
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

91 | P a g e

www.ijacsa.thesai.org

Using Multiple Seasonal Holt-Winters Exponential

Smoothing to Predict Cloud Resource Provisioning

Ashraf A. Shahin
1,2

1
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University,

Cairo, Egypt

Abstract—Elasticity is one of the key features of cloud

computing that attracts many SaaS providers to minimize their

services’ cost. Cost is minimized by automatically provision and

release computational resources depend on actual computational

needs. However, delay of starting up new virtual resources can

cause Service Level Agreement violation. Consequently,

predicting cloud resources provisioning gains a lot of attention to

scale computational resources in advance. However, most of

current approaches do not consider multi-seasonality in cloud

workloads. This paper proposes cloud resource provisioning

prediction algorithm based on Holt-Winters exponential

smoothing method. The proposed algorithm extends Holt-

Winters exponential smoothing method to model cloud workload

with multi-seasonal cycles. Prediction accuracy of the proposed

algorithm has been improved by employing Artificial Bee Colony

algorithm to optimize its parameters. Performance of the

proposed algorithm has been evaluated and compared with

double and triple exponential smoothing methods. Our results

have shown that the proposed algorithm outperforms other

methods.

Keywords—auto-scaling; cloud computing; cloud resource

scaling; holt-winters exponential smoothing; resource

provisioning; virtualized resources

I. INTRODUCTION

Elasticity feature plays an important role in cloud
computing by allowing SaaS providers to allocate and
deallocate resources to their running services according to the
demand. Elasticity allows SaaS providers to pay only for
resources that are used by their cloud services [1]. However,
the delay between requesting new resources and it being ready
for use violates Service Level Agreement [2]. Therefore,
forecasting future resource provisioning is needed to request
resources in advance.

Exponential Smoothing is a very popular smoothing
method and has been used through years in many forecasting
situations [3]. Many researchers have exploited Exponential
smoothing methods to predict future resource provisioning for
cloud computing applications [4][5]. However, most of them
have used double exponential smoothing, which cannot model
workloads if there are seasonalities.

Most of cloud-computing applications’ workloads are
influenced by seasonal factors (e.g., day, week, month, year)

and have more than one seasonal pattern [6][7][8]. Workload
has intraday seasonal pattern if there is a similarity of request
when comparing requests of the corresponding hour from one
day to the next day. Intraweek seasonal pattern exists if there
is a similarity between requests in two corresponding days
from two adjacent weeks [3]. Therefore, there is a strong
demand to use predictive approach that is able to capture all
seasonality patterns.

This paper proposes resource usage prediction algorithm,
which extends Holt-Winters exponential smoothing (HW)
method to model multiple seasonal cycles. However,
modeling multiple seasonal cycles requires large number of
observation values. For example, predicting resource usage
with intraday, intra-month, and intra-year seasonality patterns
requires at least two years observation values. Moreover,
finding optimal parameter values (smoothing constant, trend-
smoothing constant and seasonal-smoothing constants) for
multiple seasonality model is not an easy task.

Therefore, the proposed algorithm detects seasonality
patterns from available historical data by applying seasonality
test, and extends HW accordingly to model detected
seasonality patterns. While historical data size grows up and
more seasonality patterns are detected, HW is gradually
extended to be able to model detected seasonality patterns.
Furthermore, prediction accuracy of the proposed algorithm
has been enhanced by using artificial bee colony algorithm to
find near optimal values for its parameters. Thus, unlike most
of current resource prediction approaches, the proposed
algorithm does not require any minimum number of
observations values before applying it. However, good
prediction accuracy will not be achieved until several steps
have been made.

The proposed algorithm has been evaluated using
CloudSim simulator with real Web server log called
Saskatchewan Log [6]. Performance of the proposed algorithm
has been compared with double and triple exponential
smoothing methods. Experimental results have shown that the
proposed algorithm outperforms algorithms that use double or
triple exponential smoothing methods.

This paper is organized as follows. In Section II related
works are overviewed. The proposed algorithm is presented in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

92 | P a g e

www.ijacsa.thesai.org

Section III. Performance of the proposed algorithm is
evaluated in Section IV. Finally, Section V concludes.

II. RELATED WORK

The problem of predicting resource provisioning in cloud
computing has been studied extensively over the last few
years. Several prediction techniques have been used to predict
cloud resource provisioning. However, most of current
approaches do not consider multi-seasonality in cloud
workload, and most of them use prediction techniques that do
not have ability to model more than one seasonal cycle
[4][9][10][11].

