
       

  
   

Therefore    is reversible if we have an access to the value 

of     
  or  

 . In order to recover the global state at time   from 
the global state at time   , we can use the following equation 
inductively for              , when   is the size of 
system, if we have an access to the first bit of global state at 
time     

 ). 

  
       

    
        

Please remember that our Random Number Generator is an 
inhomogeneous type of ECA60 in which the state of first cell 
in the system is transformed to the next generation without 
change. In fact, having access to this single bit from the 
previous generation makes us able to recover all the bits of 
previous state by applying (13), iteratively. Generally in 
Almost Reversible Rule with range , one can recover the 
previous state by having access to the   -bits of the previous 
generation [74]. 

As a matter of fact we are taking the advantage of 
emergence to produce next random sequence from the current 
one. This emergence here manifests itself as complex global 
function induced by simultaneous applying of local function   
to all cells in the system. Generally there is no mathematical 
method to find the relation between global function   and local 
function  in such systems. 

Conservation of information in this Random Generator 
which is leaded to the conservation of initial randomness due 
to the (9) is related to the global reversibility of Cellular 
Automata. 

Studies by Hedlund [76] and Richardson [77] have shown 
that for Cellular Automaton A, A is injective if it is invertible 
(Reversible). Therefore reversibility in CA is equivalent to the 
injectivity of its global function. Furthermore A is injective if it 
is surjective and there is a close relation between injectivity 
and surjectivity of the Cellular Automaton A. 

Injectivity and Surjectivity for global functions of CA’s 
were studied by Moore [78] and Myhill [79] for the first time 
in the way of analyzing Garden of Eden (a global state without 
predecessor). Studies about the reversibility of dynamical 
systems have attracted many attentions on the part of scientists. 
We know that physical world at micro scale is governed by 
reversible rules. Surprisingly what can be observed at macro 
scale is irreversible. It is believed that this irreversibility at 
macro scale motivated by reversible rules at micro scale can be 
interpreted as a sign of Emergence in the system [60]. 

In addition to that, studies about Reversibility has found an 
extra importance after the seminal work of Landauer [80]. He 
found a relation between consuming energy and irreversibility 
in dynamical systems. In other words, he showed that 
dissipation of heat in the system which is the main source of 
consuming energy has its root in erasing information during the 
process in the system. Erasing information happens in 
irreversible systems, in which one cannot recover the 
information of previous state by having the information of 
current state. Although it is not hard to imagine that every 
irreversible process would be accompanied by erasing 
information, Landauer [80] predicted the minimum amount of 
energy dissipation associated with erasing one bit. Recently his 
prediction has been verified experimentally [81]. It has been 
shown by Bennett [82] that it is possible to do any computation 
reversibly. It means we have a reversible analogue for 
Universal Turing Machine. Then people started to analyze the 
advantages of reversibility in computing system [83]. It is 
exciting to know that in principle, reversible computation can 
be done with zero energy consumption. Many fundamental 
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limits to the computation process were realized better in the 
light of these studies [84]. Due to the importance of 
reversibility, many algorithms have been developed in order to 
detect it in the variety of dynamical systems [85], [86]. It has 
been shown that deciding the reversibility or its equivalent 
property in systems with dimension higher than one is 
impossible [87], [88]. 

In spite of conservative nature of this Random Generator, 
the initial random configuration is transformed into another 
random configuration with considerable hamming distance 
with previous global state. Furthermore the normality of 
random binary sequence is kept during the evolution of system. 
Let’s look at the definition of normality and normal sequence. 

Normality demands the balanced form of appearance for all 
patterns which means every block of digits of the same length 
occurs with the same frequency when all digits in the 
expansion are considered. Normality can be interpreted in the 
light of information theoretic measures. Although there are 
other similar concepts which are related to notion of normality, 
one has to know that random sequences must be normal in 
order to satisfy their expected unpredictability. 

It is expected that unpredictability demonstrates itself as 
our inability to forecast the dominant frequency of observing 
specific pattern. Normality can be described with the aid of 
other measures like block complexity, block entropy, etc. 

Definition [89]: the block complexity of a sequence with 
values in a finite alphabet is the function      , where 
     is the number of different blocks of length   that occur in 
the sequence. 

Clearly for a sequence over alphabet set   with length , 
block complexity satisfies the (14). 

           

For normal sequences, maximum block complexity is 
expected. Obviously low block complexity would not be seen 
in random sequence and can be responsible for generating 
periodic behavior. It is interesting to realize how block 
complexity as a local measure for sub-sequences can be used to 
predict the global behavior of the sequence. Morse and 
Hedlund proved the following theorem about this relation. 

