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Abstract—In this paper, an algorithm for resource utilization 

problem in cloud computing based on greedy method is 

presented. A privately-owned cloud that provides services to a 

huge number of users is assumed. For a given resource, hundreds 

or thousands of requests accumulate over time to use that 

resource by different users worldwide via the Internet. A prior 

knowledge of the requests to use that resource is also assumed. 

The main concern is to find the best utilization schedule for a 

given resource in terms of profit obtained by utilizing that 

resource, and the number of time slices during which the resource 

will be utilized. The problem is proved to be an NP-Complete 

problem. A greedy algorithm is proposed and analyzed in terms 

of its runtime complexity.   The proposed solution is based on a 

combination of the 0/1 Knapsack problem and the activity-

selection problem. The algorithm is implemented using Java. 

Results show good performance with a runtime complexity O((F-

S)nLogn). 

Keywords—Activity Selection; NP-Complete; Optimization 
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I. INTRODUCTION 

The term cloud computing has become a buzzword in the 
recent years due to the publicity and widespread of the term in 
all aspects of life. Cloud computing in its basic form is a model 
of on-demand provisioning of computing resources to users 
[1]. Resources such as computers, network servers, storage, 
applications, services, etc. are shared and reusable among 
users, this is referred to as Multi-tenancy [2]. Clouding has a 
great influence on the cost of operation of information 
technology (IT) infrastructure. Companies no longer need to 
spend on building on-premises IT departments to support their 
operations. Adopting the pay-as-you-go strategy, i.e. pay only 
for resource usage, will cut the costs of IT operations which 
include maintenance, employment, training, etc. In its simplest 
form, provisioning of resources via clouds is similar to the way 
of obtaining electricity from power stations without the need 
for everyone to establish his privately-owned station [3]. 

Resources lie at the heart of cloud computing. Resource 
utilization (pooling) is an important topic in the field of 
computer science, yet it is a hot research area. The need for 
resource utilization never stops as long resources are limited 
compared to the increasing demand on computers and 
computing. Resources are pooled to serve multiple consumers 
using a multi-tenant model, with different physical and virtual 
resources dynamically assigned and reassigned according to 
consumer demand [1]. 

Internet plays an important role in signifying the 
importance of resources. The demand on the Internet and the 
resources are ever increasing. The advent of cloud computing 
encouraged companies and computer professionals to use more 
and more resources even if they are not available on their 
premises. However, this might incur fees to be paid by those 
users, on the other hand, service providers have to find how to 
best utilize their resources so as they can serve more users 
during specific operation time. The main idea of cloud 
computing is about providing (leasing) services to users. The 
service providers can think in leasing their services in ways 
that maximize their overall profit. 

In this paper, a privately-owned cloud that provides 
services to a huge number of users is assumed. For a given 
resource, hundreds or thousands of requests accumulate over 
time to use that resource by different users worldwide via the 
Internet. The main concern is to find the best utilization 
schedule for a given resource in terms of profit obtained by 
utilizing that resource, and the number of time slices during 
which the resource will be utilized. A prior knowledge of the 
requests to use that resource is assumed. 

The proposed algorithm, based on a greedy method, is a 
combination between the solutions of two different problems, 
the Knapsack Problem and the Activity-Selection Problem. 
Based on these two techniques, this utilization problem is an 
NP-Complete problem. 

After formalizing the problem and defining it, a greedy 
algorithm to solve that problem is proposed. The proposed 
algorithm is then analyzed in terms of runtime complexity. 
Finally, experimental results are recorded and discussed. 

The paper is organized as follows: in Section II, a sample 
of related work is presented. In Section III, a mathematical 
formulation to the problem, the proposed algorithm and a 
detailed discussion of algorithm design, complexity, and NP-
Completeness of the problem are introduced. In Section IV, the 
experimental results are discussed. Finally, conclusion and 
future work are presented in sections V and VI. 

II. RELATED WORK 

Maya Hristakeva et al [4], presented a number of methods 
to solve the 0/1 Knapsack problem. One of the methods 
presented is the greedy method. At the beginning, the 0/1 
Knapsack problem is identified and formalized, then a greedy 
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algorithm is discussed, analyzed, and compared to other 
algorithms for different methods used in the research. 

In [5], authors described an algorithm which generates an 
optimal solution for the 0/1 integer Knapsack problem on the 
NCUBE hypercube computer. Experimental data which 
supports the theoretical claims were provided for large 
instances of the one- and two-dimensional Knapsack problems. 

In Knapsack problem, a number of items have to be chosen 
to fill the knapsack without exceeding its capacity so as the 
knapsack profit is maximized [6]. The 0-1 Knapsack Problem 
is formulated as follows: 

 The knapsack (K) has a capacity C. 

 The item (T) is a tuple 𝑇 < 𝑤, 𝑝 >, such that 𝑤 is the 
weight of the item and 𝑝 is the profit. 

 The objective is as in (1): 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝑐  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, … , 𝑛   (1) 

In [7], authors considered a setting in which they organized 
one or several group activities for a group of agents. Their goal 
was to assign agents to activities in a desirable way. They gave 
a general model, then studied some existence and optimization 
problems related to their solutions. Their results were positive 
as they found desirable assignments that proved to be tractable 
for several restrictions of the problem. 

The Weighted Activity-Selection problem is an 
optimization problem [8], and it is a variant of the Activity-
Selection Problem. Components of the problem are as follows: 

 An activity (A) is a tuple 𝐴 < 𝑠, 𝑓, 𝑝 >, such that 𝑠 is 
the activity’s start time, 𝑓 is its finish time, and 𝑝 is the 
profit of that activity. 

 For an activity 𝐴𝑖 , 𝑠𝑖 < 𝑓𝑖 𝑎𝑛𝑑 𝑝𝑖 ≥ 0. 

 Two activities 𝐴𝑖 and 𝐴𝑗 are said to be compatible if 

and only if 𝑠𝑗 ≥ 𝑓𝑖 or 𝑠𝑖 ≥ 𝑓𝑗. 

 A feasible schedule (S) is a set 𝑆 ⊆  {1, 2,· · · , 𝑛}, such 
that every two distinct numbers in S are compatible. 

 The profit (P) of a schedule (S) is 𝑃(𝑆)  = ∑ 𝑝𝑖𝑖∈𝑆 . 

 The objective is to find a schedule that maximizes the 
profit. 

III. ALGORITHM 

Assume a resource R, with a start time S, finish time F, 
maximum capacity C, and Profit per Unit of Weight PU. The 

resource R is expressed as a tuple 𝑅 < 𝑆, 𝐹, 𝐶, 𝑃𝑈 >. The 
resource is connected to a network, mainly a public network 
like the Internet, and receives a huge number of requests. Each 
request Q is identified by its Id, and has a start time S, finish 
time T, and weight W. The request 𝑄 is expressed as a tuple 
𝑄 < 𝑆, 𝐹, 𝑊 >. Two requests 𝑞𝑖 and 𝑞𝑗 are said to be 

compatible if and only if they do not overlap, i.e. the start time 
of the latter must be greater than or equal to the finish time of 
the former. 

The goal is to allocate the resource in a way that achieves 
best utilization within the following constraints: 

 Maximize the profit of utilization. 

 The weight of each request must not exceed the 
maximum capacity of the resource. 

 Start and finish time of selected requests must not go 
beyond the boundaries of start and finish time of the 
resource. 

 Requests must be compatible (must not overlap). 

Formally, Let: 

 𝑅 < 𝑆, 𝐹, 𝐶, 𝑃𝑈 >. 

 𝑄 is a set of Requests 𝑄 = {𝑞𝑖| 𝑖 = 1, 2, … , 𝑛}, such 
that 𝑞𝑖 < 𝑠𝑖 , 𝑓𝑖 , 𝑤𝑖 >, whereas 𝑠𝑖 , 𝑓𝑖, 𝑎𝑛𝑑 𝑤𝑖 are the start 
time, finish time, and weight of request 𝑖 respectively. 