Islam et al. [12] have proposed framework to predict future
resource usage in the cloud. The proposed framework uses
two machine-learning algorithms (Neural Network and Linear
Regression) with sliding window and cross validation
techniques to predict cloud resource usage. The proposed
framework is evaluated by using dataset that is collected by
using TPC-W benchmark. Statistical metrics is proposed to
assess prediction accuracy. However, the proposed framework
uses three layers feed-forward Neural Network, which does
not able to predict resource utilization when there are long
time lags between events. Moreover, the proposed framework
is tested with data that are collected from 135 minutes, which
does not contain any seasonality. Therefore, prediction with
seasonality is not examined.

Kanagala and Sekaran [4] have proposed dynamic
threshold-based auto-scaling approach that considers virtual
resource start-up and stabilization delays. Virtual resource
utilization is predicted by using double exponential smoothing
method, thresholds are adapted based on the predicted
resource utilization to minimize violation of Service Level
Agreement. However, double exponential smoothing method
cannot be used to model seasonality.

In [5], Huang et al. have proposed resource utilization
prediction model based on double exponential smoothing
method. Prediction accuracy of the proposed model has been
evaluated using CloudSim simulator, which shows that double
exponential smoothing has better prediction accuracy than
simple mean based method and weighted moving average
method. However, smoothing constant and trend-smoothing
constant are determined using trial method, which does not
grant quality of the final solution.

Although, seasonal linear regression can be used to predict
workload with seasonality, most of current approaches do not
consider cloud workload seasonalities and use conventional
linear regression to predict cloud resource utilization
[1][13][14][15]. In [16], Yang et al. have proposed cost-aware
auto-scaling approach, which predicts workload using linear
regression model. The problem has been formulated as integer
programming problem and solved using greedy heuristic to
reduce costs. The proposed approach uses vertical and
horizontal scaling methods. Allocated resources are scaled
vertically by creating virtual machines on the same cluster
node or using unallocated resources available at a particular
cluster node to scale up a VM executing on it. Horizontal
scaling is used to create virtual machines on other cluster
nodes.

To gain benefits from several time series prediction
models, Messias et al. [2] have proposed cloud workload
prediction methodology that combines several time series
forecasting models using genetic algorithm. Each time series
prediction model has been assigned a weight, and genetic
algorithm adapts the assigned weights to find the best weight
combination that maximizes prediction accuracy.

Wei and Blake [17] have proposed an algorithm to predict
future resource requirement in the cloud. The proposed
algorithm uses five prediction models and differentiates
between these models using root-mean-square-error (RMSE).
Prediction model with the lowest RMSE is used to predict
future resource requirement. Although, the proposed algorithm
uses prediction techniques that do not have ability to model
seasonality, it can be extended to include more prediction
techniques with the ability to model seasonality.

Salah et al. [18] have proposed analytical model based on
Markov chains to predict minimal number of VMs and load
balancers required to satisfy Service Level Agreement such as
throughput and response time. The proposed model has been
validated using experimental testsbed deployed on the
Amazon Web Services. Discrete-event simulation has been
used to verify correctness of the proposed model.

III. PROPOSED ALGORITHM

Although many researchers have employed double
exponential smoothing for forecasting cloud applications’
workload [5][4], double exponential smoothing does not able
to model seasonality [3]. HW can be used for forecasting
seasonal workloads [3]. However, HW is only able to model
workloads with one seasonal pattern and cloud applications’
workloads may have more than one seasonal pattern (e.g.,
intraday, intraweek, intra-month, intra-quarter, intra-year).

Therefore, in this paper, HW has been extended to be able
to accommodate multi-seasonal patterns. As shown in
equations 1-5, HW has been extended by adding seasonal
indices and smoothing equation for each seasonal pattern.

 {
∏

 ̂

where is an index denoting a time period, is smoothed
value at time , is observed value at time , is trend

factor at time , is seasonal indices for seasonality pattern

 , is number of periods in a completed seasonal cycle for
seasonality pattern α is the smoothing constant, the
trend-smoothing constant, is seasonal-smoothing constant
for seasonality pattern s number of seasonality patterns,

and ̂ is the k-step-ahead forecast at time .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

93 | P a g e

www.ijacsa.thesai.org

Initial smoothed value for the level, , is calculated as
average of the first periods, which are periods in the first
two cycles from the first seasonal pattern. If there is no
seasonality patterns, is initialized by the first observation
value . Initial value for the trend factor, is calculated as
 of average of the difference between first
observations and second observations. If there is no
seasonality patterns, is initialized as a difference between
second observation value and first observation value
 .

