
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

148 | P a g e

www.ijacsa.thesai.org

Implementation of the RN Method on FPGA using

Xilinx System Generator for Nonlinear System

Regression

Intissar SAYEHI

University of Tunis Elmanar, Faculty of Mathematical,

Physical and Natural Sciences of Tunis

Laboratory of Electronics and Microelectronics, (E. μ. E. L),

FSM, Monastir, Tunisia

Okba TOUALI

University of Monastir,

National Engineering School of Monastir, Tunisia

Laboratory LARATSI, ENIM, Monastir, Tunisia

T. Saidani and B. Bouallegue

University of Monastir,

Faculty of Sciences of Monastir

Laboratory of Electronics and Microelectronics,

(E. μ. E. L), Tunisia

Mohsen MACHHOUT

University of Monastir, Faculty of Sciences of Monastir

Laboratory of Electronics and Microelectronics, (E. μ. E. L),

Tunisia

Abstract—In this paper, we propose a new approach aiming

to ameliorate the performances of the regularization networks

(RN) method and speed up its computation time. A considerable

rapidity in totaling calculation time and high performance were

accomplished through conveying difficult calculation charges to

FPGA. Using Xilinx System Generator, a successful HW/SW Co-

Design was constructed to accelerate the Gramian matrix

computation. Experimental results involving two real data sets of

Wiener-Hammerstein benchmark with process noise prove the

efficiency of the approach. The implementation results

demonstrate the efficiency of the heterogeneous architecture,

presenting a speed-up factor of 40-50 orders of time, comparing

to the CPU simulation.

Keywords—Machine learning; Reproducing Kernel Hilbert

Spaces (RKHS); regularization networks; FPGA; HW/SW Co-

simulation; systolic array architecture; PT326; Wiener-

Hammerstein benchmark

I. INTRODUCTION

In the last decade, Kernel methods [1] like Support Vector
Machine (SVM), Regularization Networks (RN) and Kernel
Principle Component Analysis (KPCA) [2] have become
typical to perform nonlinear systems identification.
Comparing with the traditional method, such as Neural
Networks [3], [4], Voltera series [5], and the Kernel methods
present an attractive alternative. They are well founded in a
rigid mathematical structure of Reproducing Kernel Hilbert
Spaces (RKHS) [6], [7], it overcomes convex optimization
problems. Furthermore, they are complete nonlinear regressors
that necessitate simply reasonable computational complexity.

Kernel methods like Support Vector Machines (SVM) [8]
proved a high efficiency in various fields because it reveals
some disadvantages that have to be tackled appropriately in
each appliance especially for big data sets. Recently, several
learning algorithms as the regularization networks (RN) are
inspired from the support vector machine and affected from

the need of reaching algorithms simpler to implement by
simplifying the quadratic programming QP problem in
training SVMs, which can be hard to solve.

The RN is most promising theoretically and practically but
suffers from the equality between the number of model
parameters and observations.

In this paper, an efficient Regularization Network model
was contributed for identifying nonlinear systems based on
random observations. A successful FPGA HW/SW Co-Design
for accelerating the Gramian matrix computation was
developed. Moreover, to avoid the information redundancy in
the training data set, an efficient statistical method was
employed to extract the useful information describing the most
frequently occurring observations.

An application to a known challenging nonlinear system
proves the rapidity and the low-resource-consuming hardware
of this model for modeling in RKHS space.

The paper is structured as: Firstly, the background of this
work is presented and discussed the different categories of
SVM implementations on FPGA board and its inefficiencies
and weakness. Then, we briefly evoke some basic concepts
from learning theory for identification of nonlinear systems in
reproducing Kernel Hilbert Space (RKHS). After discussing
RKHS proprieties and the representer theorem, the
regularization networks is described as a machine learning.
Then we present the designing tools exploited for the HW/SW
Co-design. After describing the move from RN algorithm to
RN model and the statistical Data Preprocessing method, we
introduce the acceleration of Gramian matrix computation and
we discuss the co-simulation performances. For better
understanding, the basic principles of systolic array
architecture and the serial multiplication were explained with
simple examples. Finally, we validate the work on a
challenging nonlinear system: the Wiener-Hammerstein
benchmark with process noise. We deal with the main results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

149 | P a g e

www.ijacsa.thesai.org

concerning time and error. Finally, we conclude with some
comments and perspectives.

II. BACKGROUND AND RELATED WORK

Kernel methods have become powerful tools for
classification and regression tasks due to its capability to be
trained from past examples and continually adapt to new
situations. In term of performances and aptitude to
generalization the Support Vector Machine (SVM) excels the
other Kernel method. Unfortunately the high computational
cost of the SVM running time is critically reliant on the
training dataset size and the problem‘s dimension. Also the
quadratic programming (QP) techniques are a severe and
computationally expensive task. There were much software
like Sequential Minimum Optimization (SMO) and
SVMLIGHT [9] have been proposed to resolve these
problems analytically but don‘t give an enormous
amelioration for real-time embedded systems. Consequently,
special hardware architectures are ordered to convene
limitations as inadequate resources exploitation plus little
power consumption. That‘s motivates researchers to
implement this method on programmable device to accelerate
the computation time especially in case of online training.

