
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

212 | P a g e

www.ijacsa.thesai.org

Variability Management in Business-IT Alignment:

MDA based Approach

Hanae Sbai
1
 and Mounia Fredj

2

1,2
 AlQualsadi Research team, ENSIAS, Mohammed V University of Rabat,

BP 713, Rabat 10000, Morocco

Abstract—The expansion of PAIS (Process Aware

Information Systems) has created the need for reuse in business

processes. In fact, companies are left with directories containing

several variants of the same business processes, which differ

according to their application context. Consequently, the

development of PAIS has become increasingly expensive.

Therefore, research in business process management domain

introduced the concept of configurable process, with the aim of

managing the variability of business process. However, with the

emergence of the services-based development paradigm, the

alignment of services with business processes is highly required

in PAIS. Thus, in this paper an MDA based method which allows

for generating configurable services from configurable process is

proposed.

Keywords—alignment; variability; MDA; PAIS; configurable

service, configurable process

I. INTRODUCTION

Due to the lack of process control and automation into
information systems centered data, the process orientation was
established by the introduction of a new generation of
information system called Process Aware Information System
(PAIS), where the main unit of these information systems is
the business process models. Thus, workflow management
systems (WFMS) and integrated systems known as Enterprise
Resource Planning (ERP) represent an example of a PAIS [1].
In the literature, a PAIS is considered as a software system
that manages and executes business processes involving
people, applications and information sources, based on a
process model, while advocating separation of business logic
and application logic [1].

In the last few years, with the wide adoption of PAIS,
companies are left with directories containing several variants
of the same business processes, which differ according to their
application context. For instance, in the e-healthcare domain,
90 variants of “medical examination process” could be
distinguished in a hospital [2]. Consequently, in order to
choose or combine variants, the designer has to compare and
adapt them manually, which could be a complex and an error
prone operation. In this context, many research studies have
focused on managing the variability of business processes by
developing configurable processes [3] [4] [5] [6] [7] [8] [9].

Along with the improvement of business process reuse by
the introduction of the variability management, the proposed
approaches lack of business-IT alignment support. The study
of existing works shows that these approaches do not allow
the generation of configurable services emanating from

configurable processes, in this context a new concept related
to business processes has been introduced, which is the
“service based process model” [14]. This has led us to study
the alignment between the configurable processes and the
enterprise applications, in particular services, with the aim of
building PAIS that support service orientation. The emergence
of variability management in business processes and services
conduct the PAIS today to adopt the configurable processes at
the business layer and the configurable services at the IT
layer. In this perspective, an MDA (Model Driven
Architecture) approach for the configurable services
generation is developed in [15].

Therefore, it is argued that the alignment with supporting
variability could also be beneficial. This alignment will enable
the traceability management of business needs expressed at
the business layer and their realization at the IT layer [16].
Indeed, it also allows change synchronization between the two
layers. Consequently, the alignment is not limited only to
establish the mapping between the configurable processes and
configurable services, but also to maintain this correspondence
when companies business needs evolve.

The paper is structured as follow: the concept of alignment
supporting variability is firstly introduced and secondly the
comparative study of different approaches is given. An MDA
based method for configurable service generation is described
in the Section IV.

II. BUSINESS-IT ALIGNMENT SUPPORTING VARIABILITY

A. Alignment concept

This section focuses on defining and discussing the most
existing definitions of the alignment concept.

Alignment can be defined as the «dependency
management» between business processes and services [18],
«connection» of services to processes [19] or «change
synchronization» between business processes and services
[16].

According to the authors [20], the alignment of services
with business processes is the ability to realize business
process as a set of services. In this sense, the alignment allows
for ensuring coherence between the processes of the business
layer and services of the IT layer. It is considered that the
alignment consists of the design of service-oriented
architectures in a way that allows for easily adaptable business
processes. This requires not only defining the dependency
relationships between the activities of a business process and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

213 | P a g e

www.ijacsa.thesai.org

related services, but also managing changes of processes and
their related services.

In this work, business IT alignment concerns the
generation of configurable services from configurable process
in order to maintain consistency between the two layers (IT
and business) and facilitate change management, taking into
account the variability of processes and services.

Existing works on business IT alignment can be put under
two main categories:

 Generation of services from a business process that
involves designing business processes and defining the
different rules that generate services from configurable
process. These services will be implemented using the
web services technology.

 Change management by analyzing the impact of
changing the business process and services.

In this article, the main work is about the first category by
focusing on the management of variability when it comes to
generate services from a business process.

B. Service generation from business process

In this section, the concept of service generation is detailed
in order to define the main elements which are required when
it comes to generate services.

In the literature, the generation consists of transforming a
business process into a set of services. This describes how
services can be automatically generated from a business
process.

The study of service generation works [14] [16] [17] [21]
has shown that these works use the BPMN language [22] to

represent a business process and the SoaML (Service Oriented
Architecture Modeling language) [23] to represent the services
to generate. For the generation, it is carried out in the most of
time under the MDA (Model Driven Architecture) [24].

Furthermore, despite of the diversity of these works, there
is no generation approach supporting the variability of the
business process and services. In this perspective, an MDA
based approach for the generation of VARSOAml
configurable services from a Variant-Rich BPMN
configurable process is proposed.

Thus, service generation with supporting variability
requires:

a) Language for modeling a configurable process

b) Language for representing configurable services

c) MDA approach for configurable services generation

2) Modeling of configurable process: Variant-Rich BPMN

language
There are many approaches to represent the variability of

BPMN process [7] [9] [10]. All these approaches are derived
from the Variant Rich BPMN (VR-BPMN) language [5]. The
VR-BPMN extends BPMN to support the variability of
business processes using annotation technique. It allows
representing three concepts of variability, a variation point
(alternative or optional), a variant (default or simple variant)
and the relationship between variation point and variants
(encapsulation, extension, inheritance). It was used in several
case studies within the automotive field [6] and E-healthcare
[11]. All the variability representation stereotypes are
described in the following table (cf. Table I):

TABLE I. VARIABILITY REPRESENTATION STEREOTYPES OF THE VR-BPMN

Configurable elements Variability representation Stereotypes

V
a

r
ia

ti
o

n

p
o

in
t

a
c
ti

v
it

y
 Alternative

-« VarPoint» defines an alternative variation point activity
-« Abstract» defines an abstract variation point activity with several

implementations.

Optional
-«Optional »- defines an optional variation point activity that can be extended by

several variants.

Variant
-«Default » represents the default realization of a variation point activity.
-«Variant » represents the realization of a variation point activity

Association

{variation point

 variant}

-« implementation » is used to associate a variant activity with an abstract

variation point activity.

-« inheritance » is used to signify that a variant activity is a type of a variation
point activity

-« extension » is used to associate a variant activity with an optional variation

point activity.

For each variant activity, a feature is associated to define
the selection condition of the alternative activity. In this work,
the Variant-Rich BPMN is used to represent the variability of
all perspectives of business processes (functional, behavioral,
organizational and informational) [13], unlike the generation
approaches that are limited to activity and data
transformations. A complete representation of configurable
process will allow us to treat the generation of services in a
broader sense.

3) Representing configurable services: VarSOAML

language

Recently, with the emergence of reuse in SOA, some
approaches, yet few, became interested in modeling services
supporting variability. The approaches that propose an
extension of SoaML language to support the variability of
services are thus examined. The VarSOAML language [25] is
adopted. It represents the variability of all SoaML service
elements, to cover four views of service, namely the business
view, structural, functional and composition. To extend the
elements of SoaML, VarSOAML uses UML stereotypes.
Different representation stereotypes of service elements
(contract participant, message, service and operation interface)
are described below (cf. Table II).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

214 | P a g e

www.ijacsa.thesai.org

TABLE II. REPRESENTATION STEREOTYPES OF VARSOAML

Representation stereotypes

of variable service elements
Definition

« VariableContract «
Describes the variability of

collaboration.

« VariableInterface » Define a variable service interface

« VariationOperation »
Defines a variation required or
consumer operation

« VariableMessage »
 Defines a variable message type of

service.

« VariantOperation » Defines a variant operation.

« VariationType » Defines a variation data.

« VariantType » Define a variant data.

« VariableParticipant»
Represents a variable participant of

service

It appears that the VARSOAML language is the richest
language in terms of representation, because it covers four
views of service, namely the Service View (contract variable),
functional view (variable interface, variation / variant
operation, variation / variant type), structural view (variable
participant) and the composition view (UML activity
diagram).

4) Generation approach: MDA
MDA can be defined as the achievement of the MDD

approach (Model Driven Developement) around a set of OMG
standards such as MOF (Model Object Facility), UML, XMI
and OCL enabling a new model based development
approach.MDA defines three types of models [24]:

 CIM (Computation Independent Model): It represents

the business requirements of a system. This is a model

of business requirements defining the business

interactions and business tasks of a system, without

describing its structure or its implementation. In object-

oriented approaches, CIM is represented by the use

case diagram, while in service-oriented approaches

CIM is represented by BPMN business process models

[14] [17] or UML activity diagram [25].

 PIM (Platform Independent Model): it represents a

model describing the business logic of a system,

independently of any technology. It allows describing

the structure of the entities which constitute the system.