For each seasonal cycle, at least three completed seasonal
data are required to initialize its seasonal indices. Seasonal
indices are initialized as average of ratios of observed value to
its centered moving average (calculated from periods
around observed value), taken from the corresponding period
in each of the first two completed seasonal data, which starts
from . For example, seasonal indices for seasonality
pattern are calculated as following:

 (

) ⁄

where is centered moving average around for

periods

 ∑

 ⁄

Finally, artificial Bee colony algorithm is applied to
determine near optimal values for smoothing constant, trend-
smoothing constant and seasonal-smoothing constants that
minimize Mean Squared Error (MSE).

∑ ̂

Algorithm 1 shows steps of the proposed algorithm. The
first input is initial list of observation values that contains 60
observation values (from 60 minutes). This number of
observation values is specified to start with enhanced
accuracy. The second input is the list of completed seasonal
cycles’ length of expected seasonal patterns. Instead of
applying seasonality test periodically, the second input
specifies time points to test existence of seasonality patterns.
The outputs are list of predicted values and list of seasonal
cycles’ length of detected seasonal patterns.

In the first line, initial smoothed value is set to the
observed value , and initial trend factor is set to
 . Best values for smoothing constant α and trend-
smoothing constant are obtained by using Bee Colony
Algorithm (Algorithm 2). At this point, number of seasonal
cycles . Therefore, equations 1-5 are minimized to the
following equations, which represent equations associated
with Double Exponential Smoothing.

 ̂

Therefore, prediction accuracy of the proposed algorithm
during the interval from (where is
the number of periods in completed seasonal cycle for the first
seasonal pattern) is very similar to prediction accuracy of
double exponential smoothing.

If equals to
 , where

 , seasonality test is
applied to check if the list of observed values has seasonal
pattern with length

 or not. New seasonal pattern is detected
if autocorrelation coefficient is greater than or equal 0.3.
Length of the detected seasonal pattern

 is added to the list of
seasonal cycles’ length , and number of detected seasonal
patterns is increased. List of seasonal indices for the new
seasonal pattern is calculated and added to . Smoothing
constant, trend-smoothing constant, and seasonal-smoothing
constants are updated to the near optimal values using
artificial Bee colony algorithm. Finally, extended formula is

employed to predict future required resources.

Algorithm 2 shows steps of determining best values for
smoothing constant α, trend-smoothing constant , and

ALGORITHM 1: The proposed algorithm

INPUTS:

𝑋: initial list of observation values

𝐿 : list of expected seasonal cycles’ length

OUTPUTS:

�̂� 𝑘 : list of k-step-ahead predicted values

𝐿: list of seasonal cycles’ length

Begin

1: 𝑠 𝑥
2: Initialize 𝑆 and add 𝑠 to 𝑆

3: 𝑏 𝑥 𝑥

4: Initialize trend factor list B and add 𝑏 to 𝐵
5: Get Best Constants Using Bee Colony Algorithm

6: 𝑛 , where is the number of seasonal cycles in 𝑋

7: 𝑡 , where is an index denoting a time period

8: while 𝑡

9: Calculate 𝑠𝑡 using equation 1 and add it to 𝑆

10: Calculate 𝑏𝑡 using equation 2 and add it to 𝐵

11: Calculate �̂�𝑡 𝑘 using equation 5 and add it to �̂� 𝑘
12: 𝑡
13: end while

14: for each new observation value 𝑥𝑡 at time t

15: Add 𝑥𝑡 𝑡𝑜 𝑋

16: if 𝑡 𝐿
17: Apply seasonality test

18: if autocorrelation coefficient .

19: 𝑛

20: Add 𝑡 to 𝐿

21: Initialize seasonal indices list In for seasonal

cycle with length
22: Get Best Constants Using Bee Colony

Algorithm

23: end if

24: end if

25: Calculate 𝑠𝑡 using equation 1 and add it to 𝑆

26: Calculate 𝑏𝑡 using equation 2 and add it to 𝐵

27: Calculate 𝐼𝑖 𝑡 using equation 3 for all 𝑖 . . 𝑛 and

add it to 𝐼
28: Calculate �̂�𝑡 𝑘 using equation 5 and add it to �̂� 𝑘
29: end for
30: return

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

94 | P a g e

www.ijacsa.thesai.org

seasonal-smoothing constants by using artificial Bee colony
optimization algorithm.

At the beginning, initial population is initialized with
scout bees, which are randomly scattered across solution
space. Here, all constants (smoothing constant α, trend-
smoothing constant , and seasonal-smoothing constants)
are greater than zero and less than or equal one. For each scout
bee in , flower patch is delimited that contains its
neighborhood.