 𝑥1, 𝑥2, … , 𝑥𝑛 are binary variables that indicate item 
selection (𝑥𝑖  =  1) or exclusion (𝑥𝑖  =  0). 

 𝑃 is the total profit of utilization, 𝑊 is the total weight 
of solution. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = ∑ 𝑥𝑖𝑝𝑖
𝑛
𝑖=1  , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑊 = ∑ 𝑥𝑖𝑤𝑖 ≤ 𝐶𝑛

𝑖=1  

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 =  𝑤𝑖(𝑓𝑖 − 𝑠𝑖) × 𝑃𝑈, 𝑠𝑖 ≥ 𝑆, 𝑓𝑖 ≤ 𝐹,  

𝑎𝑛𝑑 𝑥𝑖 = {
1 𝑠𝑖 ∩ 𝑓𝑗 = ∅ 𝑎𝑛𝑑 𝑤𝑖 ≤ 𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆, 𝐹, 𝐶, 𝑃𝑈, 𝑠𝑖 , 𝑓𝑖, 𝑤𝑖 , 𝑃, 𝑊, 𝑥𝑖 , 𝑝𝑖 ∈  ℕ. (2) 

A. Explanation 

Figure 1 shows the proposed algorithm. It comprises four 
phases, they are: (1) filtering, (2) maximum-request selection, 
(3) fill-right-to-max, and (4) swipe phase. Lines 7 – 11 
represent the filtering phase. In this phase, all requests that do 
not meet the constraints of the resource are filtered (removed 
from the request array). In other words, any request with a 
weight exceeds the capacity of the resources, or any request 
that exceeds any of the boundaries of start and finish time of 
the resource, is filtered. 
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Function: MaxProfitSchedule() 

Input: ReqArr: Requests Array, C, S, F: resource capacity, start time, and finish time 

Output: Schedule: Maximum profit schedule array 

1  left = S 𝐶1 

2  right = F 𝐶2 

3  available = C 𝐶3 

4    

5  while (!ReqArr.isEmpty()) 𝐶4(𝐾 + 1) 
6  {  

7      for each (Req in ReqArr){ 𝐶5𝐾(𝑛 + 1) 
8          if (Req.weight> available or Req.S< left or Req.F> right){ 𝐶6𝐾𝑛 
9              remove Req from ReqArr 𝐶7𝐾𝑛 
10          }  

11      }  

12    

13      sort (non-increasing order) ReqArr by profit 𝐾𝑛𝐿𝑜𝑔𝑛 
14  MaxReq = ReqArr[0] 𝐶8𝐾 
15      add MaxReq to Schedule 𝐶9𝐾 
16      remove ReqArr[0] from ReqArr 𝐶10𝐾 
17      available = available - MaxReq.weight 𝐶11𝐾 
18      left = MaxReq.F 𝐶12𝐾 
19    

20      sort (non-decreasing order) ReqArr by start time  𝐾𝑛𝐿𝑜𝑔𝑛 
21      for each (Req in ReqArr){ 𝐶13𝐾(𝑛 + 1) 
22          if (Req.S>=left and Req.weight<= available){ 𝐶14𝐾𝑛 
23              add Req to Schedule 𝐶15𝐾𝑛 
24              remove Req from ReqArr 𝐶16𝐾𝑛 
25              available = available - Req.weight 𝐶17𝐾𝑛 
26              left = Req.F 𝐶18𝐾𝑛 
27          }  

28      }  

29    

30      for each (Req in ReqArr){ 𝐶19𝐾(𝑛 + 1) 
31          if (Req.S>= MaxReq.F){ 𝐶20𝐾𝑛 
32              remove Req from ReqArr 𝐶21𝐾𝑛 
33          }  

34      }  

35      right = MaxReq.S 𝐶22𝐾 
36      left = S 𝐶23𝐾 
37  }  

38  sort (in non-decreasing) Schedule by start time 𝑛𝐿𝑜𝑔𝑛 
39  return Schedule 𝐶24 

Fig. 1. The proposed algorithm with time complexity for each step 

This step is necessary, as it minimized the size of the 
request array through different iterations of the selection 
process. Back to line 5, a while statement is used to keep on 
iterating until the request array is empty. 