In object-oriented approaches, the UML class diagram

is often used at this level, while in the service-oriented

approach; the PIM is represented by SoaML models

[14].

 PSM (Platform Specific Model) is a model that

represents an implementation of a system according to

a particular technology. MDA offers UML profiles to

create these models, such as EJB profile (Enterprise

Java Beans).

In order to establish traceability between CIM, PIM and
PSM levels, MDA proposes the model transformation
concept. These models must conform to their meta models.
Thus, a metamodel is a model of a modeling language. The
model transformation can be of three types:

 Simple transformation (1 to 1): it combines every

element of source model with at most one element of

the target model. An example of this transformation is

the transformation of a UML class in a Java class.

 Multiple transformations (M to N): it takes as input a

set of elements of the source model and produces a set

of elements of the target model. Sometimes this

transformation can be a type of composing models (1

to N) or merging models (N to 1).

 Update transformation: it is dedicated for changing a

model by adding, modifying or deleting some of its

elements.

In this paper, the composing models category (1 to N) is
adopted. In fact, the idea is to transform a VR-BPMN
configurable process model to four VarSOAML models which
represents configurable services. The paper aims to offer a
service generation method to generate configurable services
from a configurable process, covering all perspectives of a
configurable process. Thus, it is important to mention that the
proposed approach will allow generating all the models
representing a configurable service including contract,
interface, Message Type and participants. These models will
be transformed into configurable web services.

III. STATE OF THE ART

In this section, existing solutions in service generation are
analyzed, and are evaluated how suitable for the purposes of
this work they are. This analysis also provides valuable input
regarding the requirements of this proposal.

All existing works on service generation [14] [16] [17]
[18] [25] adopt MDA approach. Before analyzing these
approaches, the evaluation criteria are listed below:

 Transformation level is about two kinds:

• From business process model to service models

(CIM2PIM)

• From Services models to web services (PIM2PSM).

 Representation language determines the language
used.

 Variability specifies whether the management of
business process and service variability is assured.

 Perspective mentions the elements supported by the
mapping rules.

 Method indicates if the approach proposes a method to
assist the designers when generating services.

The following existing works are presented:

- MINERVA Framework [14]

In this work, authors develop a Framework called
MINERVA (Model Driven & Service Oriented Framework
for the continuous Business Process Improvement & related
tools). MINERVA generates, from a BPMN business process
models, SoaML service models (corresponding to CIMtoPIM
transformation). The SoaML models are then transformed to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

215 | P a g e

www.ijacsa.thesai.org

execution models represented in WSBPEL or XPDL
(corresponding to PIMtoPSM transformation).The authors use
a combination of Eclipse plugins (BPMN modeling, Medini
QVT, Magic Draw and Model Pro) to implement their
solution. However, no explicit definition of mapping rules at
different levels of the Framework was found. Moreover, the
approach does not support the concept of variability.

- BPMN-SoaML mapping [21]

In this work, authors define mapping rules for
transforming BPMN models toSoaML models
(CIMtoPIM).Thus, authors focus on the mapping of activities,
Pool, Message Flow, and ignore the data and sub-processes.
Regarding the target model, they focus on the contract, the
service interface, the participant and the service architecture,
messages and the choreographies. The rules are implemented
using ATL (Atlas Transformation Language). However, the
approach does not support the concept of variability.

-Business –IT alignment [17]

This approach is part of the business IT alignment based
on a BPM-SOA convergence. In this work, authors propose a
method to implement the business process as a service using
the MDA approach. This work covers the mapping of the
main perspectives of BPMN process models (business, sub-
processes, Pool, Lan and process fragment) to the service
model elements (Service Architecture, interface, contract and
participant). A detailed definition of mapping rules is
provided, as well as implementation in ATL language.
However, this approach does not support the concept of
variability.

- BPMN-SCA (Service Component Architecture) [16]

This work provides a mapping between business process
models represented by BPMN and service models represented
by SCA, which provides composition of applications using the
principles of SOA. This approach focuses primarily on
collaborative elements, participant and activity. The functional
view and the service view is not supported by the approach. In
addition, BPMN models supporting variability are not
included.

- SVDEV [25]

This work proposes a development method SVDev
(Service Variability Development) using the MDA approach.
The SVDev development method is organized according to
the levels of MDA:

 CIM level: it focuses on the study of the preliminary
analysis and the specification of the business process
models and classes.

 PIM level: it represents services (supporting
variability) by VarSOAml. These models are organized
in terms of views (functional, service, structure and
composition).

 PSM level: it implements services witch support the
variability by using VarWebService.