MSE is calculated for each scout bee by applying
equations 1-5 from to ‖ ‖, where is number of
periods in completed seasonal cycle for the largest seasonal
pattern. if , MSE is calculated by applying equations 1-5
from to ‖ ‖. Scouts are sorted in ascending order
according to their MSE.

Best sites with lowest MSE are selected from , and
elite sites with most lowest MSE are selected from .

Each scout in performs waggle dance to recruit forager
bees to search further in its flower patch. Such that, number of

recruited forager bees to () is greater than number of

recruited forager bees to the remaining best sites
 ().

To find fittest bee of each flower patch, recruited forager
bees are randomly distributed in flower patch. MSE is
calculated for each bee. If there is recruited forager bee with
MSE lower than MSE of its scout bee, fittest bee will be
selected as a new scout. Otherwise, flower patch will be
shrunken around its scout. After pre-specified number of
search cycles, the fittest bee of each flower patch is returned
as a local optimal solution.

New solutions are generated randomly for non-best sites
 , and all scout in are sorted in ascending order
according to their MSE. This search cycle will be repeated
until reaching termination condition. Finally, values of
smoothing constant α, trend-smoothing constant , and
seasonal-smoothing constants are obtained from fittest scout
bee in current population.

IV. PERFORMANCE EVALUATION

To evaluate performance of the proposed algorithm, its
performance have been compared with double and triple
exponential smoothing methods. The following subsections,
describe evaluation environment settings and discuss
simulations’ results.

A. Evaluation environment settings

The proposed algorithm has been evaluated using real Web
server log called Saskatchewan Log [6]. Saskatchewan log
contains HTTP requests to the University of Saskatchewan's
WWW server, which is located in Saskatoon, Saskatchewan,
Canada. This log was collected from 00:00:00 June 1, 1995 to
23:59:59 December 31, 1995, a total of 214 days [6].

Cloudlets have been generated according to Saskatchewan
log and sent to CloudSim simulator. For each minute,
CloudSim simulator calculates total required CPU to process
incoming requests without violating Service Level Agreement.
The proposed algorithm receives required CPU as observed
value and predicts required CPU after k-minutes. K has been
set to 15, where k is a virtual machine startup delay.

To evaluate accuracy of the proposed algorithm, three
evaluation metrics have been used:

- Mean absolute percentage error (MAPE), which is
defined as following:

 ∑

| ̂ |

where is mean absolute percentage error at time t,

 ̂ is the k-step-ahead forecast at time , and is
observed value at time . A smaller value of
implies a better prediction accuracy.

-Percentage of predictions within 25% (PRED(25)),
percentage of prediction within 25% at time is defined as
following:

‖{ ̂

| ̂ |

 }‖

ALGORITHM 2: Determine Best Constants Using Bee Colony

Algorithm

INPUTS:

𝑆: list of smoothed values
𝑋: list of observed values
𝐵: trend factor list
𝐼: seasonal indices list
𝑛: number of detected seasonality patterns
𝐿: list of seasonal cycles’ length
𝑀𝑎𝑥𝐼𝑡𝑒𝑟: maximum iteration number
𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟: maximum allowed error

OUTPUTS:

Near optimal values for smoothing constant α, trend-
smoothing constant 𝛽, and seasonal-smoothing constants 𝛾

Begin

1: Generate initial population 𝑃 with scout bees
2: Specify flower patch for each scout in 𝑛𝑏
3: Calculate MSE for each scout in 𝑃
4: Sort scouts in P in ascending order based on their MSE

values

5: 𝑖
6: while 𝑖 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖 𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟

7: 𝑖

8: Select best sites 𝑛𝑏 from 𝑛𝑠
9: Select elite sites 𝑛𝑒 from 𝑛𝑏
10: Recruit forager bees to 𝑛𝑒 and 𝑛𝑏 𝑛𝑒

11: Apply local search to find fittest bee of each flower patch

12: Generate random solutions for non-best sites 𝑛𝑠 𝑛𝑏

13: Calculate MSE for non-best sites

14: Sort all scouts in in ascending order based on their
MSE values

15: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖 𝑀𝑆𝐸 of the first scout in the sorted 𝑛𝑠

16: end while
17: Determine constants’ value according to fittest scout in

population 𝑃
18: return

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

95 | P a g e

www.ijacsa.thesai.org

 values are between 0 and 1. Prediction will be

more effective if value is closer to 1.

-Root Mean Squared Error (RMSE), RMSE at time is
defined as following:

 √

∑ ̂

A smaller value of implies better prediction
accuracy.

B. Evaluation results

Although, the proposed algorithm has been evaluated with
many real workload traces such as [6][7][8] in this evaluation
only one of them has been shown, which is Saskatchewan-
http.