Theorem [90]: if the complexity of a sequence 
satisfies            , then the sequence is ultimately 
periodic. 

The block complexity can easily be related to block 
entropy. In section 4, the block entropy for the global state of a 
Cellular Automaton was defined when the process responsible 
for generating it is ergodic. When the block complexity for 

blocks of length   over alphabet set   is equal to    , it can be 
concluded that every possible pattern of length   over this 
alphabet set has been generated; therefore, maximum entropy 
would be expected. There is a simple relation between block 
complexity and block entropy. Considering their definition we 
can simply reach to (15). 

         
        

       


Here   is a binary set therefore (14) can be simplified 
into              . As we discussed before, the entropy 
rate would be calculated when the length of block tends to 
infinity and all correlations are considered. Thus we have: 

        
     

 
       

        

         
        

        

 


When the length of block tends to infinity, the correlations 
among symbols at different lengths exhibit themselves as a 
restriction of freedom for choosing among the possible     
characters of alphabet. Therefore in the case of having 
correlations, the block complexity is not increased 
proportionally to the length of the block and the normality is 
broken. In other words for a sequence    of length   with 
correlations among its characters we have          . 

Since the correlation at specific length   is accompanied by 
the reduction of growth in block complexity at length   in 
contrast to its growth at length    it can be detected when 
the entropy rate is decreased at some specific length. In Fig. 2, 
the entropy rate over blocks of size 10 for a system of size 
10^6, over 100 generation has been shown. 

 
Fig. 2. The entropy rate for system of size 10^6 over blocks of size 10 for 

100 consecutive generations. 

The entropy rate shows fluctuations in the scale of 10^ (-5) 
over generations. Furthermore the lower value of entropy rate 
for blocks of size 10 is bigger than 0.99 which approves of the 
random nature of sequences generated by this random 
generator since the maximum entropy rate for our system 
is             . 

In this Random Generator, the block complexity is much 
more than the lower threshold predicated by Morse & Hedlund 

[90], [91] and it is around               Surprisingly here 
in spite of keeping considerable local variations and nearly 
maximum block complexity, the global state of system shows 
periodicity due to its conservative nature of system and the 
trajectory of global state starting from initial configuration 
meets the initial state again. Fortunately in its entire route from 
initial state, the normality at different lengths is preserved 
because the entropy rate does not depict considerable 
difference calculated on blocks of different sizes. In Fig. 3, the 
entropy rate for system of size 10^6 over 200 generation has 
been displayed when the entropy rate is calculated over blocks 
of different lengths ranging from 5 to 10. 
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Fig. 3. The entropy rate for system of size 10^6 over blocks of different 

lengths ranging from 5 to 10 during 200 generations. 

Fortunately the conservation of information does not 
impose restriction on the micro-dynamic of system and 
consecutive global states have considerable hamming distance. 
Please see the Fig. 4. 

 
Fig. 4. the hamming distance between consecutive generations for system of 

size 10000 during 10^5 generations. 

VI. DISCUSSION AND CONCLUSION 

The work of this Random Generator can be analyzed from 
different perspectives such as the Conservation of initial 
information during the evolution leads to reversible dynamic, 
the intrinsic parallelism (as the result of simultaneous updates 
of cells in the system), the efficient use of initial randomness 
and the ability of generating acceptable number of sequences 
which are equivalent to the initial configuration considering 
their randomness or their entropy rate. In other words this 
Random Generator is able to show varied behavior while it 
keeps its initial information during its evolution. 

Taking into account (9) as the Hamiltonian of this Random 
Generator, the maximum amount of entropy rate of the system 
can be decomposed into the entropy of the system or its 
random parts plus its regular parts which are the result of 
summing all of its correlations at different lengths. Actually in 
this system, the random part of the current global state is 
mapped into the random part of the next global state. The 
fluctuations in the entropy rate calculated over blocks of 
different lengths are negligible and can be the result of 
encoding randomness from one length into another.  
Furthermore due to its avoidance of building correlations or 

empowering them, the Normality of generated sequences is 
preserved during the evolution at all scales. 

Preservation of Normality at all scales and the conservative 
nature of this Random Generator, in spite of having 
considerable micro-activity turn this system into remarkable 
Random Generator. In addition, this Random Generator gets 
the benefits of intrinsic parallelism and proves to be technically 
easy to implement due to its simple logical local function. 
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