The Table III provides a summary of the following
comparative study:

TABLE III. THE SERVICE GENERATION WORKS COMPARATIVE STUDY

A
p

p
r
o

a
c
h

e
s

Transformation levels Representation language Variability Perspective Method

CIM 2PIM PIM2PSM BP Service BP Service BP Service

[1
4

]

Yes Yes BPMN SOAml - - - - No

[2
1

] Yes - BPMN SOAml - - Activity,
Pool and

message

contract, interface participant,
service architecture, messages

and choregraphies.

No

[1
7

] Yes Yes BPMN SOAml - - activité, sub
processes,

Pool, Lan

Service architecture, interface,
contract and participant

Yes

[1
6

]

Yes - BPMN SCA - - Activity,
collaboration

,

conversation
and

participant

Component, and services No

[2
5

]

- Yes DA

UML

VARSOAml Yes Yes - Participant variable, contrat

variable, interface de service

variable et message type

variable

Yes

All approaches cover CIM2PIM level except SVDEV
which covers only PIM2PSM. The most approaches use
BPMN for business process models and SoaML for service
models. Only SVDEV uses VARSOAML for service models.

None of the approaches uses BPMN with supporting
variability. Only the work [17] supports the mapping of all
elements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

216 | P a g e

www.ijacsa.thesai.org

None of the analyzed works was found suitable to fulfill
the needs of business IT alignment with supporting

variability. In order to overcome these limitations, an MDA

based method for aligning configurable services to
configurable processes is proposed. This approach should
enable the generation of configurable services from a
configurable process while covering the generation of all
views of a service.

IV. MDA BASED METHOD FOR CONFIGURABLE SERVICES

GENERATION

The main contribution that we look forward to in this work
is the MDA based generation method (cf. Fig. 1) which is
developed for PAIS designers. In what follows, all method
steps are given.

Thus, the proposed method consists of the following steps:

 (1) Configurable process modeling

 (2) Decomposition of the configurable process into
several fragments, each fragment represents a
configurable service

 (3) Configurable service generation which consists of
two sub steps :

 VarSOAML configurable service generation

which describes the configurable services

associated with the identified fragments.

 Configurable web services generation which

corresponds to the service implementation.

Fig. 1. The proposed MDA based method

A. Configurable process modeling

In order to illustrate the various steps of generation of
configurable services, an echography request process
represented in Variant-Rich BPMN (see Fig. 2) is used. This
configurable process includes three variants: echography
request of a simple patient (variant 1), echography request of a

hospitalized patient (variant 2) and echography request of a
emergency patient (variant 3):

 Variant 1: the request is made by the patient. It is then
received by the assistant who is responsible for the
management of patients and then studied by a hospital
actor (the Cardiologist Doctor) who is responsible of
patient examination.

 Variant 2: the request is made by a hospital Actor
(doctor) and received by the assistant. The same
process as a simple patient is applied.

 Variant 3: the request is sent by a hospital actor
(emergency doctor), then it is sent directly to the
cardiologist to perform an emergency examination.

Fig. 2. An echography request configurable process

For each variation point activity, the type of the variation
point (through the stereotype) and the associated variants are
indicated, and for each variant activity, the feature helping the
designer in the variability resolution step ({PatientType =
“Hospitalized patient”}) is represented.

B. Decomposition of configurable process

The decomposition of a business process is to extract from
a business process model, a set of fragments that encapsulate a
business objective. A fragment is identified from a series of
sequential activities or from a Gateway. A fragment
corresponds to a business service [26].

In this work, the decomposition of a configurable process
(shown in Variant-Rich BPMN) is to extract several
configurable fragments (supporting variability). These
configurable fragments correspond to configurable composite
activities. A composite activity is called configurable if it
contains at least one variation point or variable activity. A
configurable fragment is identified from a series of sequential
activities carried out by the same participant. For each
configurable fragment identified, a configurable service will
be associated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

217 | P a g e

www.ijacsa.thesai.org

Thus, the configurable process can be decomposed as
follows (see Fig. 3):

 The composite activity

 « EchographyRequestManagement» consists of:

 A variation point activity «InternEchographyRequest»

 A Variable activity «EchographyRequestTreatment»

 A variation point activity «Conduct Clinical Act»

 An optional activity «Planning Appointment»

 An optional activity «IdentifyPatient»

 The composite activity «PatientEchographyPatient»
consists of:

 An optional activity “ExternEchographyRequest»

Fig. 3. Decomposition of the configurable process

Each configurable composite activity is associated with a
configurable service. Two configurable services:

 EchographyRequestManagement

 PatientEchographyRequest

For each identified configurable composite activity, the
service interface, the messages, the service contract and
participants are generated.

