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Abstract—Statistical signal modeling using hidden Markov 

model is one of the techniques used for image compression. 

Wavelet based statistical signal models are impractical for most 

of the real time processing because they usually represent the 

wavelet coefficients as jointly Gaussian or independent to each 

other. In this paper, we build up an algorithm that succinctly 

characterizes the interdependencies of wavelet coefficients and 

their Non-Gaussian behavior especially for image compression. 

This is done by extracting the combine feature of hidden Markov 

model and Wavelet transformation that gives us comparatively 

better results. To estimate the parameter of wavelet based 

Hidden Markov model, an efficient expectation maximization 

algorithm is developed. 

Keywords—Hidden Markov model; Wavelet transformation; 

Compression; Expectation Maximization 

I. INTRODUCTION 

Wavelet transformation is the tool for statistical signal 
processing and image modeling often used in real time signals 
processing[1]. Due to strong coordination between wavelet 
coefficients, these models have complicated processing but 
performance is much better. Wavelet transformation has 
primary and secondary properties that are used for statistical 
signal processing and image modeling[2]. These wavelet based 
hidden Markov models have many real-time applications in 
Engineering and Medical field. 

In statistical signal processing techniques, wavelet 
transformation consider wavelet coefficient as single scalar 
coefficient that gives powerful tools for image modeling, 
previously discussed in [3,4,5]. These techniques consider 
coefficients as independent to each other but such methods 
those exploit dependencies between coefficients give better 
results. 

In this paper we have developed a wavelet based hidden 
Markov model that succinctly model the statistical 
dependencies of the wavelet coefficients that are non-Gaussian 
in nature. Proposed algorithm exploits the statistical 
dependencies of the wavelet coefficients for better compression 
results. For this purpose we have used the combine properties 
of the wavelet transformation and Hidden Markov model. 

A. Wavelet Transformation 

Wavelet transformation is used to convert signals or images 
into its coefficients that contains complete information about 

signal or image [6]. Wavelet transformation converts the image 
into four subparts, first part contains approximation of the 
original image and remaining three parts contain the diagonal, 
horizontal and vertical coefficients information respectively 
[7]. 

Complete modeling of the image can be done with the help 
of wavelet coefficient and scaling coefficients. Primary 
properties (locality, multi-resolution and compression) of the 
wavelet transformation plays an important role in 
approximation of many real time signals [8].  With the help of 
locality each wavelet atom can be localized in time and 
frequency domain simultaneously. To analyze the wavelet 
atom at any scale we can use multi-resolution property of 
wavelet transformation [9]. 

Both locality and multi-resolution properties of wavelets 
facilitate us to match the large range of real time signals [10].  
Most of the complicated signals can be approximated with 
small number of wavelet basis and scaling coefficients which 
will be discussed thoroughly in coming sections. We can 
conclude that all those statistical signal processing and image 
modeling methods that uses wavelet transformation are more 
beneficent as compared to those methods that uses only 
frequency-domain or time-domain information of the 
image/signal. 

B. Statistical modelling for image 

To approximate the wide range of coefficients we can use 
probability model based on wavelet transformation that is 
flexible, rich and tractable[11]. 

Previously wavelet coefficients modeled as non-Gaussian 
or jointly Gaussian[12,13] but statistically independent to each 
other [14]. To capture the linear dependencies of the wavelet 
coefficients, jointly Gaussian model is used. Histogram of 
wavelet coefficients density is peaky at zero indexes and 
heavily tailed than the histogram of the typical Gaussian 
distributions[15]. Complete decorrelation of wavelet 
coefficients is impossible, residual dependencies are always 
present between the wavelet coefficients after wavelet 
transformation[16]. Non Gaussian Models that doesn’t exploit 
the complete statistical dependencies of wavelet coefficients 
during modeling are unrealistic to work with. 
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Fig. 1. Independent Mixture Model, each black and white node represent the 

continuous wavelet coefficients    and mixture state variable    

for    respectively 

To overcome these problems, secondary properties of the 
wavelet transformation is helpful[17,18]. Clustering(one of the 
wavelet transformation property) suggests that for any 
high/low energy wavelet coefficient, neighboring coefficient 
will also be high/low energy coefficients[19]. According to 
persistence, values of the wavelet coefficients propagate across 
the scale.  We will use these properties in the statistical 
modeling of the image. 