Fig. 1 compares the proposed multi-seasonal algorithm
with double and triple exponential smoothing methods using
Mean Absolute Percentage Error (MAPE), which has been
defined in the previous section. As shown in Fig. 1, MAPE of
the proposed multi-seasonal algorithm stays below 29% while
triple and double are above 44% and 135% respectively. Fig. 2
shows that more than 57% of predicted values by using the
proposed multi-seasonal algorithm are with prediction error
less than 25%. In another side, 38% of triple exponential
smoothing predictions are within 25%, and 8-18% of double

exponential smoothing predictions are within 25%. Finally,
Root Main Square Error of the proposed multi-seasonal
algorithm has been compared with double and triple
exponential smoothing methods in Fig. 3, which shows that
RMSE of the proposed multi-seasonal algorithm is better than
other methods.

Fig. 1. Mean Absolute Percentage Error comparison

Fig. 2. Percentage of Predictions Within 25% comparison

Fig. 3. Root Main Square Error comparison

V. CONCLUSION

This paper has proposed predictive algorithm to predict
cloud resource provisioning. According to available historical
data and detected seasonal cycles, Holt-Winters exponential
smoothing method has been extended to allow modeling
multiple seasonal cycles with minimum number of
observation values. Artificial Bee Colony algorithm has been
exploited to find near optimal parameters value for the
proposed algorithm. Prediction accuracy of the proposed
algorithm has been evaluated by using CloudSim simulator
with real workload called Saskatchewan-http. Our results have
shown the effectiveness of the proposed algorithm among
other methods. Finally, the paper concludes that modeling
multiple seasonal cycles during predicting cloud resource
provisioning is an essential step toward accurate cloud
resource prediction.

As future work, long short-term memory recurrent neural
networks will be incorporated with the proposed algorithm to
predict cloud resource utilization when there are very long and
variant time lags between events. Because, in seasonality
patterns, seasonal cycle length is considered constant for each
seasonal pattern. However, in some cases, lags between events
are variant and have to be considered during prediction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 11, 2016

96 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic
approach for resource provisioning of cloud services,” Cluster
Computing, vol. 19, no. 3, pp. 1017–1036, 2016. DOI: 10.1007/s10586-
016-0574-9

[2] V. R. Messias, J. C. Estrella, R. Ehlers, M. J. Santana, R. C. Santana,
and S. Reiff-Marganiec, “Combining time series prediction models
using genetic algorithm to autoscaling web applications hosted in the
cloud infrastructure,” Neural Computing and Applications, pp. 1–24,
2015. DOI: 10.1007/s00521-015-2133-3

[3] J. W. Taylor, “Exponentially weighted methods for forecasting intraday
time series with multiple seasonal cycles,” International Journal of
Forecasting, vol. 26, no. 4, pp. 627 – 646, 2010. DOI:
http://dx.doi.org/10.1016/j.ijforecast.2010.02.009

[4] K. Kanagala and K. Sekaran, “An approach for dynamic scaling of
resources in enterprise cloud,” in 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science (CloudCom),
vol. 2, Dec 2013, pp. 345–348. DOI: 10.1109/CloudCom.2013.167

[5] J. Huang, C. Li, and J. Yu, “Resource prediction based on double
exponential smoothing in cloud computing,” in 2nd International
Conference on Consumer Electronics, Communications and Networks
(CECNet), 2012, April 2012, pp. 2056–2060. DOI:
10.1109/CECNet.2012.6201461

[6] Clarknet-http, Two weeks of http logs from the Clarknet WWW server.
Metro Baltimore-Washington DC area, USA. [online]
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html (Accessed on
October 1, 2016)

[7] Nasa-http, Two months of http logs from NASA Kennedy Space Center
WWW server in Florida, USA. [online]
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html (Accessed on
October 1, 2016)

[8] Saskatchewan-http, Seven months of http logs from the Saskatchewan's
WWW server. Saskatchewan University, Saskatchewan, Canada.
[online] http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html (Accessed on
October 1, 2016)

[9] S. Ajila and A. Bankole, “Cloud client prediction models using machine
learning techniques,” in 2013 IEEE 37th Annual Computer Software and
Applications Conference (COMPSAC), July 2013, pp. 134–142. DOI:
10.1109/COMPSAC.2013.21

[10] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2Nd ACM
Symposium on Cloud Computing, ser. SOCC ’11. New York, NY,
USA: ACM, 2011, pp. 5:1–5:14. DOI: 10.1145/2038916.2038921

[11] I. K. Kim, J. Steele, