
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

229 | P a g e

www.ijacsa.thesai.org

Solving Word Tile Puzzle using Bee Colony

Algorithm

Erum Naz
 1
, Khaled Al-Dabbas

2
, Mahdi Abrishami

3
, Lars Mehnen

4
, Milan Cvetkovic

 5

University of Applied Science Technikum Wien

Vienna, Austria

Abstract—In this paper, an attempt has been made to solve

the word tile puzzle with the help of Bee Colony Algorithm, in

order to find maximum number of words by moving a tile up,

down, right or left. Bee Colony Algorithm is a type of heuristic

algorithms and is efficient and better than blind algorithms, in

terms of running time and cost of search time. To examine the

performance of the implemented algorithm, several experiments

were performed with various combinations. The algorithm was

evaluated with the help of statistical functions, such as average,

maximum and minimum, for hundred and two-hundred

iterations. Results show that an increasing number of agents can

improve the average number of words found for both number of

tested iterations. However, continuous increase in number of

steps will not improve the results. Moreover, results of both

iterations showed that the overall performance of the algorithm

was not much improved by increasing the number of iterations.

Keywords—slide tile puzzle; artificial bee colony algorithm;

swarm intelligence; artificial intelligence; fitness function; loyalty

function; word tile puzzle; Bee colony optimization

I. INTRODUCTION

The prime inspiration to design any optimization algorithm
is to simulate natural processes. Lots of algorithms have
proved their inspiration from natural process such as simulated
annealing (SA), genetic algorithms (GA) [1], ant colony
optimization (ACO) [2], particle swarm optimization (PSO)
and other Swarm Intelligences (SI) [3]. Swarm Intelligence is
based on the collective behaviour of individuals in various
decentralized systems. These decentralized systems are
composed of physical individuals that communicate, cooperate,
collaborate, and exchange information and knowledge among
themselves to perform some tasks in their environment [4]. A
detailed survey to related work is discussed in Section II.

The purpose of this paper is to develop a slide tile game.
An attempt has been made to solve the word tile puzzle
problem for the most optimum solution by taking an inspiration
from natural processes. In the beginning, the board of the tile
game is filled with random characters. The tile game is of size
n x n, starting from 4 x4 (Figure 1), but in the end larger sizes
should be solvable. By moving the tiles (up, down, right, left) a
specific situation should be found, where the graph contains a
maximum number of words (length 2 to n).

Fig. 1. 15-puzzle slide tile game and 15-word tile puzzle

This paper is organized as follows: Section I gives the brief
introduction to the topic, Section II is about related work in the
field of string matching, crossword and tile puzzles, Section III
elaborates the implemented steps of bee colony algorithm,
Section IV describes the statistical results, Section V is
discussing the conclusion and finally section VI is future work.

II. LITERATURE REVIEW

Hua [5] implemented blind search and heuristic search
algorithms to solve Eight-puzzle problem. In blind search
Breadth-first and Depth-first and in heuristic search A*
algorithm were implemented to find the optimal solution. The
result showed that A* algorithm is more convenient, efficient
and better in terms of running speed and cost of search time
than blind search algorithms. Genetic algorithm and depth first
algorithm was implemented to solve Japanese puzzles.
Evaluation and comparisons of performance concluded that
depth-first algorithm is faster for small size puzzles and genetic
algorithm is better in large size puzzles. However, both
methods are slow [6].

One of the recent optimizations algorithms replicating the
intelligent natural behavior of honeybee’s swarm is artificial
bee colony (ABC) [10]. The popularity of ABC increased
significantly in last years, the algorithm has been implemented
in different field for example in [11] used ABC to solve
complex network, while [12] combined Fuzzy logic with ABC
in the optimization of parameters for an autonomous mobile
robot control.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

F P M S

X G A P

E F V E

O I R

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

230 | P a g e

www.ijacsa.thesai.org

Author in [7] used the natural behaviours of the real honey
bee to develop the artificial bee colony algorithm and resolve
numerical optimization problems. In the Artificial Bee Colony
algorithm (ABC), there are three types of bees, scout bees,
employed bees and onlooker bees. The half of the total bees are
initially scout bees. For each scout bee, a new food source
position is produced. After producing new food source
position, these scout bees become employed bees. Then these
employed bees try to improve food sources by interacting with
each other. The onlooker bees wait for the food sources
positions by the employed bees in the hive. Employed bees
share position information about the food sources, each
onlooker bee picks up one of the food source positions and
tries to improve the food source position.