To completely characterize the statistical dependencies of 
all wavelet coefficients we need to model the jointly 
probability density function that would consider all the 
dependencies of the wavelet coefficients but it is intractable 
and impossible to apply on real time images[20]. Conversely, 
modeling the wavelet coefficients without exploiting 
dependencies of the wavelet coefficients is simple and easy to 
implement but would not consider the inter-coefficients 
dependencies[21]. For better performance we need to make a 
balance between these two extremes. 

We developed a wavelet based hidden Markov model that 
completely characterizes the probability structure of the 
wavelet coefficients. We model the marginal probability of 
each coefficient as mixture density with state variable to match 
the non-Gaussian nature of the wavelet coefficients as shown 
in figure 1. We introduce the Markovian dependencies between 
the hidden state variables to characterize the key dependencies 
between the wavelet coefficients. These dependencies are 
illustrated in figure 1. 

Hidden Markov model is one of the Probabilistic graphical 
model used in statistical signal and image modelling.  In this 
paper we used three probabilistic graph models with state-to-
state connectivity as shown in figure 2. Independent mixture 
model ignores statistical dependence of wavelet coefficient and 
leave the variable states unconnected.  Within each scale, to 
connect the state variable horizontally, we used the hidden 
Markov chain model. To connect the state variable vertically 
across the scale hidden Markov tree model is used.  Together 
these three models represent the wavelet based hidden Markov 
Model. 

Remaining distribution of the paper is as: Section 2 
discusses the definitions and notation that will be used in 
mathematical modeling. Section 3 explains the statistical image 
modeling using hidden Markov model. Section 4 will elaborate 
the EM Algorithm and training of the proposed algorithm. 
Application of proposed framework will be discussed in 
section 5 along with experimental results. At the end section 6 
will conclude the complete paper and suggest the future work. 

 
Fig. 2. Horizontal dashed line represent the connection capitulate HMC 

model and vertical solid line represent the connection capitulate HMT model 

respectively 

II. NOTATIONS 

Wavelet based hidden Markov model can completely 
characterize with the help of trees and graphs.   
                   used to represent the graph nodes. 
Term “connection” used to link the nodes. Ancestors are those 
nodes that are present on the path going from    to the root 
node. Descendants are those nodes that are present in the path 
from    going away from root node.       is parent of    node 
if it is immediate ancestor.  To denote the children of    we 
will represent it as              A node has many children but 

have only one parent. In case of binary tree one parent has only 

two immediate children. We will represent the   
 ,     wavelet 

coefficient from the     tree. In this paper capital letters will be 
used for random variables (R.V) and small letters will be used 
as an observed value of that R.V. Probability mass function of 
discrete random variable “Q” denoted as       and       as 

probability density function of continuous R.V “C”. 

III. WAVELET-DOMAIN PROBABILITY MODELS 

Main problem is to exploit the key dependence of the 
wavelet coefficients during modeling of wavelet based hidden 
Markov model by considering the wavelet coefficients that 
follows non- Gaussian distribution. This modeling is done in 
two steps. Initiate with simple statistical model with the 
assumption that all wavelet coefficients are independent to 
each other based on the fact that wavelet transform de-correlate 
many of the real time signal’s coefficients. Then enlarge this 
model using Markovian structure to exploit the residual 
dependencies of the wavelet coefficients.  Here hidden Markov 
model is helpful that uses the state of the wavelet coefficients 
instead of values of the wavelet coefficients. Both first order 
Markovian dependencies and marginal Gaussian mixture 
provides to the implementation this model practically. 
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A. Wavelet Transformation 

Primary properties of the wavelet transformation allow us 
to model each wavelet coefficient as high or low state. High 
state represents all those components carrying significant 
amount of information and low state is for less energy wavelet 
components. So, for each wavelet coefficient we have two 
states. 0-mean density and high variance is for high state 
whereas, 0-mean density and low variance for low state 
wavelet coefficients. Each wavelet coefficient is modeled as a 
2-state mixture model illustrated in fig 3. 

 
Fig. 3. Two-state, 0-mean GMM. White node represent the state variable 

and black node is for random variable.      Represent low variance (state 0) 

and        represent high variance (state 1) 

Now we can completely characterize the 2-state, 0-mean 
with probability mass function of     ) and     ). Mostly   

(state variable) is hidden while  (value of coefficient) is 
observed. 

For simplicity we will focus only on 2-state model. 
Consistent with      (probability mass function) “ ” can have 

only two values. 

The probability density function of W is: 

      ∑   

 

   

                                                                   

However, as “Q” is a random state variable and its value is 
hidden to us so probability density function will be non-
Gaussian and overall wavelet coefficient has non-Gaussian 
density function even though wavelet coefficients are 
conditionally Gaussian. Normally scaling coefficients has non-
zero variance so it is inappropriate to use 2-state, 0-mean 
Gaussian mixture model.  Midway is to use Gaussian mixture 
model but with mixing densities that have non-zero means. 

Wavelet transformation de-correlates the wavelet 
coefficients of many real time signals. So for statistical 
modeling of wavelet coefficients, independent Gaussian 
mixture model gives considerable improvement over 
deterministic signal. We  have modeled one wavelet coefficient 
using 2-state Gaussian mixture model so it looks logical to use 
it for all the wavelet coefficients. Preferably, we need such a 
probabilistic model that collectively consider the probability 
density function of wavelet coefficients and exploit the 
statistical dependencies of the wavelet coefficients. After 
developing the Gaussian model for one coefficient, we extend 
the Gaussian mixture model to two coefficients with the help 
of jointly Gaussian mixture model. 

Persistence and clustering recommended that if any wavelet 
coefficient is in state one (high state) then most probably its 
neighboring wavelet coefficient will also be in high state. Two 
such wavelet coefficients that are in neighbor can be modeled 
using Gaussian Mixture model variables that are in 
independent state.  This simple modeling ensures the modeling 
of overall wavelet coefficients using the same method. 

B. Wavelet Transformation Based Graph Models 

To make a connection between states and wavelet 
coefficients, primary properties of wavelet transform are 
helpful. To represent the dependencies of wavelet coefficients 
there is link connected between variables.  We have three ways 
to connect the dots and will be discussed latter in this section. 
To make horizontal and vertical connection between    “state 
variable”, HMT model and HMC model are used respectively. 
Transition probability gives information about the probability 
of transition from one state to the other. We can model 
dependencies of state variable using Hidden Markov model. 

Parameter of hidden Markov model is defined as: 

    
     Probability mass function for    (root node). 

        
             

[ |       ] , conditional probability of 

  given       is in the state of e. 

     &     
  represent the variance and mean. 

Above parameters are collectively called the parameter of 
the model and represented by “θ”. Remember that for this 
paper we assume that we have two states with 0-mean. 

   
                                 

                         

As state of wavelet coefficients are hidden to us so wavelet 
based Hidden Markov model does not rely only on the wavelet 
coefficients of Markov structure. Suppose J(i) represents the 
scale of wavelet coefficient (Ci and Qi). 

   
(  |             )     

(  |    )                                                        

Generally, wavelet coefficients are not Markov. Wavelet 
state variables owe Markov nature that is why wavelet based 
HMM is efficient for modeling the wavelet coefficients. 

IV. EXPECTATION MAXIMIZATION ALGORITHM 

To estimate the model parameter “θ” of the wavelet based 
HMM, we need to train the data that consists of wavelet 
coefficients “C” of the image. These parameters include 

probabilities of mixture state, mean “    ” and variance “    
 ” 

of the GMM. We then apply the maximum likelihood principle 
to find the parameters of the proposed model. Direct estimation 
using likelihood principle is hard to estimate. Because meaning 
of the estimation is to find the hidden state “Q” of the wavelet 
coefficients “C”, means and variance of the Gaussian Mixture 
model.  Expectation maximization is an iterative algorithm that 
is used to collectively find the model parameters “θ” and 
probabilities for the unobserved states “Q”. Expectation 
maximization is also known as Baum Welch algorithm in the 
domain of hidden Markov model. Details of expectation 
maximization steps in the case of Hidden Markov chain and 
independent mixture model will be discuss in coming section. 
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Fig. 4. Block diagram of the proposed wavelet based Hidden Markov Model 

Figure 4 illustrate the complete functionality of algorithm 
graphically that is used to estimate the model parameters of the 
wavelet based hidden Markov model. 

A. Expectation Maximization algorithm for training 

 In EM algorithm, “Training” is used for fitting the model 
parameters to the Wavelet based hidden Markov model.  
Basically training is used to avoid the “over-fitting”. Our 
objective is to maximize the          log function of wavelet 
coefficients “c” given hidden state variable “q” for this purpose 
expectation maximization algorithm performs two steps. In 
expectation step (called E-Step) algorithm, find 
the              )| ,    and in next step algorithm, maximize what 
it found in E-Step. Convergence will direct the algorithm in 
right direction if initialization is correct. Steps of the algorithm 
are given below: 

Selection of a model parameter    

Counter set to be zero,      (initialization) 

 E step (expectation step) 

Find         ), used in               )|   ,   ] 
maximization. 

 M step (maximization step) 

Set                          )| ,    ] 

 update        

If it converges, then stop the iteration 

Otherwise start again from step 1. 

Initialization is important in EM algorithm. If we 
intelligently initialize the algorithm the complexity will reduce 
and it will start converging in few steps but in case if we 
randomly initialize, then it might be possible that after few 
iterations the complexity of algorithm exponentially increase 
and it will start diverging. To reduce the complexity of the 
algorithm we need to initialize the algorithm intelligently. 

V. EXPERIMENTAL RESULTS 

Although this model works for statistical image processing 
in numerous real time signals. In this paper we have developed 
a wavelet based statistical model for image compression.  We 
have compared the compression performance of our model by 
using different types of wavelets. Proposed model has a 
substantial improvement over previous models. Our results 
demonstrate the performance of the wavelet based Hidden 
Markov model in image compression. 

TABLE I. PERCENTAGE OF COMPRESSION RATIO AND PSNR IMAGE 

NAME: JELLY FISH, IMAGE SIZE 128X128, LEVEL 1 

S.No. 
Wavelet 

(Level 1) 
PSNR (db) Compression Ratio 

1 Bior 3.1 52.85 70.59% 

2 Bior 3.3 53.70 70.14% 

3 Bior 3.5 53.92 70.06% 

4 Bior 3.7 53.98 70.08% 

5 Bior 3.9 54.00 70.08% 

6 Bior 4.4 56.82 62.28% 

7 Bior 5.5 58.07 69.56% 

8 Bior 6.8 56.69 72.66% 

Additive Wide 
Gaussian Noise 

𝑥 + 
Wavelet 

Transformation  

Wavelet Based 
Hidden 
Morkov  
Model 

Expectation 
Maximization 

Algorithm 

Inverse 
Wavelet 

Transform  
𝑥′ 
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TABLE II. PERCENTAGE OF COMPRESSION RATIO AND MEAN SQUARE 

ERRORS IMAGE NAME WOOD STATUE, SIZE 256*256, LEVEL 

A. Objective analysis for image (2d) compression using 

wavelet domain hmm 

To achieve the image compression, we apply the different 
wavelets on proposed algorithm. We had applied 28 different 
wavelets and observe behavior of proposed algorithm. From 
Table 2, we can analyze that as the wavelet type changes, the 
compression ratio and mean square value also changes. Results 
illustrate that compression ratio depends of proposed algorithm 
depends on image characteristics as well as on the wavelet type 
used. When we apply dmey1 wavelet on the wood statue 
image, size 256x256 it gives 61.06% compression with 
0.1310db mean square error (serial number 18 in table 2) and 
by changing the wavelet types we found different compression 
ratio as well as mean square error as shown in Table 2.  “rbio 
2” is the best wavelet for this test image because it provides 
77.30% compression ratio with 0.08184db mean square error 
(serial number 21 in table 2). 

Table 3 represent the comparison between different wavelet 
of same type “Brior” by comparting their means square error 
and compression ratio.  We have found “Bior 6.8” best among 
all that gives 0.1392db mean square error and 72.66% 
compression ratio and “Bior 3.1” worst that give 0.337db mean 
square error and 70.59% compression ratio. 

TABLE III. PERCENTAGE OF COMPRESSION RATIO AND MEAN SQUARE 

ERRORS IMAGE NAME: JELLY FISH, IMAGE SIZE 128X128, LEVEL 1 

S.No. Wavelet type MSE (db) Compression Ratio 

1 Bior 3.1 0.3377 70.59% 

2 Bior 3.3 0.2771 70.14% 

3 Bior 3.5 0.2638 70.06% 

4 Bior 3.7 0.2603 70.08% 

5 Bior 3.9 0.2591 70.08% 

6 Bior 4.4 0.1353 62.28% 

7 Bior 5.5 0.1013 69.56% 

8 Bior 6.8 0.1392 72.66% 

B. Subjective analysis for image (2d) compression using 

wavelet domain hmm 

The proposed algorithm is implemented and tested over the 
wide range of grayscale and colored images. The natural test 
images used are wood horse, Persons, Wood Statue, Mask, 
Facets, Laure, Catherine, Wood Statue, Arms and Jelly Fish.  
The results for these images are given in figure 5. 

The goal of subjective image comparisons is to determine 
the effects of the following on compression performance: 
compression by using different types of wavelets on grayscale 
and colored images. 

Jelly fish, one of the most common test images in 
compression research, consists primarily of low frequency 
content. Table 3 lists the MSE results and Compression ratios 
using different types of wavelets for jelly fish. The “rbio 2” 
wavelet depicts the best MSE performance among all. 

VI. CONCLUSION AND FUTURE WORK 

Wavelet based hidden Markov model is one of the model 
that is used for image modeling. These models are helpful in 
statistical modeling of wavelet coefficients of images that 
succinctly models the coefficients that don’t follow the 
Gaussian distributions. 

We have developed the wavelet based hidden markov 
model for statistical image modeling of the wavelet 
coefficients for compression. This model allows us to exploit 
the interdependencies of the wavelet coefficients and consider 
the entire coefficients during modeling that does not follow the 
Gaussian distribution.  Mostly statistical methods model the 
wavelet coefficients as jointly Gaussian or independent to each 
other so, these models exploit less information about image 
characteristics. For parameter estimation of wavelet based 
hidden markov model, an efficient expectation maximization 
algorithm is developed. 

Proposed approach gives the encouraging compression 
results in image compression domain, further research should 
be directed to multidimensional wavelet domain Hidden 
Markov Models as in this paper only statistical image modeling 
for 2-states is discussed. 

S.No. Wavelet type MSE 

(db) 
Compression Ratio 

1 Haar 0.1201 65.85% 

2 Sym2 0.1368 63.36% 

3 Sym 3 0.1364 61.83% 

4 Sym 4 0.1382 61.04% 

5 Sym 6 0.1355 60.54% 

6 Sym 8 0.1343 60.36% 

7 Db1 0.1201 65.85% 

8 Db 2 0.1368 63.36% 

9 Db 3 0.1364 61.83% 

10 Db 4 0.1306 59.31% 

11 Db 6 0.1339 61.59% 

12 Db 9 0.1340 62.20% 

13 Coif1 0.1355 62.01% 

14 Coif 2 0.1315 60.30% 

15 Coif 3 0.1292 59.60% 

16 Coif 4 0.1318 59.96% 

17 Coif 5 0.1296 59.63% 

18 Dmey1 0.1310 61.06% 

19 Dmey 2 0.1110 68.52% 

20 Rbio1 0.1123 73.96% 

21 Rrbio 2 0.08184 77.30% 

22 Bior1 0.1201 65.86% 

23 Bior 2 0.1315 66.75% 

24 Bior 3 0.1379 66.20% 

25 Bior 4 0.1644 58.46% 

26 Bior 5 0.1379 58.38% 

27 Bior 6 0.1289 59.83% 

28 Bior 7 0.1403 56.96% 
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Fig. 5. Comparison between compression ratio and measn square error of differents images 
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