
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

336 | P a g e

www.ijacsa.thesai.org

Resource Utilization in Cloud Computing as an

Optimization Problem

Ala'a Al-Shaikh, Hebatallah Khattab, Ahmad Sharieh, Azzam Sleit

Department of Computer Science

King Abdulla II School for Information Technology

University of Jordan

Amman, Jordan

Abstract—In this paper, an algorithm for resource utilization

problem in cloud computing based on greedy method is

presented. A privately-owned cloud that provides services to a

huge number of users is assumed. For a given resource, hundreds

or thousands of requests accumulate over time to use that

resource by different users worldwide via the Internet. A prior

knowledge of the requests to use that resource is also assumed.

The main concern is to find the best utilization schedule for a

given resource in terms of profit obtained by utilizing that

resource, and the number of time slices during which the resource

will be utilized. The problem is proved to be an NP-Complete

problem. A greedy algorithm is proposed and analyzed in terms

of its runtime complexity. The proposed solution is based on a

combination of the 0/1 Knapsack problem and the activity-

selection problem. The algorithm is implemented using Java.

Results show good performance with a runtime complexity O((F-

S)nLogn).

Keywords—Activity Selection; NP-Complete; Optimization

Problem; Resource Utilization; 0/1 Knapsack

I. INTRODUCTION

The term cloud computing has become a buzzword in the
recent years due to the publicity and widespread of the term in
all aspects of life. Cloud computing in its basic form is a model
of on-demand provisioning of computing resources to users
[1]. Resources such as computers, network servers, storage,
applications, services, etc. are shared and reusable among
users, this is referred to as Multi-tenancy [2]. Clouding has a
great influence on the cost of operation of information
technology (IT) infrastructure. Companies no longer need to
spend on building on-premises IT departments to support their
operations. Adopting the pay-as-you-go strategy, i.e. pay only
for resource usage, will cut the costs of IT operations which
include maintenance, employment, training, etc. In its simplest
form, provisioning of resources via clouds is similar to the way
of obtaining electricity from power stations without the need
for everyone to establish his privately-owned station [3].

Resources lie at the heart of cloud computing. Resource
utilization (pooling) is an important topic in the field of
computer science, yet it is a hot research area. The need for
resource utilization never stops as long resources are limited
compared to the increasing demand on computers and
computing. Resources are pooled to serve multiple consumers
using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
consumer demand [1].

Internet plays an important role in signifying the
importance of resources. The demand on the Internet and the
resources are ever increasing. The advent of cloud computing
encouraged companies and computer professionals to use more
and more resources even if they are not available on their
premises. However, this might incur fees to be paid by those
users, on the other hand, service providers have to find how to
best utilize their resources so as they can serve more users
during specific operation time. The main idea of cloud
computing is about providing (leasing) services to users. The
service providers can think in leasing their services in ways
that maximize their overall profit.

In this paper, a privately-owned cloud that provides
services to a huge number of users is assumed. For a given
resource, hundreds or thousands of requests accumulate over
time to use that resource by different users worldwide via the
Internet. The main concern is to find the best utilization
schedule for a given resource in terms of profit obtained by
utilizing that resource, and the number of time slices during
which the resource will be utilized. A prior knowledge of the
requests to use that resource is assumed.

The proposed algorithm, based on a greedy method, is a
combination between the solutions of two different problems,
the Knapsack Problem and the Activity-Selection Problem.
Based on these two techniques, this utilization problem is an
NP-Complete problem.

After formalizing the problem and defining it, a greedy
algorithm to solve that problem is proposed. The proposed
algorithm is then analyzed in terms of runtime complexity.
Finally, experimental results are recorded and discussed.

The paper is organized as follows: in Section II, a sample
of related work is presented. In Section III, a mathematical
formulation to the problem, the proposed algorithm and a
detailed discussion of algorithm design, complexity, and NP-
Completeness of the problem are introduced. In Section IV, the
experimental results are discussed. Finally, conclusion and
future work are presented in sections V and VI.

II. RELATED WORK

Maya Hristakeva et al [4], presented a number of methods
to solve the 0/1 Knapsack problem. One of the methods
presented is the greedy method. At the beginning, the 0/1
Knapsack problem is identified and formalized, then a greedy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

337 | P a g e

www.ijacsa.thesai.org

algorithm is discussed, analyzed, and compared to other
algorithms for different methods used in the research.

In [5], authors described an algorithm which generates an
optimal solution for the 0/1 integer Knapsack problem on the
NCUBE hypercube computer. Experimental data which
supports the theoretical claims were provided for large
instances of the one- and two-dimensional Knapsack problems.

In Knapsack problem, a number of items have to be chosen
to fill the knapsack without exceeding its capacity so as the
knapsack profit is maximized [6]. The 0-1 Knapsack Problem
is formulated as follows:

 The knapsack (K) has a capacity C.

 The item (T) is a tuple 𝑇 < 𝑤, 𝑝 >, such that 𝑤 is the
weight of the item and 𝑝 is the profit.

 The objective is as in (1):

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝑐

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, … , 𝑛 (1)

In [7], authors considered a setting in which they organized
one or several group activities for a group of agents. Their goal
was to assign agents to activities in a desirable way. They gave
a general model, then studied some existence and optimization
problems related to their solutions. Their results were positive
as they found desirable assignments that proved to be tractable
for several restrictions of the problem.

The Weighted Activity-Selection problem is an
optimization problem [8], and it is a variant of the Activity-
Selection Problem. Components of the problem are as follows:

 An activity (A) is a tuple 𝐴 < 𝑠, 𝑓, 𝑝 >, such that 𝑠 is
the activity’s start time, 𝑓 is its finish time, and 𝑝 is the
profit of that activity.

 For an activity 𝐴𝑖 , 𝑠𝑖 < 𝑓𝑖 𝑎𝑛𝑑 𝑝𝑖 ≥ 0.

 Two activities 𝐴𝑖 and 𝐴𝑗 are said to be compatible if

and only if 𝑠𝑗 ≥ 𝑓𝑖 or 𝑠𝑖 ≥ 𝑓𝑗.

 A feasible schedule (S) is a set 𝑆 ⊆ {1, 2,· · · , 𝑛}, such
that every two distinct numbers in S are compatible.

 The profit (P) of a schedule (S) is 𝑃(𝑆) = ∑ 𝑝𝑖𝑖∈𝑆 .

 The objective is to find a schedule that maximizes the
profit.

III. ALGORITHM

Assume a resource R, with a start time S, finish time F,
maximum capacity C, and Profit per Unit of Weight PU. The

resource R is expressed as a tuple 𝑅 < 𝑆, 𝐹, 𝐶, 𝑃𝑈 >. The
resource is connected to a network, mainly a public network
like the Internet, and receives a huge number of requests. Each
request Q is identified by its Id, and has a start time S, finish
time T, and weight W. The request 𝑄 is expressed as a tuple
𝑄 < 𝑆, 𝐹, 𝑊 >. Two requests 𝑞𝑖 and 𝑞𝑗 are said to be

compatible if and only if they do not overlap, i.e. the start time
of the latter must be greater than or equal to the finish time of
the former.

The goal is to allocate the resource in a way that achieves
best utilization within the following constraints:

 Maximize the profit of utilization.

 The weight of each request must not exceed the
maximum capacity of the resource.

 Start and finish time of selected requests must not go
beyond the boundaries of start and finish time of the
resource.

 Requests must be compatible (must not overlap).

Formally, Let:

 𝑅 < 𝑆, 𝐹, 𝐶, 𝑃𝑈 >.

 𝑄 is a set of Requests 𝑄 = {𝑞𝑖| 𝑖 = 1, 2, … , 𝑛}, such
that 𝑞𝑖 < 𝑠𝑖 , 𝑓𝑖 , 𝑤𝑖 >, whereas 𝑠𝑖 , 𝑓𝑖, 𝑎𝑛𝑑 𝑤𝑖 are the start
time, finish time, and weight of request 𝑖 respectively.