Like ABC, the Bee Colony Optimization (BCO) algorithm,
follows the way how honey bees in real-world nature look for
food source, which makes this algorithm more effective,
compared to lots of other stochastic random-search algorithms.
So far, BCO is implemented in various real-life optimization
problems, such as vehicle routing problem [8], the routing and
wavelength assignment in all-optical networks, the traffic
sensor location problems on highways, the static scheduling of
independent tasks on homogeneous multiprocessor systems
and disruption management in public transit [9].

III. METHODOLOGY

This section elaborates the step by step approach to solve
word tile puzzle by using bee colony algorithm [8].

A. Step 1: Initial Input

The Bee Colony Algorithm starts with the initial inputs.
These inputs are:

1) Agents: an entity that performs the activity – Artificial

bees.

2) Number of Steps per Agents: number of shifts

movements by each agents or distance covered during one

trip.

3) Number of Iterations: number of trips made by each

agents.
The number of agents, represent the number of employed

artificial bees, looking for food source. In this case, the agents
will look for the best state value of the board, which is the
maximum number of words found in rows and columns. The
number of steps implies how far the agents can go during one
iteration (In Bee Colony Algorithm, the number of steps
indicate, how far the bees can travel). The final input value is
the number of iterations, which demonstrates the number of
trips per each run of the program (The number of trips that
each employed bee will perform in an assigned working
period). It has to be taken into account that the output value of
implemented program will highly depend on our initial inputs.

B. Step 2: Defining Initial State

In this step, the dimensions of the board are defined and
initial position of the blank tile (starting point for agents/bees)
is marked (tile in the last row and the last column in this case);
random letters (alphabets) are assigned to the initial state of the
board. The value of the initial state is calculated, by using the
fitness function. Fitness Function counts the number of all

existing words in the board by matching the input string to the
imported dictionary. Word could be two letter long or
maximum to the dimension of the board. Fitness function is
calculated after each movement of the agent in the board. It is
allowed, that more than one word is found in a row or a
column and there can be a word inside another word. Word
matching is from left to right and top to bottom (diagonal
matching is not allowed).

In order to reduce the computational cost and improve
performance, two constraints are applied to the dictionary. The
first constraint is to eliminate the words longer than the
dimension of the board and the second constraint omits the
words which were not the part of randomly generated board in
the initial state.

C. Step 3: Agents movement and state update

In this step, the movement of agents is assigned randomly
and new state per each agent is generated.

Agents can move up, down, right and left inside the board.
The last movement of the agents and their directions are stored
to avoid a backward movement. The idea behind not letting
agents to move backwards is to avoid unnecessary movements
which will be not only time consuming, but they will also take
some memory computation. Agent cannot move diagonally and
beyond the walls of the board.

After defining initial input, states and keeping constraints in
consideration, agents are ready to move and start searching for
higher value state. After each step of each agent, the value state
is calculated (using fitness function). If an agent reaches higher
value of Fitness Function (number of words) than value of
existing best state/states will be stored by updating archive of
best states and previous best state/states will be deleted. If an
agent reach equivalent value of Fitness Function as value of
existing best solution or solutions its state will be added to
other states with the same value in the archive.

D. Step 5: Agents’ Loyalty Function

In this step, agent’s loyalty is determined by using
probability. The idea of considering loyalty comes from the
natural processes inspiration. Studying the behaviour of bees
for finding nectar, it has been observed that the successful bees
in finding food sources will go back to the hive, performing the
“Waggle dance”, in order to convince other bees to get the
same route as them and go for the same food source.

This behaviour in this algorithm, has been defined by
loyalty function. After each step of each agent per each
iteration, the state value of that specific agent will be calculated
and compared to the state values of other agents. Certainly,
there will be agents with higher state values, and the loyalty
function will make other agents to decide, if they want to keep
on their own route or they would rather change their routes,
which show that there might be higher possibility of finding
better state values.

1) Loyalty of Agent: To compute the loyalty of agents,

following probability functions have been used [9].

 *() ⁄ + (1)

Pn: Probability of agent n to stay loyal

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

231 | P a g e

www.ijacsa.thesai.org

Omax: MAX (On) =1 , Omax is maximal normalized value of
fitness functions of all agents

On: (Cn – Cmin)/(Cmax - Cmin)
 Cn is normalized value of fitness function for agent n
 Cmin is minimum value of all fitness functions
 Cmax is maximum value of all fitness functions

k: number of current step in current iteration

The methodology is based on the roulette game; a number,
which is between 0 and 1, should randomly be chosen and if
the value of this random number is less than Pn, then agent n is
considered as loyal, otherwise, it is counted as disloyal and
change its route for the agents with better state values.

Assigning new state to disloyal agents: The next step, will
be for disloyal agents to choose a state of all possible loyal
agents’ states. However, there is the possibility that there might
be more than one loyal agent, whose state, is a nominee of
being chosen as the higher value state. Or there can be more
than one disloyal agent, which can make a choice out of
different states of nominate loyal agents. In this algorithm,
probability functions in (2) has been implemented that compute
the probability of being chosen as the higher state value agent
by disloyal agents:

∑

 (2)

PA Probability of loyal agents to be chosen by disloyal
agent

r: Loyal agent
R: Total number of Loyal Agents

Or : Normalized Fitness Function value of loyal agent

∑

Sum of normalize Fitness Function values of all loyal
agents

In this formula, the normalized fitness function value of
each loyal agent is divided by the sum of fitness function
values of all loyal agents. Finally, to each disloyal agent, a state
of a loyal agent would be assigned, based on the outcomes of
the probability functions.

E. Step 6: Best Value State (Optimal Solution)

After the last iteration is done, the best value state is printed
from archive of the best state or states that is/are archived
during the whole search process, and the existing words in the
board will be presented.

IV. RESULTS

In order to shape our results, number of experiments were
performed. Implemented solution is tested for number of steps,
number of agents and number of iteration. To determine the
effect of each variable, they were tested separately. To achieve
this, variables other than test variables were kept constant and
results were calculated, using fitness function, by changing the
value of test variables.

A. Evaluation measurements

Basic functions of statistics such as average, maximum and
minimum are used to calculate the results.

1) Average: average number of words found per 30

testing experiments for defined number of agents (2, 4, 8, 12,

16, 20, 30) and number of steps (10, 20, 30, 40) with fixed

number of iteration.

2) Maximum: the highest value of the state of the board

per 30 testing experiments with fixed number of iterations.

3) Minimum: the lowest value of the state of the board per

30 testing experiments with fixed number of iterations.
The main dictionary consisting of 22,353 words was used

for testing, however it is reduced to 1,359 words after passing
through the dictionary reduction function. 2, 640 experiments
were performed including 100 and 200 iterations, 2, 4, 8, 12,
16, 20 and 30 agents and 10, 20, 30 and 40 steps. Detailed
results are presented below.

B. Results for 100 iterations

1) Varying number of steps for 100 iterations
To examine the effect of the number of steps, 660

experiments were executed, in which the number of steps were
changed while keeping the number of agents and the number of
iterations constant. The number of steps started from 10
extending to 20, 30 and 40.

Table I shows the test results for 100 iterations, varying
number of steps, starting from 10 and then 20, 30 and 40 for 2,
4, 8, 12 and 16 agents.