The embedded digital systems like microcontroller, Digital
Signal Processors (DSPs) or Field Programmable Gate Arrays
(FPGAs) permit attaining greater resource-performance
relation, but necessitating a careful implementation design.
The FPGAs are potent and greatly parallel processing and
allows a great flexibility and efficiency for different
applications. Lately they have showing considerable
performance against the General Purpose Processors (GPPs)
for a lot of purpose like machine learning algorithms [10],
[11]. In addition, Graphics Processing Unit (GPU) presents a
further proposal for elevated performance computing [12].
Comparing the FPGA and GPU implementations of diverse
algorithms and applications was the subject of many studies
[13], [14]. In the majority of times, FPGAs confirmed greater
performance. Even though GPUs profit from lower cost and
shorter development time prejudiced against to FPGAs, they
are inferior to FPGAs in terms of power consumptions. Next,
we reviewed existing and new practices in hardware
implementations aiming efficient implementations of the SVM
model on FPGA. It could be approximately classed in two
major groups. The first one called FPGA hardware accelerator
which implemented only one phase: training or validation
phase. The second group enclosed the FPGA implementations
of SVM for classification and regression.

A. FPGA: Hardware Accelerator

The training phase of the SVM algorithm has attracted a
community of investigators to exploit hardware accelerators
aiming a diminution in whole training time. J. Filho, et al. [15]
proposed a dynamically reconfigurable SVM architecture that
supports different sizes of training datasets. A modular
architecture was designed through the SMO algorithm to
obtain dynamic reconfiguration. The authors employed the
hardware-friendly Kernel function proposed in [16] and so the
Coordinate Rotation Digital Computer (CORDIC) algorithm
for Kernel computations. The platform exploited was Xilinx
Virtex-IV (XC4VLX25). The proposed reconfigurable

architecture attained 22.38% area economy with good enough
reconfiguration time punishment. To study the consequence of
fixed-point data representation on accuracy and classification
mistake, three diverse learning benchmarks were implemented
and accomplished speeding up factors of more than 12.53
times quicker than the software implementation for the
entirety training time.

L. Martinez, et al. [17] designed a heterogeneous
architecture to accelerate SVM training phase. To reduce the
dot-product computation time, these operations were affected
by the hardware coprocessor of Xtreme DSP Virtex- IV
whereas the hierarchy of SMO algorithm was implemented in
GPP. This application was a classification of the ADULT
dataset by the linear Kernel function. The expected
coprocessor design reached an acceleration of 178.7x
comparing software results. In another method, the SVM was
trained offline on software and then the trained data were
imported for exploitation for online classification on hardware
(FPGA board). There was a variety of techniques using
different implementations methods. The authors in [18] were
proposed an embedded hardware SVM implementation on
FPGA board: Xilinx Virtex-5, Spartan-3E. Thanks to the
hardware friendly Kernel function [16], the hardware design
was made easier and simpler targeting satellite onboard
applications. In the same way, the multiplication process was
substituted by simple shift operations that verified lower
resources exploitation of 167 slices. This hardware design
proved its efficiency in Satellite onboard application based on
NASA database.

B. FPGA platform for both SVM classification and regression

It was an intelligent idea to use the same platform for
different task: classification and regression.

The work of authors in [19] presented an excellent design
for an elevated performance and low resource consumption for
support vector classification and regression. The proposed
architecture has been considered as general use for embedded
applications, where the number of support vectors and the
resolution of the parameters can be arranged. In addition, there
is not a limit to the dimension of the input vectors and the
number of support vectors but the size of the FPGA. The
performance of this design was tested for a multi classification
problem on a basic COIL database and for regression problem
on sinus cardinal function. In both cases, the average error rate
for the hardware is between 0% and 0.02 %, which means that
the SVM gives better results when using the hardware then
MATLAB.

An additional hardware architecture for SVM algorithm
was offered for classification and regression problems [20]
and established on the hardware friendly Kernel [16]. A tree
structure founded on common Sum of Absolute Differences
(SAD) unit was used for diminishing clock cycles. Beginning
simulation study was executed on the accuracy of input
parameters by selecting fixed-point arithmetic, caring the
same classification accuracy level with no failure.

The designers were aiming a diminution in hardware
complication and power consumption through executing SVM
on FPGA with different ways instead of conventional

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

150 | P a g e

www.ijacsa.thesai.org

algorithm. They presented a different approach to surmount
this difficulty but the SVM still a complex method especially
when solving the quadratic programming problem which is
computationally expensive mission. In this work we suggest to
implement a Kernel method inspired from SVM which is the
regularization networks (RN). It is simpler and easier to
implement and gives similar performances.

In next paragraph, we present the theoretical basis of this
method and its advantages.

III. MODELING NONLINEAR SYSTEM IN REPRODUCING

KERNEL HILBERT SPACE (RKHS)

A. Overview of Statistical Learning Theory (SLT)

The principle of the Statistical Learning Theory [21] is to
find such function f modeling a system from a set of
observations

O = {(xi , yi)} , i =1..N composed of inputs xi and outputs yi .
This function has to reproduce the comportment of the system
by minimizing the functional risk.

,

() (, ()) (,)

X Y

R f V y f x P x y dxdy 
 (1)

The term V(y,f(x)) is named cost function. It determines
the variation among system output yi and the estimated output
f(x). The couple (X, Y) is composed of a random vectors and
(xi, y i) are independents samples. The risk R(f) cannot be
expected caused by ignoring P(x, y). To resolve that difficulty
we have to diminish the following term:

1

1
() (, ())

N

emp i i

i

R f V y f x
N 

 
 (2)

 However the frank minimization of Remp(f) in the
functions space H don‘t provide better estimation of R(f)
minimization and may leads to over fitting. As a solution,
Vapnik advanced the theory of structural risk minimization
(SRM). It punishes the empirical risk through a function
estimating the complexity of reserved model. This conducts to
minimizing the restriction definite by this equation:

1

1
min () (, ())

N

i i
f H

i

D f V y f x
N






 
 (3)

Where the first term measure how well the function (f) fits
the given data and the second term is the squared norm of (f)
in the RKHS space H, which controls the complexity
(smoothness) of the solution. The parameter λ is the
regularization parameter that balances the tradeoff between
the two terms.