 𝑥1, 𝑥2, … , 𝑥𝑛 are binary variables that indicate item
selection (𝑥𝑖 = 1) or exclusion (𝑥𝑖 = 0).

 𝑃 is the total profit of utilization, 𝑊 is the total weight
of solution.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = ∑ 𝑥𝑖𝑝𝑖
𝑛
𝑖=1 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑊 = ∑ 𝑥𝑖𝑤𝑖 ≤ 𝐶𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 = 𝑤𝑖(𝑓𝑖 − 𝑠𝑖) × 𝑃𝑈, 𝑠𝑖 ≥ 𝑆, 𝑓𝑖 ≤ 𝐹,

𝑎𝑛𝑑 𝑥𝑖 = {
1 𝑠𝑖 ∩ 𝑓𝑗 = ∅ 𝑎𝑛𝑑 𝑤𝑖 ≤ 𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆, 𝐹, 𝐶, 𝑃𝑈, 𝑠𝑖 , 𝑓𝑖, 𝑤𝑖 , 𝑃, 𝑊, 𝑥𝑖 , 𝑝𝑖 ∈ ℕ. (2)

A. Explanation

Figure 1 shows the proposed algorithm. It comprises four
phases, they are: (1) filtering, (2) maximum-request selection,
(3) fill-right-to-max, and (4) swipe phase. Lines 7 – 11
represent the filtering phase. In this phase, all requests that do
not meet the constraints of the resource are filtered (removed
from the request array). In other words, any request with a
weight exceeds the capacity of the resources, or any request
that exceeds any of the boundaries of start and finish time of
the resource, is filtered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

338 | P a g e

www.ijacsa.thesai.org

Function: MaxProfitSchedule()

Input: ReqArr: Requests Array, C, S, F: resource capacity, start time, and finish time

Output: Schedule: Maximum profit schedule array

1 left = S 𝐶1

2 right = F 𝐶2

3 available = C 𝐶3

4

5 while (!ReqArr.isEmpty()) 𝐶4(𝐾 + 1)
6 {

7 for each (Req in ReqArr){ 𝐶5𝐾(𝑛 + 1)
8 if (Req.weight> available or Req.S< left or Req.F> right){ 𝐶6𝐾𝑛
9 remove Req from ReqArr 𝐶7𝐾𝑛
10 }

11 }

12

13 sort (non-increasing order) ReqArr by profit 𝐾𝑛𝐿𝑜𝑔𝑛
14 MaxReq = ReqArr[0] 𝐶8𝐾
15 add MaxReq to Schedule 𝐶9𝐾
16 remove ReqArr[0] from ReqArr 𝐶10𝐾
17 available = available - MaxReq.weight 𝐶11𝐾
18 left = MaxReq.F 𝐶12𝐾
19

20 sort (non-decreasing order) ReqArr by start time 𝐾𝑛𝐿𝑜𝑔𝑛
21 for each (Req in ReqArr){ 𝐶13𝐾(𝑛 + 1)
22 if (Req.S>=left and Req.weight<= available){ 𝐶14𝐾𝑛
23 add Req to Schedule 𝐶15𝐾𝑛
24 remove Req from ReqArr 𝐶16𝐾𝑛
25 available = available - Req.weight 𝐶17𝐾𝑛
26 left = Req.F 𝐶18𝐾𝑛
27 }

28 }

29

30 for each (Req in ReqArr){ 𝐶19𝐾(𝑛 + 1)
31 if (Req.S>= MaxReq.F){ 𝐶20𝐾𝑛
32 remove Req from ReqArr 𝐶21𝐾𝑛
33 }

34 }

35 right = MaxReq.S 𝐶22𝐾
36 left = S 𝐶23𝐾
37 }

38 sort (in non-decreasing) Schedule by start time 𝑛𝐿𝑜𝑔𝑛
39 return Schedule 𝐶24

Fig. 1. The proposed algorithm with time complexity for each step

This step is necessary, as it minimized the size of the
request array through different iterations of the selection
process. Back to line 5, a while statement is used to keep on
iterating until the request array is empty.

Lines 13 – 18 represent the maximum-request selection
phase. It starts by sorting the request array in a non-increasing
order by profit. This makes the maximum compatible request
at the first location of the request array. As a result of the
filtering phase, the first request is guaranteed to be compatible
as long its weight is less than the capacity of the resource, or
the remaining capacity in later iterations, and it does not
exceed the boundaries of the start and finish time of the
resource. In line 15, the request is added to the schedule,
removed from the request array in line 16, its weight is
deducted from the resource capacity in line 17, and set the new
start time to the end time of that maximum request.

The third phase is the fill-right-to-max phase. Here, all the
time slots to the right of the maximum request selected in the
previous phase are filled. This phase starts in line 20 by sorting
the request array in a non-decreasing order by start time of
requests. Lines 21-23 iterate through all requests, pick up any
request with weight less than the remaining capacity of the
resource, and with a start time greater than or equal to the new
left boundary. Until now, it is the finish time of the maximum
request already selected in line 14. Finally, add this request in
line 23 to the schedule. Similar to the previous phase, any
request selected to be in the schedule: (1) is removed from the
request array (line 24), (2) its weight is deducted again from
the available resource capacity (line 25), and (3) its finish time
is set temporarily to be the new resource start time (line 26).

Lines 30-35 signal the start of the swipe phase. The phase
comprises iteration through the request array and removing all

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

339 | P a g e

www.ijacsa.thesai.org

requests that have start time greater than or equal to the finish
time of the maximum request. These requests are still existent
in the request array because they are incompatible with either
the maximum request or the request to the right of it. They are
removed to resize the array and start a new iteration with a
fewer number of requests. In line 35, the start time of the
maximum request is set to be the new resource finish time, and
in line 36, the left boundary of the resource is set back again to
the original start time S.

Iterations continue until there are no remaining requests in
the request array, i.e. size of the request array equals zero. The
iteration will stop at that point. The schedule array will be
sorted in a non-decreasing order by start time in line 39, and
the schedule is returned to the calling routine.

B. Analysis

All the terms that precede line 5 are constants. Line 5
introduces the term 𝐾 which is the number of iterations of the
outer while loop. The loop is expected to run until the request
array is empty. In the worst case, the number of iterations is
equal to the number of intervals of the resource (𝐾 = 𝐹 − 𝑆).
Assuming that all requests have weights less than or equal to
the capacity of the resource, each with start and finish time
within the boundaries of the start and finish time of the
resource, and assuming a worst-case scenario in which the
maximum request, i.e. the one with the highest profit, is at the
end of the request array.

According to the algorithm and the assumptions
aforementioned, the filtering phase will not be applicable to the
initial setting, so no items will be removed from the request
array. In the maximum-request selection phase, the maximum
request will be added to the schedule and removed from the
request array. The third phase, fill-right-to-max, is not
applicable too, as long there are no requests to the right of the
maximum request that has been just selected. Similarly, the
swipe phase will not be applicable, because there remains no
further requests right to the maximum request that are not
added to the schedule. Repeating the same steps for 𝐾 times, an
empty array is obtained.

The sorting of an array takes 𝑛𝐿𝑜𝑔𝑛 time, in case of using
one of the sorting algorithms of logarithmic runtimes such as
the merge sort. When implementing the algorithm using Java,

the Collections.sort() method is used which has

𝑂(𝑛𝐿𝑜𝑔𝑛) runtime complexity according to Java
documentation [9]. Complexity of the algorithm is evaluated as
follows:

The largest term of equation (3) is 𝐾𝑛𝐿𝑜𝑔𝑛, so the effort of
the algorithm is 𝑂(𝐾𝑛𝐿𝑜𝑔𝑛), As mentioned earlier 𝐾 = 𝐹 −
𝑆, thus, the effort of the algorithm is expressed as 𝑂((𝐹 −
𝑆)𝑛𝐿𝑜𝑔𝑛).

The value of 𝐹 − 𝑆 in the complexity of the algorithm is
arguable in the sense whether to remove it from the equation or
not. In the case of cloud computing and resource utilization,
time slots can be measured in seconds or in factions of
seconds. If a time slot of 1 second is assumed, for a 24-hour
duty for a resource is equal to 86,400 seconds (time slots),
which approximates to 84K of slots. This implies that the value
𝐹 − 𝑆 might be influential in the calculation of the complexity

of the algorithm, so the complexity is expressed as 𝑂((𝐹 −

𝑆)𝑛𝐿𝑜𝑔𝑛).

C. Example

Consider a privately-owned cloud with a number of
resources available to users each with a capacity 𝐶 and is due
to service hours starting from 𝑆 = 08: 00 and ending in
𝐹 = 18: 00. The service provider charges an amount of 𝑃𝑈
as a profit per unit of weight. Assume 15 requests with
capacities less than the resource capacity (𝐶) and random
profits as shown in Fig. 2 (a).

The initial schedule for the resource utilization is shown in
Fig. 2 (d). When running the algorithm that is shown in Fig. 1,
the following steps will be executed:

1) Step 1:Sort the requests according to their profits in a

non-increasing order. The result is shown in Fig. 2 (b).

2) Step 2:Comprises the following steps:

 Add request 𝑅11 which has the maximum profit to the
schedule and remove it from the requests array. The
schedule will look like as in Fig. 2 (d) row MRS.

 Sort the remaining requests in a non-decreasing order
according to their starting times as shown in Fig. 2 (c).

3) Step 3: Select a request that can be fit after 𝑅11 into the

schedule, i.e. its start time is equal to or greater than the finish

time of 𝑅11. 𝑅2 is the selected request. The result of adding 𝑅2

into the schedule is shown in Fig. 2 (d) row FRM. Now, 𝑅2

must be removed from the requests array. Then, any further

requests' selections must be after the finish time of 𝑅2.

4) Step 4: Repeat step-3 for each request that follows 𝑅2,

each time changing the new start time to the selected request’s

finish time until no further requests can be added. Each time,

the selected request is removed out of the request array. After

this step 𝑅3 and 𝑅7 will be selected to the schedule as in Fig. 2

(c), second row labelled MRS.

5) Step 4: Repeat step-1 to step-4 until no requests can be

scheduled. The final schedule will be as shown in Fig. 2 (d)

row Final, with a total profit of 1630.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

340 | P a g e

www.ijacsa.thesai.org

ID Interval Profit ID Interval Profit ID Interval Profit

𝑅1 08-09 250 𝑅11 10-14 680 𝑅1 08-09 250

𝑅2 13-14 200 𝑅12 11-14 550 𝑅14 08-12 400

𝑅3 14-16 300 𝑅4 12-14 500 𝑅5 09-12 250

𝑅4 12-14 500 𝑅8 15-18 450 𝑅9 09-13 220

𝑅5 09-12 250 𝑅14 08-12 400 𝑅6 11-13 180

𝑅6 11-13 180 𝑅3 14-16 300 𝑅12 11-14 550

𝑅7 17-18 200 𝑅5 09-12 250 𝑅4 12-14 500

𝑅8 15-18 450 𝑅10 13-16 250 𝑅2 13-14 200

𝑅9 09-13 220 𝑅1 08-09 250 𝑅13 13-15 150

𝑅10 13-16 250 𝑅9 09-13 220 𝑅10 13-16 250

𝑅11 10-14 680 𝑅7 17-18 200 𝑅3 14-16 300

𝑅12 11-14 550 𝑅2 13-14 200 𝑅8 15-18 450

𝑅13 13-15 150 𝑅6 11-13 180 𝑅7 17-18 200

𝑅14 08-12 400 𝑅13 13-15 150 𝑅15 17-18 100

𝑅15 17-18 100 𝑅15 17-18 100

 (a) (b) (c)

 Intervals

Phase 8 9 10 11 12 13 14 15 16 17 18

Initial

MRS 𝑹𝟏𝟏

FRM 𝑹𝟏𝟏 𝑹𝟐

FRM 𝑹𝟏𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟕

Final 𝑹𝟏 𝑹𝟏𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟕

 (d)

Fig. 2. An example: (a) Array of 15 requests to use the resources. (b) Requests array after sorting it in a non-increasing order by requests weights. (c) The

requests array after removing the request with the maximum profit and sorting it again in a non-decreasing order by the starting times of requests. (d) Resources
Utilization Schedule; each row represents a phase: Initial: initial setting; MRS: Maximum-Request Selection Phase; FRM: Fill-Right-to-Max phase; Final: Final

Resource Utilization Schedule

D. NP-Completeness

Proving the NP-Completeness of a certain problem
represented in a language 𝐿 is a two-step process. It involves

[10]: (1) Prove that 𝐿 ∈ 𝑁𝑃, and (2) Prove that 𝐿 𝑖𝑠 NP-Hard:
if there exists a language 𝐿′, such that 𝐿′ ∈ 𝑁𝑃𝐶, and 𝐿 is
polynomially reducible to 𝐿′ (𝐿′ ≤𝑝 𝐿).

To check that 𝐿 ∈ 𝑁𝑃, for the language 𝐿 that doesn’t have
a polynomial-time solution, there must be an algorithm (𝐴) that
checks (verifies) a proposed solution in polynomial time. This
algorithm is referred to as the certificate [11].

Figure 3 shows a list of known NP-Complete problems
organized in a hierarchical way so as a problem in a lower level
of the tree can be polynomially reduced to a problem in a
higher level of the hierarchy.

Fig. 3. A family tree of reductions [11]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

341 | P a g e

www.ijacsa.thesai.org

Theorem 1. The resource utilization problem is an NP-
Complete problem.

Proof. According to the two steps discussed earlier:

 The result of running the algorithm shown in Fig. 1 can
be taken to verify that it is a solution to the resource
utilization problem. An iteration through the requests
in the final schedule checking that all of them are
within the start and finish time of the resource working
hours takes only 𝑂(𝑛) for the verification process. This
means that a solution is verifiable in a polynomial time,

which means that Resource-Utilization-Problem ∈ 𝑁𝑃.

 To prove that the resource-allocation problem is NP-
Hard, there must be a language (𝐿′) to which 𝐿 can be
polynomially reduced, that is the knapsack problem.
To show that Knapsack-Problem ≤𝑝 Resource-

Utilization-Problem, resource utilization must be
casted to an instance of a knapsack problem to prove
its NP-Hardness. Let the resource R be the knapsack
and the capacity of the resource be the knapsack
capacity. The objective is to fill the knapsack, or utilize
the resources, with requests so as they do not exceed
the capacity of the knapsack and the profit is
maximized. It is clear that the resource-allocation
problem is polynomially reducible to the knapsack
problem, Knapsack-Problem ≤𝑝 Resource-Utilization-

Problem, which means that the resource utilization
problem is NP-Hard.

From the previous two steps, it is proven that the resources
utilization problem is an NP-Complete problem,

Resource-Utilization-Problem ∈ 𝑁𝑃𝐶. ∎ ∎

IV. RESULTS

Tests are conducted on different datasets of sizes: 32K,
64K, 128K, 256K, 512K, 1M, 2M and 3MB. Datasets with
further sizes were unable to be tested on the test PC due to
memory limitations. Tests are performed on an Intel Core(TM)
i5-3230M CPU with 2.60 GHz and 3 MB cache with 4 cores
and 4 GB of RAM (3.86 GB is only usable). The PC runs
windows 7 Enterprise edition 32-bit. The application program
was written in Java. Datasets are generated by the application
and saved to disk files.

Each dataset is experimented 10 times, runtime in
milliseconds is recorded, and an average runtime is calculated.
The parameters are set as follows: start time: 1, finish time:
86400 (number of seconds in a 24-hour period), resource
capacity: 1048576, PU: 0.001. Results are shown in TABLE I.

Figure 4 shows the experimental runtimes depicted directly
from TABLE I.

Figure 5 shows the chart for the asymptotic
notation 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛), such that 𝑆 = 1 and 𝐹 = 86,400.

It is clear from both Fig. 4 and Fig. 5 that experimental and
theoretical results converge. Many terms are removed from the
asymptotic notation of the runtime complexity when calculated
theoretically, and that explains the slight difference in shape
between the two graphs.

TABLE I. RUNTIMES (IN MILLISECONDS) OF 10 EXPERIMENTS

CONDUCTED ON DIFFERENT SIZES OF DATASETS

D
S

Experiment

A
v

e
ra

g
e

1

2

3

4

5

6

7

8

9

1
0

6
4

K

9
5
.0

2

9
0
.0

4

6
8
.1

7

7
6
.0

3

7
8
.2

7

7
2
.2

5

7
6
.6

7

7
6
.3

8

7
3
.6

3

7
0
.5

4

7
7
.7

0

1
2
8

K

2
5
6

.3
9

2
0
5

.8
3

2
0
4

.0
5

1
9
7

.3
1

2
0
0

.5
4

1
9
9

.6
0

2
0
8

.7
0

2
0
4

.1
5

1
9
9

.4
6

2
0
1

.7
7

2
0
7

.7
8

2
5
6

K

4
6
3

.8
8

3
5
0

.2
9

3
5
2

.4
8

3
4
7

.6
3

3
4
7

.6
3

3
4
5

.2
4

3
5
2

.9
6

3
7
1

.4
7

3
7
3

.0
5

3
7
3

.0
4

3
6
7

.7
7

5
1
2

K

9
5
7

.3
6

9
3
6

.6
2

9
3
6

.5
7

9
4
3

.6
6

1
0
3
1

.6
8

9
6
7

.5
5

9
2
3

.5
8

9
2
3

.0
1

9
2
4

.0
4

9
2
7

.5
2

9
4
7

.1
6

1
M

2
1
0
3

.9
7

2
0
9
3

.1
4

2
0
6
6

.1
8

2
1
2
6

.7
7

2
0
6
2

.1
6

2
0
6
6

.8
1

2
1
2
3

.0
3

2
0
7
9

.7
8

2
0
6
9

.1
0

2
1
1
9

.2
0

2
0
9
1

.0
1

2
M

4
6
5
2

.0
5

4
7
3
7

.7
4

4
5
1
0

.6
2

4
9
3
1

.9
8

4
7
4
3

.4
8

4
4
7
8

.7
3

4
7
8
7

.8
4

4
6
7
8

.8
9

4
5
0
1

.9
9

4
9
1
1

.6
4

4
6
9
3

.4
9

3
M

9
9
6
0

.1
3

8
5
8
2

.9
6

8
3
9
6

.8
9

8
7
6
6

.3
0

8
7
7
3

.5
3

8
5
5
8

.7
9

9
3
9
6

.2
4

8
6
0
3

.1
2

9
4
8
4

.0
8

8
7
0
4

.0
5

8
9
2
2

.6
1

Fig. 4. Runtime chart for experimental results

Figure 6 shows the asymptotic 𝑂(𝑛𝐿𝑜𝑔𝑛) complexity. To
depict this graph, the same dataset sizes in the experiments
need to be used, then the shapes of the graphs are compared
together. This step is very important in the way it is used to
prove the asymptotic notation. The controversial part in the
asymptotic notation was the use of 𝐹 − 𝑆 in the expression.
Some can argue that this term is not influential in the notation.
Mathematically, based on the values used above for both S and
F, the difference is very high which may lead the results of
comparing both notations to differ significantly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