TABLE I. VARYING NUMBER OF STEPS FOR 100 ITERATIONS

Varying number of steps for

100 iterations

Number of steps

10 20 30 40

2 Agents

Average number
of words

27.57 28.5 28.57 28.93

Maximum

number of words
33.00 32.00 32.00 32.00

Minimum

number of words
23.00 24.00 25.00 25.00

4 Agents

Average number

of words
27.7 29.93 30.30 30.23

Maximum

number of words
31.00 34.00 36.00 36.00

Minimum

number of words
24.00 26.00 26.00 25.00

8 Agents

Average number
of words

29.13 30.97 30.50 30.47

Maximum

number of words
33.00 34.00 35.00 35.00

Minimum

number of words
25.00 28.00 27.00 27.00

12 Agents

Average number

of words
28.53 31.17 31.43 31.90

Maximum

number of words
35.00 35.00 38.00 36.00

Minimum

number of words
23.00 27.00 27.00 27.00

16 Agents

Average number

of words
29.27 32.13 32.57 32.10

Maximum

number of words
34.00 36.00 36.00 40.00

Minimum

number of words
26.00 28.00 29.00 27.00

There is an observable increase in average, maximum and
minimum number of words when increasing number of steps
from 10 to 20. However, after first 20 steps, there is no
noticeable improvement and minimum number of words found,
did not progress.

Fig. 2, shows the graphical overview of results obtained by
varying number of steps for 100 iterations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

232 | P a g e

www.ijacsa.thesai.org

Fig. 2. Varying number of steps for 100 iterations

2) Varying number of Agents for 100 iterations
To examine the effect of the number of agents, 660

experiments were executed, in which the number of agents
were changed while keeping the number of steps and the
number of iterations constant. The number of agents started
from 2, extending to 4, 8, 12, and 16.

Table II, shows the test results for 100 iterations, varying
number of agents, starting from 2, 4, 8, 12 and 16 for 10, 20,
30 and 40 steps.

It was noticed that increasing the number of agents
improves the average number of words. However, the
maximum and the minimum number of words were not much
effected.

TABLE II. VARYING NUMBER OF AGENT FOR 100 ITERATION

Varying number of Agent

for 100 iteration

Number of Agents

2 4 8 12

10 Steps

Average number

of words
27.57 28.5 28.57 28.93

Maximum

number of words
33.00 32.00 32.00 32.00

Minimum

number of words
23.00 24.00 25.00 25.00

20 Steps

Average number

of words
27.7 29.93 30.30 30.23

Maximum

number of words
31.00 34.00 36.00 36.00

Minimum
number of words

24.00 26.00 26.00 25.00

30 Steps

Average number

of words
29.13 30.97 30.50 30.47

Maximum

number of words
33.00 34.00 35.00 35.00

Minimum

number of words
25.00 28.00 27.00 27.00

40 Steps

Average number

of words
28.53 31.17 31.43 31.90

Maximum

number of words
35.00 35.00 38.00 36.00

Minimum

number of words
23.00 27.00 27.00 27.00

Fig. 3, shows the graphical overview of results obtained by
varying number of Agents for 100 iterations.

Fig. 3. Varying number of agents for 100 iterations

C. Results for 200 iterations

1) Varying number of steps for 200 iterations
Table III shows the varying number of steps for 200

iterations by keeping agents constant. The number of steps
started from 10, extending to 20, 30 and 40.

TABLE III. VARYING NUMBER OF STEPS FOR 200 ITERATIONS

Varying number of Steps for

200 iterations

Number of steps

10 20 30 40

2 Agents

Average number
of words

28.30 29.50 29.90 30.40

Maximum

number of words
34.00 35.00 35.00 34.00

Minimum

number of words
23.00 26.00 26.00 27.00

4 Agents

Average number

of words
28.50 31.10 30.80 31.60

Maximum

number of words
32.00 35.00 35.00 36.00

Minimum

number of words
25.00 27.00 27.00 28.00

8 Agents

Average number

of words
30.20 31.40 32.00 32.20

Maximum

number of words
34.00 35.00 36.00 36.00

Minimum

number of words
26.00 26.00 29.00 29.00

12 Agents

Average number

of words
30.40 31.90 32.30 32.60

Maximum

number of words
36.00 36.00 37.00 37.00

Minimum
number of words

25.00 29.00 27.00 29.00

16 Agents

Average number

of words
29.80 32.40 33.50 33.20

Maximum

number of words
36.00 36.00 37.00 37.00

Minimum

number of words
25.00 27.00 27.00 30.00

Like 100 iterations, with 200 iterations, an observable
increase in average number of words was found, when
increasing number of steps from 10 to 20. Afterwards, there is
no noticeable improvement for average number of words.
However, for maximum and minimum number of words, there
is a variation in results as compared to 100 iterations.
Minimum number of words improved, when moving from 30
to 40 steps which was not the case in 100 iterations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

233 | P a g e

www.ijacsa.thesai.org

Fig. 4, shows the graphical overview of results obtained by
varying number of steps for 200 iterations.