The more significant is the solution regularity and not the

value of while it is not obvious to minimize the restraint (3)
on any random function space H, whatsoever is it with finite
or infinite dimension. Consequently, to conquer this trouble,
the space H will be regarded as a RKHS.

B. Reproducing Kernel Hilbert Space (RKHS) and the

representer theorem

We assume that X a random variable is estimated in the

space
dE  and we expect the existence of a function K

named Kernel function
2:K E  which is symmetric and

positive definite. Accordingly, there is [1] a function
: E H 

 that:

' '(,)) (), ()
H

K x x x x 
 (4)

H is the Reproducing Kernel Hilbert Space (RKHS) [7] of
Kernel K. Such space acquired distinguishing properties:

x E  and f H
(,.), ()

H
K x f f x

 (5)

 Thanks to representer theorem [22] the resolution of
the optimization difficulty offered by (3) in this space is
specified by:

 1

(,.)

N

opt i i

i

f a K x




 (6)

There are many types of Kernel functions which can be
considered as:

1) Linear Kernel
'(,)) ' K x x x x

 (7)

2) Polynomial Kernel
'(,)) (1 , ') K x x x x 

 (8)

Where,
*

 and
x,x '

 is an Euclidian scalar product.

3) Radial Basis Function (RBF) Kernel
2

2

'

' 2(,))





x x

K x x e 
 (9)

Where, σ is a real positive parameter.

4) Sigmoid Kernel

(,) tanh(. .)Tk x y x y c  (10)

The slope alpha and the intercept constant c are two
adjustable parameters in the sigmoid Kernel.

C. Learning Machine: Regularization networks (RN)

Machine is one of the most recent research areas of data
mining. The algorithm exploited to approximate the
parameters ai in (5) is entitled learning machine like
regularization network (RN) [23]. The exploited algorithm to

calculate approximately the parameters ia
is the

regularization network (RN). Compared to other Kernel
method that optimize the parameters iteratively like support
vector regression (SVR) the RN takes less time and offer
excellent performances in term of generalization ability. As
exposed, the optimization problem (3) can be resolved thanks
to the Kernel trick:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

151 | P a g e

www.ijacsa.thesai.org

2

1 1

(,)

N N

i j i jH
i j

f a a K x x

 



(11)

The cost function to be minimized by the RN is:

2(, ()) (())i i i iV y f x y f x 

(12)

The optimal function given by (5), where the sequence

 ia
 is:

 1

1

()

N

i ij j

i

a G y 



 
(13)

Where,
N NG  is the Gramian matrix associated to the

Kernel function K ,
((,)), , 1,...,ij i jG K x x i j N 

and Y is
the output vector. On the other hand, in matrix form:

1
1 1() , (,...,) , (,...,)   T T

N NA G NI Y A a a Y y y
(14)

To simplify the understood of this method, the next section
describes the move from RN algorithm to RN model and
presents the designing tools and with explanation of the
different components of the HW/SW Co-design.

IV. PROPOSED HW/SW CO-SIMULATION METHOD

A. Designing Tools

The used tools are MATLAB R2013a with Simulink from
MathWorks [24], System Generator 14.7 for DSP and ISE
14.7 from Xilinx. The System Generator runs within the
Simulink as simulation environment, which is part of
MATLAB mathematical package. Simulink is an interactive
software for modeling, simulating, and analyzing dynamical
linear and nonlinear systems in continuous time, sampled
time, or a hybrid of the two Systems. Thanks to the
incorporation of MATLAB and Simulink, we can simulate,
analyze, and revise our models in either environment at any
point.

Xilinx System Generator [25] provides a set of Simulink
blocks special for several hardware operations that could be
implemented on various Xilinx FPGAs. These blocks can be
used to simulate the functionality of the hardware system
using Simulink environment. One of the advantages of Xilinx
System Generator is the capability of generating HDL code
directly from your designs.

Xilinx System Generator employs fixed-point format to
describe all numerical values in the system and it provides
some blocks to transform data provided from the software side
of the simulation environment (Simulink) and the hardware
side (System Generator blocks). This is an essential concept to
understand throughout the design process using Xilinx System
Generator. In the next section, we explain the steps of RN
algorithm and how we transform it to a model that facilitates
the hardware implementation.

B. Regularization Networks: from algorithm to model

An algorithm is a predetermined set of rules for
conducting computational steps that produce a computational

effect. Whereas, a model is a framework for expressing
algorithms build from mathematical equations that is suitable
for a hardware implementation. The development of a model
in such way affords a simply understood system analysis for
the models customers. Fig. 1 presents the conceptual model of
the RN.

Fig. 1. Conceptual model of regularization networks.

In our case, the move from RN algorithm to RN model
provides efficient conveyance of system details and allows
easy extracting of system specifications. The modeling steps
pass from necessary improvement through design,
implementation, and testing. We obtain an executable model
that can be continually developed. After model development,
simulation shows whether the model works correctly.

Fig. 2. System generator project for regularization networks co-simulation.

The main goal of the RN modeling is the assigning of
complex computation tasks to the hardware. In fact, while
software and hardware implementation supplies are integrated
with the model, for instance fixed-point and timing behavior,
the code could be generated for embedded exploitation and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

152 | P a g e

www.ijacsa.thesai.org

generate test benches for system verification, saving time and
evading manually coded errors. Fig. 2 presents the Simulink
Co-simulation model. It contains Simulink and Xilinx system
generator components. The red blocks in the figure are
executed by the FPGA and the others executed through
Simulink.

The adopted approach allows connecting designs
straightforwardly to requirements and combining testing with
design to constantly identify and correct errors. The
reconfigurability of the FPGA and the flexibility of the
different blocks of SIMULINK allow the identification of
infinity of systems. In the next sections, we will specify the
blocks function.

C. Data Preprocessing

The problem of RN method is that the total of parameters
is identical to the number of observations. Therefore, to
reduce the number of parameters, the number of observations
must be reduced and must be a measure of the data spread.
Generally, in supervised learning the data are generated by
experimental measurement. Whereas, experimentation often
makes multiple measurements of the same thing and it is
subject to error.

Also, the sampling period of experimental process is small
and so the variance of the data sets is small. In this case, the
Statistical and mathematical tools [26] as the mean, the
median and mode for data quantitative analysis can describe
the central tendency of the data set and extract useful
information without redundancy. The suitable tool for this
work is the mode because it is a statistical term that refers to
the most frequently occurring number found in data set of
observations. It is found by identifying the most occurring rate
in the data set most often representing the data. If the range is
big, the central tendency is not as representative of the data as
it would be if the range was mall.

Therefore, we can divide the data set in categories as
shown in Fig. 3. The mode requires only those values of the
data points which can be put into categories. The new chosen
data set is composed of the mode of each category.

Fig. 3. Scheme of data reduction.

The frequency of each category is the number of data
points whose values are in that category, and the mode is the
category with the highest frequency. It is possible that more
than one category share the highest frequency in which case
the data is multimodal. In the training phase, we create a
MATLAB function block called Data Preprocessing that

receives a large data set and after statistical treatment;
produces the data set for Gramian matrix computation. To
demonstrate the efficiency of this approach, we executed
different testing scenarios to compare between the
performances of the real data and the treated data. The PT 326
[27] works as the hair dryer. It heats the air from the
atmosphere from 30ºC to 60ºC. In the simulation, we used a
single database input/single output (SISO) in the time domain
of PT326 process. In previous work [28] a comparative study
was established between two Kernel methods; SVM and RN.
The consequences demonstrate the competence of the learning
algorithms and confirm the excellence of the SVR method in
obtaining minimal prediction error and advantage of the RN to
gain the calculation time. Approximately, the performances of
SVM can be reached by the RN when the data sets are large
and with exploitation of a hardware platform for acceleration.
Therefore, the choice of implementing the RN method as
based on this study. Especially that RN is simpler to
implement. In next work, we call the RN method using the
reduction method RNR (Reduced). To compare RN to RNR,
we employ the same dataset; 100observations for the training
phase and 200 new observations for the validation phase. For
the RNR, the 100 observations will be reduced to only 10.
After obtaining the RKHS model coefficients, the validation
data set was chosen randomly and without any treatment to
augment the aptitude of generalization of the RKHS model.
The Kernel used is polynomial. The optimal parameter λ of
the machine learning was obtained by a cross validation
technique and it is equal to 0.0001. To evaluate numerically
the model performances, we exploit the Normalized Mean
Squared Error (NMSE):

2

1

2

1

(() ())

(())

N

i

N

i

y i y i

NMSE

y i











 (15)

Where, y(i) is the system output and ()y i is the predicted

output. In Table 1 the variation of corresponding Normalized
Mean Square Error (NMSE) are cited for each method.

TABLE. I. COMPARING THE RN AND RNR PERFORMANCES

For the same dataset and with the same Kernel and
machine learning parameter, the NMSE of RNR is much
lower than the NMSE of RN. Thanks to the efficient statistical
reduction method.

The following figures (Fig. 4 & 5) show the tough
resemblance between the real and expected output for the two
methods.

 Kernel type
EQMN

Training

EQMN

Testing

RN

Polynomial

8.6768 0.0056

RNR 0.0045 3.9030.10-05

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

153 | P a g e

www.ijacsa.thesai.org

Fig. 4. Training phase of RN and RNR.

Fig. 5. The testing phase of RN and RNR.

This technique was capable to build a vigorous model for
nonlinear system identification. The efficiency of this
approach resides in the use of new observations in the testing
phase and also facilitates the Gramian matrix implementation
in the next section.

D. Accelerating the Gramian matrix computation by a

Hardware/Software co-simulation

The Gramian matrix computation is a computationally
intensive operation in RN algorithm. Critical speed–up in
computation time can be attained by assigning computation
tasks to hardware. We present the adopted approach for
Gramian matrix computation and its basic principles.

1) Systolic array architecture for Gramian matrix

computation: The Parallel Matrix Multiplication [29]-[31] has

much different identification. In this work, we use the systolic

array architecture for the Gramian matrix computation. A

systolic array architecture is produced by the interconnection

of a set of attached data processing units (DPU) in a regular

way [32], [33]. In parallel, each unit or cell receives data from

its upstream neighbors to calculate a part of the result. After

that it saves the result inside itself and bypasses it downstream

neighbors as shown in Fig. 6.

Fig. 6. Principle of systolic array architecture.