342 | P a g e

www.ijacsa.thesai.org

Fig. 5. Theoretical runtime graph when complexity is expressed as 𝑂((𝐹 −
𝑠)𝑛𝐿𝑜𝑔𝑛)

Fig. 6. Theoretical runtime graph for complexity 𝑂(𝑛𝐿𝑜𝑔𝑛)

From Fig. 5 and Fig. 6, it is clear that the value 𝐹 − 𝑆 is
highly influential on the overall performance of the algorithm,
which means it is not possible to be removed from the runtime
complexity. Thus the complexity is asymptotically expressed
as 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). This proves our asymptotic runtime
complexity of the proposed algorithm.

V. CONCLUSION

In this paper, an optimization to the resources utilization
problem in cloud computing is suggested. The solution is based
on a combination between the 0/1 Knapsack problem and the
activity-selection problem. The problem was introduced. The
proposed greedy algorithm was analyzed, and then
implemented using a Java program. It is proved that the

problem is an NP-Complete problem. Asymptotically, the
algorithm’s runtime is 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). Results proved the
asymptotic runtime is 𝑂((𝐹 − 𝑆)𝑛𝐿𝑜𝑔𝑛). An important part in
that proof was whether to omit the term 𝐹 − 𝑆 from the
asymptotic notation or not by depicting two charts for the
notations, one for 𝑂(𝑛𝐿𝑜𝑔𝑛) and the other for 𝑂((𝐹 −
𝑆)𝑛𝐿𝑜𝑔𝑛). The second notation was proved when compared to
the experimental runtime results.

VI. FUTURE WORK

As a future work, the algorithm could be implemented on a
supercomputer. The scheduling can be made online by using
preemption to obtain better utilization and higher profits. As an
addition to the currently suggested model, different pricing
schemes for different periods of the working hours might be
added, for example the peak time.

REFERENCES

[1] P. Mell and T. Grance, "The NIST Definition of Cloud Computing,
Recommendations of the National Institute of Standards and
Technology," National Institute of Standards and Technology, U.S.
Department of Commerce, 2011.

[2] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau and J. Xu,
"Multi-Tenancy in Cloud Computing," in 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, 2014.

[3] Azeez, S. Perera, D. Gamage, R. Linton and P. Siriwardana, "Multi-
Tenant SOA Middleware for Cloud Computing," in 3rd International
Conference on Cloud Computing, Florida, 2010.

[4] M. Hristakeva and D. Shrestha, "Shrestha, Different Approaches to
Solve the 0/1 Knapsack Problem," in Midwest Instruction and
Computing Symposium, 2005.

[5] L. J., S. E. and S. S., "A HYPERCUBE ALGORITHM FOR THE 0/1
KNAPSACK PROBLEM," Journal of Parallel & Distributed
Computing, vol. 5, no. 4, pp. 438-456, 1988.

[6] D. Pisinger, Algorithms for Knapsack Problems, PhD Thesis, Dept. of
Computer Science: Univeristy of Copenhagen, 1995.

[7] D. A., E. E., K. S., L. J., S. J. and W. G., "Group Activity Selection
Problem," Lecture Notes in Computer Science, vol. 7695, pp. 157-170,
2012.

[8] V. K. Patel and M. H. Pandya, "Learning of Scheduling Algorithm with
Maximum Compatible Activity or Minimum Makespan," International
Journal of Engineering Development and Research (IJEDR), vol. 1, no.
2, pp. 121-124, 2014.

[9] Java Documentation, "Class Collections, Java Doc," Oracle, [Online].
Available:
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html.
[Accessed 28 12 2015].

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, 3rd ed., The MIT Press, 2009.

[11] T. H. Cormen, Algorithms Unlocked, The MIT Press, 2013.