Fig. 4. Varying number of steps for 200 iterations

2) Varying number of Agents for 200 iterations
Table IV is presenting the results for varying number of

agents for 200 iterations by keeping steps constant. The
number of agents started from 2, extending to 4, 8, 12, and 16.

TABLE IV. VARYING NUMBER OF AGENT FOR 200 ITERATION

Varying number of Agent

for 200 iteration

Number of Agents

2 4 8 12

10 Steps

Average number

of words
28.30 28.50 30.20 30.40

Maximum

number of words
34.00 32.00 34.00 36.00

Minimum

number of words
23.00 25.00 26.00 25.00

20 Steps

Average number

of words
29.50 31.10 31.40 31.90

Maximum
number of words

35.00 35.00 35.00 36.00

Minimum

number of words
26.00 27.00 26.00 29.00

30 Steps

Average number

of words
29.90 30.80 32.00 32.30

Maximum

number of words
35.00 35.00 36.00 37.00

Minimum

number of words
26.00 27.00 29.00 27.00

40 Steps

Average number

of words
30.40 31.60 32.20 32.60

Maximum
number of words

34.00 36.00 36.00 37.00

Minimum

number of words
27.00 28.00 29.00 29.00

Here again, like 100 iterations, with 200 iterations,
increasing the number of agents, improve the average number
of words and increase in maximum number of words.
However, the behaviour of minimum number of words is
mixed.

Fig. 5, shows the graphical overview of results obtained by
varying number of Agents for 200 iterations.

Fig. 5. Varying number of agents for 200 iterations

V. DISCUSSION/ANALYSIS

The performance of Artificial Bee Colony Algorithm is
measured by executing larger number of experiments with
multiple combinations. A huge variation in results was
witnessed due to random behaviour of agents (bees). Average,
maximum and minimum number of words found increased,
while increasing number of steps from 10 to 20 for both 100
and 200 iterations. However, there is no significant change
noticed by increasing steps from 20 to 30 or onwards.
Experiments with 20 and 30 agents were also performed, due
to high insignificance, those results are not presented in this
paper. For 100 iterations, best result is found for 16 agents and
30 steps (average number of words=32.57), following with 20
steps and 16 agents (average number of words=32.13), whereas
for 200 iterations best result found was for 16 agents and 30
steps (average number of words=33.50) followed by 16 agents
and 40 steps (average number of words=33.20).

By comparing results for 100 and 200 iterations, it is
observed that overall performance of the algorithm is not much
improved by increasing number of iterations. However, the
behaviour of algorithm for 100 and 200 iterations is almost the
same for average number of words, whereas for maximum and
minimum number of words, it is diverse.

Fig. 6, shows the overall improvements of best result for
100 iterations. 100% of improvements are achieved in 96
iterations. The graph shows that for first 16 iterations, there is
almost 70% improvement in results and the remaining 30%
improvement covers 80 iterations.

Fig. 6. Cumulative improvement for best result of 100 iterations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

234 | P a g e

www.ijacsa.thesai.org

Fig.7, shows the overall improvements of best result for
200 iterations. 100% of improvements are achieved in 194
iterations. The graph shows that for first 16 iterations there is
almost 61% improvement in results and the remaining 39%
improvement covers 178 iterations.

Fig. 7. Cumulative improvement for best result of 200 iterations

Furthermore, in this experiment the time needed to achieve
the solution was not taken into consideration as nowadays
modern computer have different computing power, and the
goal was to achieve the best result regardless of time.
Although, the computation time for best results (only) were
calculated and it is analysed that time to compute results for
200 iterations is much higher as compared to 100 iterations.
Moreover, the improvement in overall results for 200 iterations
are not that high. Table V, shows the exact time for best
results.