The systolic array conception is a mixture between an
algorithm and a circuit that implements it. The systolic arrays
rely on synchronous data transfers. The individual nodes in
systolic array architecture are triggered by the arrival of new
data and always treat the data in exactly the same way. We
exploit the advantages of this architecture for the
implementation of the Gramian matrix on hardware platform.
In next paragraph, we explain the proper approach for the
matrix computation and the employment of the systolic array
method for implementation.

2) Basic principles of serial multiplication: The Gramian

matrix N NG  is like that:

((,)), , 1,...,ij i jG K x x i j N  (16)

Where, N is the number of observations and K is the
Kernel function that can be chosen either as linear or
polynomial Kernel. The Gramian matrix has to be calculated
in the training and testing phase. As the input vector X can be
1-Dimensional or 2-Dimensional Array, we proposed two
Architectures for Gramian matrix computation.

At first, we look at the 1-Dimensional vector
multiplication respecting its general constitution. According to
the expression of polynomial Kernel with first order:

(,) (1) ; , 1,..., , 1ij i j i jG K x x x x i j N       (17)

It consists to multiply the column vector X(n×1)
containing n rows and one column with its transpose X

t
 and

add one to the product. In this case, the product of an n
dimensional column vector (n×1) by its transpose (row vector
(1 × n)) is the Gramian matrix G. That is an (n × n) symmetric
and squared matrix. Mathematically, it is presented by the
following relationship:

(,) () () 1tG i j X i X j   (18)

The key idea here is to calculate the matrix G using the
column vector X and its transpose the row vector X

t
. The

dimension of the given matrices depends on the application.

0 10 20 30 40 50 60 70 80 90 100
3

3.5

4

4.5

5

5.5

6
training phase of RN

PT326 output

RN output

0 20 40 60 80 100 120 140 160 180 200
3

3.5

4

4.5

5

5.5

6

6.5

observations

testing phase of RN and RNReduced for PT326 with polynomial kernel

PT326 output

RN output

RNReduced output

https://en.wikipedia.org/wiki/Synchronous

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

154 | P a g e

www.ijacsa.thesai.org

For efficient implementation and maximum speed-up, the
matrix computation is based on systolic array architecture by
broadcasting elements of vector X and multiplying it by the
corresponding elements of vector X

t
. As a simple example,

supposing that the vector X is like that: X=[1 2 3] and its
transpose X

t
 =[1 2 3]. The steps of multiplication are shown in

Fig. 7.

Fig. 7. Example of 1-Dimensional vector multiplication.

From this example, it can be observed that C (i) the i
th

column of the matrix G is the product of the column vector X
by the i

th
element of this vector:

() () C i X X i

Also for the 2-Dimensional Array, the example of input
vector:

X(n×2)
Multiplied by its transpose X

t
 is presented in Fig. 8:

Fig. 8. An example of 2-Dimensional vector multiplication.

Concluding from this example, the expression of Gramian
matrix with 2-dimensional vector is a concatenation of column
vectors CG.

The i
th

 column of G is the result of sum and product of
columns (L1 and L2) and rows (C1 and C2). We can
generalize the calculation of each column vector CG of
Gramian matrix G as follow:

() 1 1() 2 2()CG i C L i C L i    (19)

As the input vector X will be streamed the column and
rows have no real mean so the previous expression will be
modified:

() 1 1() 2 2()CG i C C i C C i    (20)

The sequence of operations involved in the serial
multiplication is as follows:

1) Streaming the elements of column vector X by the input

buffer.

2) Calculating the i
th

 column of the matrix G by

multiplying each element of the streaming vector by its i
th

element.

3) Accumulating the multiplier output and writing back

the results to the output buffers.

4) Concatenating the n columns to construct the matrix G.
The Fig. 9 represents the system generator blocks for

(10×10) Gramian matrix computation using 2-d vector with
polynomial Kernel (second order).

Fig. 9. System generator blocks for Gramian matrix computation.

Before passing to Fig. 10, the type of Kernel function can
be selected by a manual switcher. The sigmoid and
polynomial Kernels are implemented as shown in Fig. 10:

X×X
t
= G

X×X
t
= G

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

155 | P a g e

www.ijacsa.thesai.org

Fig. 10. Selection of Kernel function.

For the polynomial Kernel, it can be chosen for the first or
second order by a manual switcher as in Fig. 11:

Fig. 11. Selection of the degree of polynomial Kernel function.

The design is able to calculate the Gramian matrix for any
system. The user has just to enter the process observations and
select the Kernel type. For the regularization parameter, it
could be calculated away or in simulation to choose the
suitable value. Next, the RN HW/SW Co-design (RN-Cosim)
will be tested on a challenging nonlinear system with process
noise.

V. IMPLEMENTATION RESULTS AND ANALYSIS

A. The Hardware/Software co-simulation steps

In this work, the RN-Cosim co-design was performed
using Xilinx System Generator and the Nexys 2 board, which
is a complete circuit board and equipped to exploit the circuit
development platform based on a Xilinx Spartan 3E FPGA.
As shown in Fig. 12, the on-board high-speed USB2 port,
jointly with a collection of I/O devices, data ports, and
development connectors, enable the conception of a wide
range of designs without the demand for any supplementary
components.

Fig. 12. The Nexys 2-board.

After completing the hardware system, the Simulink
environment was exploited to verify functionality of the
system. Simulink presents a very supple simulation
environment that allows building different testing scenarios.
After verifying the functionality of the RN-Cosim model for
the different hardware component, the generation of Co-
simulation module is executed. While building the hardware
system, ISE flow generates a bit-stream that will be later used
to configure the FPGA. When the compilation is completed, a
new library is created including one block that includes all the
functionality required for the system to be executed on the
FPGA. The generated library encapsulates the hardware
implementation of the RN-Cosim model, which is linked to a
bit-stream that will be downloaded into the FPGA during Co-
Simulation. The different hardware component is replaced by
the new block from the Co-simulation library. Fig. 13 contains
the final blocks for the Gramian matrix computation.

Fig. 13. System generator blocks using JTAG hardware co-simulation block

for Gramian matrix computation.

The two blue blocks after and before the hardware co-
simulation block, assure the serialization and deserialization of
matrix. Then the FPGA is connected to the system generator
via the Digilent USB JTAG Cable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

156 | P a g e

www.ijacsa.thesai.org

When the design is ready for co-simulation, system
generator will first download the bit-stream associated with
the block. Once the download completes, system generators
reads the inputs from Simulink simulation environment and
send them to the design on the board using the JTAG
connection. System generator then reads the output back from
JTAG and sends it to Simulink for displayed. When
simulation is completed, the results should be displayed as
shown and the results can be verified by comparing the
simulation output to the expected output. The model chosen is
a challenging nonlinear system identification; Wiener-
Hammerstein benchmark with process noise.

B. Description of the process and analysis of the

implementations results

The nonlinear system to be modeled is the Wiener-
Hammerstein benchmark with process noise [34]. This system
is challenging nonlinear system identification due to the
process noise present in the system. Moreover, the static
nonlinearity is not directly accessible from neither the
measured input or output, and the output dynamics are
difficult to invert due to the presence of a transmission zero.

The Wiener-Hammerstein benchmark is a well-known
block oriented system. As illustrated in Fig. 14, it contains a
static nonlinearity f(x) that is sandwiched in between two LTI
blocks R(s) and S(s).

Fig. 14. The Wiener-Hammerstein system with process noise.

The presence of the two LTI blocks results in a problem
that is harder to identify. The additive process noise ex(t) is
filtered white Gaussian noise sequence.

The input and output signals of the system are:

1) r : reference signal, signal loaded into the generator,

2) u: measured input signal,

3) y: measured output signal,

4) fs: the sample frequency.
Fig. 15 presents the plot of the measured output signal y

versus the measured input signal u from a thousand of values
with sampling time one second.

Fig. 15. The plot of Wiener-Hammerstein benchmark with process noise.

To construct the RKHS model, 100 observations are
employed for the training phase that will be reduced to only
10 observations. Then, 100 new observations are randomly
chosen for the validation phase. The data used for testing
phase are not statistically treated. The Kernels used are of
type: polynomial (first and second order) and sigmoid. The
input vector is a 2-dimensional vector. The optimal parameter
λ of the machine learning was obtained by a cross validation
technique and it is equal to 0.0001.

By examining the plots in Fig. 16, it can be remarked that
the two models outputs (RNR and RN-Cosim) are in
concordance with the Wiener benchmark output in the training
and testing phase. Comparing to benchmark process, the
deviation of the RNR and RN- Cosim is small. This illustrates
the excellent performances of the projected identification
method.

Table 2 gives the computation time (CT) and NMSE in
training and testing phase of RNR algorithm and RN-Cosim
with sigmoid and polynomial Kernel.

TABLE. II. COMPARING NMSE AND CT OF RNR AND RN-COSIM

 Kernel

type

NMSE

Training

NMSE

Testing

CT(s)

RNR
Polynomial

6.7980e-09 3.1847e-09 1.3884

RN-Cosim 3.1850e-07 7.1274e-07 0.033066

RNR

Sigmoid

7.9972e-09 3.1847e-08 1.4196

RN-Cosim 3.1850e-07 1.3886e-07 0.034018

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

157 | P a g e

www.ijacsa.thesai.org

Fig. 16. Training and validation phase of RN and RN-Cosim.

In terms of the model accuracy, the two models are
excellent but the RNR gives the lower NMSE comparing to
RN-Cosim that uses the fixed point arithmetic. The reduction
method based on statistical treatment improves the model
accuracy because the reduced data set reflects the central
tendency of data that decreases the model error and increases
its capacity of generalization.

Considering the simulation speed, compared with RNR
algorithm execution, the proposed RN-Cosim co-simulation
gives more than 40 times speedup.

Note that, in both cases of sigmoid and polynomial Kernel,
RN-Cosim gives significant simulation speedups thanks to the
association of Gramian matrix computation to hardware and
the immediate execution of the whole model contrary to the
sequential algorithm execution. The properties of our co-
design are listed in Table 3.

TABLE. III. COMPARING NMSE AND CT OF RNR AND RN-COSIM

As seen from Table 4, the resulting architecture requires
about 406 slices with 11% utilization from the available

resources and about 48 Bonded IOBs with 19% utilization.
Whereas the utilization of slice Flip Flop are approximately
insignificant and negligible. The proposed architecture has low
complexity and low resources consumption that enhanced
effectiveness in area and provide a good choice in terms of
low-cost hardware. The implemented RN-Cosim co-design
reaches 50 MHz as maximum frequency.

TABLE. IV. FPGA RESOURCES UTILIZATION IN THE HW/SW CO-
SIMULATION

Logic utilization Used Available Utilization

Number of slices 406 3584 11 %

Number of slice Flip Flops 16 7168 1 %

Number of Bonded IOBs 48 251 19 %

Number of GCLKS 2 24 8 %

Since the current implementation, it is possible to solve
various nonlinear system identification tasks in the RKHS
space.

VI. CONCLUSION AND FUTURE WORK

This article proposed efficient method of HW/SW Co-
simulation using Xilinx system generator. The basic principle
of the contribution is to improve the RKHS model
performances and to accelerate the computation task by
including hardware in the loop. Also we developed a new
reduction method to decrease the model errors. The
experiments prove that the co-design reach more than 40 times
speedup compared with the RN algorithm.

The principal improvement of this advance is the
opportunity of modeling and confirming the overall system
inside the identical design environment. Moreover, Simulink
offers a friendly graphics interface for flexible modeling and
simulation. The design was well organized into hierarchical
modules including the hardware and software components that
require rigorous verification all along the design flow.

Future works will incorporate the use of the Xilinx System
Generator development devices for the implementation of
another Kernel method like KPCA. As development in our co-

 Kernel

type

NMSE

Training

NMSE

Testing

CT(s)

RNR

Polynomial

6.7980e-09 3.1847e-09 1.3884

RN-Cosim 3.1850e-07 7.1274e-07 0.033066

RNR
Sigmoid

7.9972e-09 3.1847e-08 1.4196

RN-Cosim 3.1850e-07 1.3886e-07 0.034018

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

158 | P a g e

www.ijacsa.thesai.org

design, new Kernel function will be added in order to increase
the simulation accuracy. We will also apply RN-Cosim to
systems that are more complex with other FPGA type.

REFERENCES

[1] Bernhard Scholkopf and Alexander J. Smola, ―Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond‖,
MIT Press Cambridge, MA, USA 2001

[2] Yingwei Zhang, ―Enhanced statistical analysis of nonlinear processes
using KPCA, KICA and SVM‖, Chemical Engineering Science, Volume
64, Issue 5, March 2009, Pages 801-811.

[3] Mikhail Z. Zgurovsky , Yuriy P. Zaychenko, ―Neural Networks‖,
Chapter in The Fundamentals of Computational Intelligence: System
Approach Volume 652 of the series Studies in Computational
intelligence pp 1-37 Date: 02 July 2016.

[4] Alaa F. Sheta, ― A Comparison between Regression, Artificial Neural
Networks and Support Vector Machines for Predicting Stock Market
Index ‖, communication on (IJARAI) International Journal of Advanced
Research in Artificial Intelligence, Vol. 4, No.7, 2015

[5] C.A. Schmidt , S.I. Biagiola, J.E. Cousseau , J.L. Figueroa, ―Volterra-
type models for nonlinear systems identification‖ Journal of Applied
Mathematical Modelling Volume 38, Issues 9–10, 1 May 2014, Pages
2414–2421.

[6] Cristian Preda, ―Regression models for functional data by reproducing
kernel Hilbert spaces methods‖, Journal of Statistical Planning and
Inference Volume 137, Issue 3, 1 March 2007, Pages 829–840.

[7] Sergios Theodoridis ―Learning in Reproducing Kernel Hilbert Spaces‖,
Machine Learning, A Bayesian and Optimization Perspective 2015,
Pages 509–583.

[8] C.BURGES, ―A Tutorial on Support Vector Machines for Pattern
Recognition.‖ Review 1–43 on Kluwer Academic Publishers, Boston.
Manufactured in The Netherlands.

[9] John C. Platt. Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines. Technical report, Advances in
kernel methods - support vector learning, 1998.

[10] X.Zhang, Y.Zhang: ― GPU Implementation of Parallel Support Vector
Machine Algorithm with Applications to Intruder Detection‖ JOURNAL
OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

[11] ―System Generator for DSP‖: Getting Started Guide.

[12] "Medical Image Processing on The GPU–Past, Present and Future,"
Medical Image Analysis, vol. 17, pp. 1073-1094,2013.

[13] S. Asano, T. Maruyama, and Y. Yamaguchi, "Performance Comparison
of FPGA, GPU and CPU in Image Processing," in International
Conference on Field Programmable Logic and Applications, 2009. FPL
2009, 2009, pp. 126-131.

[14] E. Fykse, "Performance Comparison of GPU, DSP and FPGA
Implementations of Image Processing and Computer Vision Algorithms
in Embedded Systems," M.Sc. thesis, Department of Electronics and
Telecommunications, Norwegian University of Science and Technology,
2013.

[15] J. G. Filho, M. Raffo, M. Strum, and W. J. Chau, "A General-Purpose
Dynamically Reconfigurable SVM," in 2010 VI Southern
Programmable Logic Conference (SPL),2010, pp. 107-112.

[16] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, "Feed-Forward
Support Vector Machine without Multipliers," IEEE Transactions on
Neural Networks, vol. 17, pp. 1328-1331, 2006.

[17] L. Bustio-Martínez, R. Cumplido, J. Hernández-Palancar, and C.
Feregrino-Uribe, "On the Design of a Hardware-Software Architecture
for Acceleration of SVM‘s Training Phase," in Advances in Pattern
Recognition, ed: Springer,2010, pp. 281-290.

[18] A. H. M. Jallad and L. B. Mohammed, "Hardware Support Vector
Machine (SVM) for Satellite on-Board Applications," in 2014
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
2014, pp. 256-261.

[19] K. Nagarajan, B. Holland, A. D. George, K. C. Slatton, and H. Lam,
"Accelerating Machine-Learning Algorithms on FPGAs using Pattern-
Based Decomposition," Journal of Signal Processing Systems, vol. 62,
pp. 43-63, 2011.