C. VarSOAML configurable service generation

Before generating a VarSOAML models of a configurable
service, it is first to identify the elements of the source
metamodel and the target metamodel of those affected by this
generation.

The type of transformation which is operated is the
multiple transformation (1 to 3).A Variant-Rich BPMN model
is transformed to four VarSOAML models by applying
generation rules.

Example of the proposed generation rule [15]:

The rule for the transformation of the
VariableCompositeActivity element to ProviderInterface or
ConsumerInterface elements is given, as well as
VariableCompositeActivity element is shown in VarSOAML
by two interfaces: Provider Interface and Consumer Interface.

Rule name:

VariableCompositeActivity2ConsumerInterface

&ProviderInterface

Input element: VariableCompositeActivity

Output element: ConsumerInterface or

ProviderInterface

For each

VariableCompositeActivityelement Do

Create an element of

ConsumerInterfaceOrProviderInterface

types

The name of the ConsumerInterfaceOr

Provider element is the name of the

VariableCompositeActivityelement

If (the IncomingMattribute is Null)

of the first SimpleActivity or

VariationPointActivity or Event

elements contained in the

VariableCompositeActivityThen

Create ConsumerInterface element

Else

Create ProviderInterface element

Apply

VariableCompositeActivity2VariableIn

terface//Create aVariableInterface

element which represents the service

interfacewhich provides the

ProviderInterface

End If

For each element SimpleActivity element

in VariableCompositeActivityDo

Apply SimpleActivity2Operation

End For

For each VariationPointActivity element

Do

Apply

VariationPointActivity2VariationOper

ation

End For

 The example of VarSOAML models which represent the
service associated with the composite activity
«EchographyRequestManagement» is given bellow.

a) Service contract model

By applying the rule

VariableCompositeActivity2VariableContract [15] the
service contract model «EchographyRequestManagement»
can be generated (cf. Fig. 4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

218 | P a g e

www.ijacsa.thesai.org

Fig. 4. Service contract model

b) Service Interface Model

By applying the rules proposed in [15]:

VariableCompositeActivity2VariableInterface

 VariableCompositeActivity2ProviderInterface &
ConsumerInterface

 VariationPointSimpleActivity2VariationOperation

 VariantSimpleActivity2VariantOperation

 SimpleActivity2Operation

The configurable service interface is given bellow (cf. Fig.
5).

Fig. 5. Service Interface model

This interface uses the required interface
«IPatientEchographyRequest» and provides
«IEchographyRequestManagement».

c) Message Type Model

By applying the rules [15]:

 VariationPointActivity2VariableMessage

 VariableActivity2VariableMessage

 VariationPointDataObjectInput2VariationType

 VariationPointSimpleDataInput2VariableAttribut

The Message Type model is exposed in (cf. Fig. 6)

Fig. 6. Message Type model

The model describes the variables and simple messages.
The model also describes the data contained in the message.

D. Configurable web services generation

In this section, the generation of configurable web services
(called VarWebservice) from VarSOAML models is detailed.

The VarWebService generation approach proposed in [25]
is applied.

This work establishes the transformation of VarSOAML
models to configurable web services. Thus, a web service is
defined as a service that is accessible via the Internet and uses
the XML standard. It is a software module that exposes the
interface through a WSDL (Web Service Description
Language). WSDL is a language for describing all operations
and messages that can be exchanged [27].

The generation of configurable web services requires
generation of the following files:

 WSDL file

 Variability specification file associated with the WSDL
file

 XSD schema which describes data which are used by
the web service

 Java code implementation

1) WSDL file generation
The WSDL file (cf. Fig. 7) contains all the messages and

operations. The following generation rules are applied:

 ServiceInterface2WSDL

 Operation2Operation

 MessageType2Message

Example of generation rule: ServiceInterface2WSDL

The ServiceInterface2WSDL rule enables the creation of
instances of Binding, PortType, Schema Types ('WSDL')
elements from the instance of ServiceInterface element.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

219 | P a g e

www.ijacsa.thesai.org

Name rule: ServiceInterface2WSDL

Input Elements: ServiceInterface (VarSOAML)

Output elements: Binding, PortType, Schema

Types, Definition ('WSDL'

For each ServiceInterface Do

Create an element of wsdl

Create the Binding attribut

The name of Binding is the name

of ServiceInterface concatenated

with the string 'Binding'

Create the style attribute

The name takes the value

“document"

For each Operation Do

Apply Operation2Operation

rule

End For

End For

<?xml version=”1.0” encoding=”UTF-8”?>

<wsdl:definitions

name=”EchographyRequestManagement”

targetNamespace=”urn://

EchographyRequestManagement.wsdl”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/so

ap/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:ps=”urn://EchographyRequestManagement

Schema.xsd”

xmlns:tns=”urn://

EchographyRequestManagement.wsdl”

xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:import namespace=”urn://

EchographyRequestManagement Schema.xsd”

location=” EchographyRequestManagement

Schema.xsd”> </wsdl:import>

<wsdl:types></wsdl:types>

<wsdl:message name=”return”>

<wsdl:part name=”partreturn” type=”xsd:int”>

</wsdl:part>

<wsdl:message name=”PlanningAppointment”>

<wsdl:part name=”part PlanningAppointment”

type=”ps:PatientEchoRequest”/>

</wsdl:message>

<wsdl:message name=”ConductClinicalAct”>

<wsdl:part name= “part ConductClinicalAct”

type=”ps: Report”/>

</wsdl:message>

<wsdl:portType

name=”EchographyRequestManagementPortType”>

<wsdl:operation name=”PlanningAppointment”>

<wsdl:input message=”tns: PlanningAppointment”

name=”PlanningAppointment_Request”/>

<wsdl:output message=”tns:return”

name=”PlanningAppointment_Response”/>

</wsdl:operation>

<wsdl:operation name=”ConductClinicalAct”>

<wsdl:input message=”tns: ConductClinicalAct”

name=”ConductClinicalAct_Request”/>

<wsdl:output message=”tns:return” name=”

ConductClinicalAct_Response”/>

</wsdl:operation>

</wsdl:portType> </wsdl:definitions> …

Fig. 7. An extract of the WSDL file

The VarSOAML source elements affected by this
generation are: the interface provided by the service interface
and messages associated with this interface.

2) Generation of the variability specification associated

with the WSDL file
The specification of the variability associated with the

WSDL file describes the variable operations, messages, types
and variables attributes (cf. Fig. 8).

<variability service

=”EchographyRequestManagement” name

=”EchographyRequestManagementVariability”>

<operations>

<variationOperation name =

“InternEchographyRequest” min = “1” max =

“1” portype =

“EchographyRequestManagementPortType”>

</variationOperation>

<variantOperation name = “EP

EchographyRequest”

</variantOperation>

</operations>

<messages>

<variablemessage name = “

PlanningAppointment” scope =”configurable”

boundElement = “ PlanningAppointment”

description =””>

<types> <type>RequestEcho</type> </types>

</variablemessage>

<variablemessage name = “

ConductClinicalAct” scope =”configurable”

boundElement = ”ConductClinicalAct”

description =””>

<types> <type>Report</type>

</messages>

…

</variability>

Fig. 8. An extract of the Variability specification associated with the WSDL

file

3) XSD schema generation
The XSD schema describes all data types used by a web

service.

In order to generate the XSD file (cf. Fig. 9), the
generation rules proposed in [25] are applied:

 ServiceInterface2Schema

 MessageType2Message

 Attribute2Element

 DataType2Type

 PType2SimpleType

Example of the generation rule: Data Type2Type:

The DataType2Type rule allows for creating an instance of
the web service ComplexType from an instance of the
VarSOAML DataType element.

Name rule: DataType2Type

Input Element: DataType (VarSOAML)

Output element: ComplexType ('XSD')

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

220 | P a g e

www.ijacsa.thesai.org

For each DataType element Do

Create ComplexType element

The name of the ComplexType is the name

of the Datatype

For each attribute element Do

Apply the Attribute2Element rule

End For

End For

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

xmlns:tns="urn://

EchographyRequestManagement Schema.xsd"

targetNamespace="urn://

EchographyRequestManagementSchema.xsd">

<xsd:complexType

name="sequencePatientEchoRequest">

<xsd:sequence>

<xsd:element name="PatientEchoRequest"

type="tns: PatientEchoRequest" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PatientEchoRequest">

<xsd:sequence>

<xsd:element name="id" type="xsd:integer" />

<xsd:element name="Date" type="xsd:string"

/>

<xsd:element name="EchoType"

type="xsd:String" />

<xsd:element name="Patient"

type="xsd:Patient"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Patient">

<xsd:sequence>

<xsd:element name="id" type="xsd:string" />

<xsd:element name="Lastname"

type="xsd:string" />

<xsd:element name="Firstname"

type="xsd:string"/>

<xsd:element name="Phone" type="xsd:string"

/>

<xsd:element name="Age" type="xsd:integer"

/>

</xsd:complexType>

<xsd:complexType name="Report">

<xsd:sequence>

<xsd:element name="id" type="xsd:string" />

<xsd:element name="ReportSubject"

type="xsd:string" />

<xsd:element name="Date" type="xsd:string"

/>

<xsd:element name="Act" type="xsd:string" />

</xsd:schema>

Fig. 9. An extract of the XSD schema associated with the WSDL file

4) Java code implementation of configurable web service
The following generation rules are applied in order to

generate the java code implementation [25] (cf. Fig. 10):

 ServiceInterface2Interface

 Operation2WebMethod

 Attribut2WebParam

Example of the generation Rule: Operation2Method

The Operation2Method rule allows creating of the Method
instance from Operation.

Name rule: Operation2Method

Input Element: Operation (VarSOAML)

Output elements: Method, WebMethods ('JAXWS')

Description:

For each Operation element Do

 Create Method element

The name of Method parameters is the

name of the parameters and return type

of the Operation element

For each Parameters Do

Apply Param2Par rule

Creates WebMethod

The name of OperationName

is the name of the

operation element

End For

End For
The java code of the web service

EchographyRequestManagement is generated (cf. Fig. 10):

package EchoRequestWebService;

import javax.jws.*;

import javax.jws.soap.SOAPBinding;

import javax.xml.ws.Endpoint;

@WebService(serviceName=”EchographyRequestMan

agementService”)

public class EchographyRequestManagementClass

implements

EchographyRequestManagementInterface {

@VariantOperation

(boundOperation=”EP_EchographyRequestPatient”

)

public EP_EchographyRequestPatient()

{ …

}

@VariantOperation

(boundOperation=”HP_EchographyRequestPatient”

)

public HP_EchographyRequestPatien()

{ …

}

}

Fig. 10. An extract of the Java Code implementation

The advantage of this method is that it covers all stages of
configurable services development, from configurable process
modeling to configurable web services implementation which
is described by the WSDL file, the variability specification,
the XSD schema and the Java code implementation.

V. CONCLUSION

Many solutions for business IT alignment have been
proposed. However, some limitations such as the weak
support of business process and service variability are
underlined. The MDA based method for service generation
ensures the business IT alignment with managing variability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

221 | P a g e

www.ijacsa.thesai.org

It allows for decomposing configurable processes into set of
configurable composite activities. Thus, a set of configurable
services VarSOAML generation rules were proposed with the
aim of generating different VarSOAML models. The
advantage is that these models are then automatically
implemented as configurable web services which requires the
generation of the WSDL file, the variability specification, the
XSD file and the java code implementation. In this sense,
VarSOAML models conduct the implementation of
configurable web services.

Indeed, the generation of configurable services from a
configurable process provides better synchronization of
changes between the business and IT layers, it will facilitate
the propagation of changes from configurable process to
configurable services.

Furthermore, the proposed business IT alignment is not
sufficient as it excludes changes that may come from the
service layer. As future work, it will be necessary to offer a
bottom up approach to align business process with services.
Another possible improvement is to incorporate the semantic
aspect to enrich configurable services in the context of
business IT alignment. This can allow for developing
intelligent configurable web services.

REFERENCE

[1] M. Dumas, W.M.P. Van der Aalst and A.H.M. ter Hofstede,”Process-
Aware Information Systems”, Wiley, 2005.

[2] C. Ayora, V. Torres, B. Weber, M. Reichert ,V. Pelechano, “Enhancing
Modeling and Change Patterns. BMDS/EMMSAD”, CAiSE 2013,
Valencia, Spain, pp.246-260, 17-18 Juin, 2013.

[3] M. La Rosa,”Managing variability in PAIS”, PHD thesis, Faculty of
Science and Technology, Queensland University of Technology,
Brisbane, Australia, 25 Mars 2009.

[4] M. Rosemann , W. M.P Van der Aalst,”A Configurable Reference
Modelling Language “, Information Systems Vol.32, N°1, pp.1–23,
2007.

[5] A. Schnieders , F. Puhlmann,”Variability modeling and product
derivation in ebusiness process families”, Technologies Business
Information System Book, Springer, pp. 63–74, 2007.

[6] A. Hallerbach ,T. Bauer, M. Reichert,”Capturing variability in business
process models: The Provop approach”, Journal of Software
Maintenance and Evolution: Research and Practice, Vol.22, N°7,
pp.519–546, 2010.

[7] V. Kulkarni, S. barat,”Business process families using model-driven
techniques Lecture Notes in Business Information Processing”,
Vol.66, pp 314-325, 2011.

[8] A. Kumar, W. Yao,”Design and management of flexible process
variants using templates and rules,», Computers in Industry Vol.63, N°2,
pp.112–130, 2012.

[9] T. Nguyen , A. Colman, J. Han ,”Comprehensive Variability Modeling
and Management for Customizable Process-Based Service
Compositions”, in : A. Bouguettaya, Q. Z. Sheng, F. Daniel, Web
Services Foundations, Springer, pp.507–534, 2014.

[10] A. Yousfi, R. Saidi and A.K. Dey,”Variability patterns for business
processes in BPMN. Information Systems and e-Business Management,
pp:1-25,2015.

[11] C. Ayora, V. Torres, J L. De la Vara, V. Pelechano,”Variability
management in process families through change patterns”, Information
and Software Technology, Vol.74, pp. 86-104, 30 June 2016.

[12] B. Weber, M. Reichert, S. Rinderle,” Change Patterns and Change
Support Features: Enhancing Flexibility in Process-Aware Information
Systems”, Data and Knowledge Engineering, Vol.66, N°3, pp. 438–466,
2008.

[13] H. Sbai, M. Fredj, L. Kjiri,” A pattern based methodology for evolution
management in business process reuse”, IJCSI International Journal of
Computer Science Issues, Vol. 11, Issue 1, N°1, pp. 211-220, January
2014.

[14] A. Delgado, F. Ruiz, I.G.R. de Guzman, M. Piattini,”A model-driven
and service-oriented framework for the business process improvement”,
Journal of Systems Integration, Vol.1, No° 3, pp. 45–55, 2010.

[15] H. Sbai, M. Fredj, B. Chakir,”Generating services supporting variability
from configurable process model”, Journal of Theoretical and Applied
Information Technology, Vol. 72, N°2, pp. 111-124, February 2015.

[16] K. Da man, F. Charoy, C. Godart,”Alignment and change propagation
between business processes and service-oriented architectures»,
International Conference on Service Computing (SCC’13), Santa Clara,
CA, United States, pp. 168–175, 27 June - 02 July, 2013.

[17] B. Elvesæter, D. Panfilenko , S. Jacobi and C. Hahn,”Aligning business
and IT models in service-oriented architectures using BPMN and
SoaML,”Proceedings of the First International Workshop on Model-
Driven Interoperability (MDI '10), Oslo, Norway, 3-5 Octobre, 2010.

[18] A. Kabzeva and P. M¨uller,” Toward Generic Dependency Management
for Evolution Support of Inter-Domain Service-Oriented Applications”,
European Conference on Service-Oriented and Cloud Computing
(ESOCC 2012), Bertinoro , Italy, pp.35-40 ,2012.

[19] Y. Wang, J. Yang, W. Zhao,”Change impact analysi"s for service based
business processes. In the IEEE International Conference on Service-
Oriented Computing and Applications (SOCA), pp. 1-8, 13 December,
2010.

[20] J. Simonin, P. Picouet, J.M. Jézéquel, “Conception fonctionnelle de
services d’entreprise fondée sur l’alignement entre cœur de métier et
système d’information”, Ingénierie des systèmes d’information, Vol. 15,
N°4, pp.37-61, 2010.

[21] Y. Lemrabet, J. Touzi, D. Clin, M. Bigand, J.P. Bourey, “Mapping of
bpmn models into uml models using soaml profile”, 8th International
Conference of Modeling and Simulation (MOSIM’10), Hammamet,
Tunisia, pp. 10-12 Mai, 2010.

[22] BPMN, Business Process Modeling and Notation, Version 2.0. Object
Management Group (OMG) http ://www.bpmn.org/ (dernière
consultation Mars 2015).

[23] SOAML, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services (UPMS)”,
Version 1.0, 2012.

[24] J. Bézivin, “Sur les principes de base de l’ingénierie des modèles”, ISSN
1262-1137, Vol. 10, No 4, pp. 145-156, 2004.

[25] B. Chakir, “Contribution à l’amélioration de la variabilité des services
par la gestion de la variabilité “, doctoral dissertation, Mohammed V
University of Rabat, March 2014.

[26] M. Radgui, “Décomposition et adaptation de processus métiers BPMN
pour des systèmes d’information flexibles “, Mohammed V university of
Rabat, Morocco, June 2015.

[27] W3C, Web Services Definition Language (WSDL) 1.2, :
http://www.w3.org/TR/2003/WD-wsdl12-20030611/, 2003.

http://www.informatik.uni-trier.de/~ley/pers/hd/t/Torres:Victoria.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Weber:Barbara.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Reichert:Manfred.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pelechano:Vicente.html
http://www.informatik.uni-trier.de/~ley/db/conf/caise/bpmds2013.html#AyoraTWRP13
http://www.informatik.uni-trier.de/~ley/db/conf/caise/bpmds2013.html#AyoraTWRP13
http://link.springer.com/bookseries/7911