TABLE V. TIME CONSUMPTION

Time Consumption
Number of steps

20 30 40

16 Agents
100 Iteration 1:43 2:24 3:04

200 Iterations 3:56 5:01 6:29

Fig. 8, shows the bar chart for time consumption for best
results.

Fig. 8. Cumulative improvement for best result of 200 iterations

VI. CONCLUSION

A wide range of algorithms are inspired by natural
processes proved to be successful in solving complicated
optimization problems. Bee colony is considered as a class of

swarm intelligence technique, where the corporation between
different gents increase the efficiency and increase the
probability of achieving better results, which cannot be
achieved by individual agents. In this paper, word tile puzzle
has been analysed using one of the heuristic algorithm named
as Bee Colony Algorithm because of the way that artificial
bees can communicate with each other and exchange
information, making this method, not only fast, but also
statistically optimal. Results showed that best solution could be
achieved by increasing number of agents, nevertheless results
are not improving with increasing number of iterations and
steps continually. Furthermore, huge amount of time is
required to run high number of iterations and results which has
very nominal effect on results.

VII. FUTURE WORK

In future, other heuristic and blind algorithms can be
implemented together for the word tile puzzle to compare the
efficiency of each algorithm.

ACKNOWLEDGMENT

We would like to express our deep sense of gratitude to our
mentor Dr. Lars Mehnen for guiding and encouraging us and
one of our colleague Mr. Jakub Stok for his support and help.

REFERENCES

[1] J. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, 1975.

[2] W. Gao, "Study on Immunized Ant Colony Optimization," in Natural
Computation, 2007. ICNC 2007. Third International Conference,
Haikou, 24-27 Aug. 2007.

[3] D. Teodorović, "BEE COLONY OPTIMIZATION: RECENT
DEVELOPMENTS AND APPLICATIONS," “Mircea cel Batran”
Naval Academy Scientific Bulletin, vol. XVIII, no. 2, pp. 225-235,
2015.

[4] D. Teodorović, "Bee Colony Optimization (BCO)," in Innovations in
Swarm Intelligence, Springer Berlin Heidelberg, 2009, pp. pp 39-60.

[5] R. Shi, "Searching Algorithms Implementation and Comparison of
Eight-puzzle Problem," in International Conference on Computer
Science and Network Technology , Harbin, 24-26 Dec. 2011.

[6] W. Wiggers, "A Comparison of a Genetic Algorithm and a Depth First
Search Algorithm Applied to Japanese Nonograms," in Twente Student
Confer D. Karaboga, "D. Karaboga, An Idea Based on Honey Bee
Swarm for Numerical Optimization," Technical Report – TR06, Turkey,
2005.ence on IT, Jun. 2004.

[7] Š. Milica and T. Dušan, Computational Intelligence in traffic, University
of Belgrade - Faculty of Transport, 2012.

[8] M. Nikolić and D. Teodorović, "Empirical study of the Bee Colony
Optimization (BCO) algorithm," Expert Systems with Applications, vol.
40, no. 11, p. 4609–4620, September 2013.

[9] M. Nikolić and D. Teodorović, "Empirical study of the Bee Colony
Optimization (BCO) algorithm," Expert Systems with Applications, vol.
40, no. 11, p. 4609–4620, September 2013.

[10] B. B. D. Karaboga, "On the performance of artificial bee colony (ABC)
algorithm," Applied Soft Computing, vol. 8, no. 1, pp. 687-697, 2008.

[11] D. D. Magdalena Metlicka, "Complex Network based Adaptive
Artificial Bee Colony algorithm," in IEEE Congress on Evolutionary
Computation (CEC), 2016.

[12] Leticia Amador-Angulo, "A Generalized Type-2 Fuzzy Logic System
for the dynamic adaptation the parameters in a Bee Colony Optimization
algorithm applied in an autonomous mobile robot control," in IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 2016.