[20] X. Pan, H. Yang, L. Li, Z. Liu, and L. Hou, "FPGA Implementation of
SVM Decision Function Based on Hardware-friendly Kernel," in
International Conference on Computational and Information Sciences ,
ICCIS 2013 Proceedings, 2013, pp. 133-136.

[21] V.Vapnik, ―An Overview of Statistical Learning Theory‖ , IEEE
TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5,
SEPTEMBER 1999.

[22] Wahba G. ―An introduction to model building with Reproducing Kernel
Hilbert Spaces‖. Technical report No. 1020. Department of Statistics,
University of Wisconsin-Madison; 2000.

[23] Theodoros Evgeniou, Massimiliano Pontil, Tomaso Poggio,
―Regularization Networks and Support Vector Machines‖ review on
journal of Advances in Computational Mathematics (1999).

[24] Inc., T. M.: ―Embedded MATLAB User‘s Guide‖ The MathWorks Inc,
2007.

[25] ―System Generator for DSP Getting Started Guide‖ UG639 (v 14.3)
October 16, 2012

[26] Chris Tsokos and Rebecca Wooten, ― Basic Statistics‖ The Language
and Art of Math 2016, Pages 265–327

[27] ‗Air Temperature Control‘, Laboratory Manual .

[28] Intissar Sayehi, Okba Touali, Belgacem Bouallegue,

[29] Rached Tourki. "A comparative study of two kernel methods: Support
Vector Regression (SVR) and Regularization Network (RN) and
application to a thermal process PT326", 2015 16th International
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (STA), 2015

[30] Albert-Jan N. Yzelman, Dirk Roose, Karl Meerbergen, ―Sparse
Matrix-Vector Multiplication: Parallelization and Vectorization‖,
Multicore and Many-Core Programming Approaches 2015, Pages 457–
476.

[31] Urban Borštnika, Joost VandeVondeleb, Valéry Webera, Jürg Huttera,
―Sparse matrix multiplication: The distributed block-compressed sparse
row library‖ Parallel Computing Volume 40, Issues 5–6, May 2014,
Pages 47–58

[32] Marco Maggioni and Tanya Berger-Wolf, ― Optimization techniques for
sparse matrix–vector multiplication on GPUs‖ Journal of Parallel and
Distributed Computing Volumes 93–94, July 2016, Pages 66–86.

[33] H. L. P. Arjuna Madanayake, Student Member, IEEE, and Len T.
Bruton, Fellow, IEEE, ― A Systolic-Array Architecture for First-Order
3-D IIR Frequency-Planar Filters‖ , IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO.
6, JULY 2008.

[34] Wei Jin, Chang N. Zhang and Hua Li, ― MAPPING MULTIPLE
ALGORITHMS INTO A RECONFIGURABLE SYSTOLIC ARRAY‖ ,
published in Electrical and Computer Engineering journal from
Canadian Conference CCECE 2008 on 4-7 May 2008, pages 001187 –
001192, ISSN - 0840-7789.

[35] M. Schoukens, J.P. Noel, ―Wiener-Hammerstein benchmark with
process noise‖, Workshop on Nonlinear System Identification
Benchmarks on April 25-27, 2016, Brussels, Belgium.

http://dl.acm.org/author_page.cfm?id=81100216460&coll=DL&dl=ACM&trk=0&cfid=600493958&cftoken=53031305
http://dl.acm.org/author_page.cfm?id=81100243402&coll=DL&dl=ACM&trk=0&cfid=600493958&cftoken=53031305
http://www.sciencedirect.com/science/article/pii/S0009250908005472
http://www.sciencedirect.com/science/article/pii/S0009250908005472
mailto:zgurovsm@hotmail.com
http://link.springer.com/book/10.1007/978-3-319-35162-9
http://link.springer.com/book/10.1007/978-3-319-35162-9
http://link.springer.com/bookseries/7092
http://link.springer.com/bookseries/7092
http://www.sciencedirect.com/science/article/pii/S0307904X13006537
http://www.sciencedirect.com/science/article/pii/S0307904X13006537
http://www.sciencedirect.com/science/article/pii/S0307904X13006537
http://www.sciencedirect.com/science/article/pii/S0307904X13006537
http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X
http://www.sciencedirect.com/science/journal/0307904X/38/9
http://www.sciencedirect.com/science/article/pii/S0378375806001443
http://www.sciencedirect.com/science/journal/03783758
http://www.sciencedirect.com/science/journal/03783758
http://www.sciencedirect.com/science/journal/03783758/137/3
http://www.sciencedirect.com/science/article/pii/B9780128015223000112
http://www.sciencedirect.com/science/book/9780128015223
http://www.sciencedirect.com/science/article/pii/B9780128029671000085
http://www.sciencedirect.com/science/article/pii/B9780128029671000085
http://www.sciencedirect.com/science/article/pii/B9780128021187000273
http://www.sciencedirect.com/science/article/pii/B9780128021187000273
http://www.sciencedirect.com/science/article/pii/B9780128021187000273
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/article/pii/S0167819114000428
http://www.sciencedirect.com/science/journal/01678191
http://www.sciencedirect.com/science/journal/01678191/40/5
http://www.sciencedirect.com/science/article/pii/S0743731516300028
http://www.sciencedirect.com/science/article/pii/S0743731516300028
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315/93/supp/C
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4554522
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4554522