Lines 13 – 18 represent the maximum-request selection 
phase. It starts by sorting the request array in a non-increasing 
order by profit. This makes the maximum compatible request 
at the first location of the request array. As a result of the 
filtering phase, the first request is guaranteed to be compatible 
as long its weight is less than the capacity of the resource, or 
the remaining capacity in later iterations, and it does not 
exceed the boundaries of the start and finish time of the 
resource. In line 15, the request is added to the schedule, 
removed from the request array in line 16, its weight is 
deducted from the resource capacity in line 17, and set the new 
start time to the end time of that maximum request. 

The third phase is the fill-right-to-max phase. Here, all the 
time slots to the right of the maximum request selected in the 
previous phase are filled. This phase starts in line 20 by sorting 
the request array in a non-decreasing order by start time of 
requests. Lines 21-23 iterate through all requests, pick up any 
request with weight less than the remaining capacity of the 
resource, and with a start time greater than or equal to the new 
left boundary. Until now, it is the finish time of the maximum 
request already selected in line 14. Finally, add this request in 
line 23 to the schedule. Similar to the previous phase, any 
request selected to be in the schedule: (1) is removed from the 
request array (line 24), (2) its weight is deducted again from 
the available resource capacity (line 25), and (3) its finish time 
is set temporarily to be the new resource start time (line 26). 

Lines 30-35 signal the start of the swipe phase. The phase 
comprises iteration through the request array and removing all 
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requests that have start time greater than or equal to the finish 
time of the maximum request. These requests are still existent 
in the request array because they are incompatible with either 
the maximum request or the request to the right of it. They are 
removed to resize the array and start a new iteration with a 
fewer number of requests. In line 35, the start time of the 
maximum request is set to be the new resource finish time, and 
in line 36, the left boundary of the resource is set back again to 
the original start time S. 

Iterations continue until there are no remaining requests in 
the request array, i.e. size of the request array equals zero. The 
iteration will stop at that point. The schedule array will be 
sorted in a non-decreasing order by start time in line 39, and 
the schedule is returned to the calling routine. 

B. Analysis 

All the terms that precede line 5 are constants. Line 5 
introduces the term 𝐾 which is the number of iterations of the 
outer while loop. The loop is expected to run until the request 
array is empty. In the worst case, the number of iterations is 
equal to the number of intervals of the resource (𝐾 = 𝐹 − 𝑆). 
Assuming that all requests have weights less than or equal to 
the capacity of the resource, each with start and finish time 
within the boundaries of the start and finish time of the 
resource, and assuming a worst-case scenario in which the 
maximum request, i.e. the one with the highest profit, is at the 
end of the request array. 

According to the algorithm and the assumptions 
aforementioned, the filtering phase will not be applicable to the 
initial setting, so no items will be removed from the request 
array. In the maximum-request selection phase, the maximum 
request will be added to the schedule and removed from the 
request array. The third phase, fill-right-to-max, is not 
applicable too, as long there are no requests to the right of the 
maximum request that has been just selected. Similarly, the 
swipe phase will not be applicable, because there remains no 
further requests right to the maximum request that are not 
added to the schedule. Repeating the same steps for 𝐾 times, an 
empty array is obtained. 

The sorting of an array takes 𝑛𝐿𝑜𝑔𝑛 time, in case of using 
one of the sorting algorithms of logarithmic runtimes such as 
the merge sort. When implementing the algorithm using Java, 

the Collections.sort() method is used which has 

𝑂(𝑛𝐿𝑜𝑔𝑛) runtime complexity according to Java 
documentation [9]. Complexity of the algorithm is evaluated as 
follows: 

 

The largest term of equation (3) is 𝐾𝑛𝐿𝑜𝑔𝑛, so the effort of 
the algorithm is 𝑂(𝐾𝑛𝐿𝑜𝑔𝑛), As mentioned earlier 𝐾 = 𝐹 −
𝑆, thus, the effort of the algorithm is expressed as 𝑂((𝐹 −
𝑆)𝑛𝐿𝑜𝑔𝑛). 

The value of 𝐹 − 𝑆 in the complexity of the algorithm is 
arguable in the sense whether to remove it from the equation or 
not. In the case of cloud computing and resource utilization, 
time slots can be measured in seconds or in factions of 
seconds. If a time slot of 1 second is assumed, for a 24-hour 
duty for a resource is equal to 86,400 seconds (time slots), 
which approximates to 84K of slots. This implies that the value 
𝐹 − 𝑆 might be influential in the calculation of the complexity 

of the algorithm, so the complexity is expressed as 𝑂((𝐹 −

𝑆)𝑛𝐿𝑜𝑔𝑛). 

C. Example 

Consider a privately-owned cloud with a number of 
resources available to users each with a capacity 𝐶 and is due 
to service hours starting from 𝑆 =  08: 00 and ending in 
𝐹 =  18: 00. The service provider charges an amount of 𝑃𝑈  
as a profit per unit of weight. Assume 15 requests with 
capacities less than the resource capacity (𝐶) and random 
profits as shown in Fig. 2 (a). 

The initial schedule for the resource utilization is shown in 
Fig. 2 (d). When running the algorithm that is shown in Fig. 1, 
the following steps will be executed: 

1) Step 1:Sort the requests according to their profits in a 

non-increasing order. The result is shown in Fig. 2 (b). 

2) Step 2:Comprises the following steps: 

 Add request 𝑅11 which has the maximum profit to the 
schedule and remove it from the requests array. The 
schedule will look like as in Fig. 2 (d) row MRS. 

 Sort the remaining requests in a non-decreasing order 
according to their starting times as shown in Fig. 2 (c). 

3) Step 3: Select a request that can be fit after 𝑅11 into the 

schedule, i.e. its start time is equal to or greater than the finish 

time of 𝑅11. 𝑅2 is the selected request. The result of adding 𝑅2 

into the schedule is shown in Fig. 2 (d) row FRM. Now, 𝑅2 

must be removed from the requests array. Then, any further 

requests' selections must be after the finish time of 𝑅2. 

4) Step 4: Repeat step-3 for each request that follows 𝑅2, 

each time changing the new start time to the selected request’s 

finish time until no further requests can be added. Each time, 

the selected request is removed out of the request array. After 

this step 𝑅3 and 𝑅7 will be selected to the schedule as in Fig. 2 

(c), second row labelled MRS. 

5) Step 4: Repeat step-1 to step-4 until no requests can be 

scheduled. The final schedule will be as shown in Fig. 2 (d) 

row Final, with a total profit of 1630. 
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ID Interval Profit  ID Interval Profit  ID Interval Profit 

𝑅1 08-09 250  𝑅11 10-14 680  𝑅1 08-09 250 

𝑅2 13-14 200  𝑅12 11-14 550  𝑅14 08-12 400 

𝑅3 14-16 300  𝑅4 12-14 500  𝑅5 09-12 250 

𝑅4 12-14 500  𝑅8 15-18 450  𝑅9 09-13 220 

𝑅5 09-12 250  𝑅14 08-12 400  𝑅6 11-13 180 

𝑅6 11-13 180  𝑅3 14-16 300  𝑅12 11-14 550 

𝑅7 17-18 200  𝑅5 09-12 250  𝑅4 12-14 500 

𝑅8 15-18 450  𝑅10 13-16 250  𝑅2 13-14 200 

𝑅9 09-13 220  𝑅1 08-09 250  𝑅13 13-15 150 

𝑅10 13-16 250  𝑅9 09-13 220  𝑅10 13-16 250 

𝑅11 10-14 680  𝑅7 17-18 200  𝑅3 14-16 300 

𝑅12 11-14 550  𝑅2 13-14 200  𝑅8 15-18 450 

𝑅13 13-15 150  𝑅6 11-13 180  𝑅7 17-18 200 

𝑅14 08-12 400  𝑅13 13-15 150  𝑅15 17-18 100 

𝑅15 17-18 100  𝑅15 17-18 100     

                   (a)               (b)                        (c) 

 Intervals 

Phase 8 9 10 11 12 13 14 15 16 17 18 

Initial            

MRS   𝑹𝟏𝟏      

FRM   𝑹𝟏𝟏 𝑹𝟐     

FRM   𝑹𝟏𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟕 

Final 𝑹𝟏  𝑹𝟏𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟕 

                                                             (d) 

Fig. 2. An example: (a) Array of 15 requests to use the resources. (b) Requests array after sorting it in a non-increasing order by requests weights.  (c) The 

requests array after removing the request with the maximum profit and sorting it again in a non-decreasing order by the starting times of requests. (d) Resources 
Utilization Schedule; each row represents a phase: Initial: initial setting; MRS: Maximum-Request Selection Phase; FRM: Fill-Right-to-Max phase; Final: Final 

Resource Utilization Schedule 

D. NP-Completeness 

Proving the NP-Completeness of a certain problem 
represented in a language 𝐿 is a two-step process. It involves 

[10]: (1) Prove that 𝐿 ∈ 𝑁𝑃, and (2) Prove that 𝐿 𝑖𝑠 NP-Hard: 
if there exists a language 𝐿′, such that 𝐿′ ∈ 𝑁𝑃𝐶, and 𝐿 is 
polynomially reducible to  𝐿′   (𝐿′ ≤𝑝 𝐿). 

To check that 𝐿 ∈ 𝑁𝑃, for the language 𝐿 that doesn’t have 
a polynomial-time solution, there must be an algorithm (𝐴) that 
checks (verifies) a proposed solution in polynomial time. This 
algorithm is referred to as the certificate [11]. 

Figure 3 shows a list of known NP-Complete problems 
organized in a hierarchical way so as a problem in a lower level 
of the tree can be polynomially reduced to a problem in a 
higher level of the hierarchy. 

 
Fig. 3. A family tree of reductions [11] 
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Theorem 1. The resource utilization problem is an NP-
Complete problem. 

Proof. According to the two steps discussed earlier: 

 The result of running the algorithm shown in Fig. 1 can 
be taken to verify that it is a solution to the resource 
utilization problem. An iteration through the requests 
in the final schedule checking that all of them are 
within the start and finish time of the resource working 
hours takes only 𝑂(𝑛) for the verification process. This 
means that a solution is verifiable in a polynomial time, 

which means that Resource-Utilization-Problem ∈ 𝑁𝑃. 

 To prove that the resource-allocation problem is NP-
Hard, there must be a language (𝐿′) to which 𝐿 can be 
polynomially reduced, that is the knapsack problem. 
To show that Knapsack-Problem ≤𝑝 Resource-

Utilization-Problem, resource utilization must be 
casted to an instance of a knapsack problem to prove 
its NP-Hardness. Let the resource R be the knapsack 
and the capacity of the resource be the knapsack 
capacity. The objective is to fill the knapsack, or utilize 
the resources, with requests so as they do not exceed 
the capacity of the knapsack and the profit is 
maximized. It is clear that the resource-allocation 
problem is polynomially reducible to the knapsack 
problem, Knapsack-Problem ≤𝑝 Resource-Utilization-

Problem, which means that the resource utilization 
problem is NP-Hard. 

From the previous two steps, it is proven that the resources 
utilization problem is an NP-Complete problem, 

Resource-Utilization-Problem ∈ 𝑁𝑃𝐶. ∎  ∎ 

IV. RESULTS 

Tests are conducted on different datasets of sizes: 32K, 
64K, 128K, 256K, 512K, 1M, 2M and 3MB. Datasets with 
further sizes were unable to be tested on the test PC due to 
memory limitations. Tests are performed on an Intel Core(TM) 
i5-3230M CPU with 2.60 GHz and 3 MB cache with 4 cores 
and 4 GB of RAM (3.86 GB is only usable). The PC runs 
windows 7 Enterprise edition 32-bit. The application program 
was written in Java. Datasets are generated by the application 
and saved to disk files. 

Each dataset is experimented 10 times, runtime in 
milliseconds is recorded, and an average runtime is calculated. 
The parameters are set as follows: start time: 1, finish time: 
86400 (number of seconds in a 24-hour period), resource 
capacity: 1048576, PU: 0.001. Results are shown in TABLE I. 

Figure 4 shows the experimental runtimes depicted directly 
from TABLE I. 

Figure 5 shows the chart for the asymptotic                     
notation 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛), such that 𝑆 = 1 and 𝐹 = 86,400. 

It is clear from both Fig. 4 and Fig. 5 that experimental and 
theoretical results converge. Many terms are removed from the 
asymptotic notation of the runtime complexity when calculated 
theoretically, and that explains the slight difference in shape 
between the two graphs. 

TABLE I.  RUNTIMES (IN MILLISECONDS) OF 10 EXPERIMENTS 

CONDUCTED ON DIFFERENT SIZES OF DATASETS 
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Fig. 4. Runtime chart for experimental results 

Figure 6 shows the asymptotic 𝑂(𝑛𝐿𝑜𝑔𝑛) complexity. To 
depict this graph, the same dataset sizes in the experiments 
need to be used, then the shapes of the graphs are compared 
together. This step is very important in the way it is used to 
prove the asymptotic notation. The controversial part in the 
asymptotic notation was the use of 𝐹 − 𝑆 in the expression. 
Some can argue that this term is not influential in the notation. 
Mathematically, based on the values used above for both S and 
F, the difference is very high which may lead the results of 
comparing both notations to differ significantly. 
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Fig. 5. Theoretical runtime graph when complexity is expressed as 𝑂((𝐹 −
𝑠)𝑛𝐿𝑜𝑔𝑛) 

 

Fig. 6. Theoretical runtime graph for complexity 𝑂(𝑛𝐿𝑜𝑔𝑛) 

From Fig. 5 and Fig. 6, it is clear that the value 𝐹 − 𝑆 is 
highly influential on the overall performance of the algorithm, 
which means it is not possible to be removed from the runtime 
complexity. Thus the complexity is asymptotically expressed 
as 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). This proves our asymptotic runtime 
complexity of the proposed algorithm. 

V. CONCLUSION 

In this paper, an optimization to the resources utilization 
problem in cloud computing is suggested. The solution is based  
on a combination between the 0/1 Knapsack problem and the 
activity-selection problem. The problem was introduced. The 
proposed greedy algorithm was analyzed, and then 
implemented using a Java program. It is proved that the 

problem is an NP-Complete problem. Asymptotically, the 
algorithm’s runtime is  𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). Results proved the 
asymptotic runtime is 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). An important part in 
that proof was whether to omit the term 𝐹 − 𝑆 from the 
asymptotic notation or not by depicting two charts for the 
notations, one for 𝑂(𝑛𝐿𝑜𝑔𝑛) and the other for 𝑂((𝐹 −
𝑆)𝑛𝐿𝑜𝑔𝑛). The second notation was proved when compared to 
the experimental runtime results. 

VI. FUTURE WORK 

As a future work, the algorithm could be implemented on a 
supercomputer. The scheduling can be made online by using 
preemption to obtain better utilization and higher profits. As an 
addition to the currently suggested model, different pricing 
schemes for different periods of the working hours might be 
added, for example the peak time. 
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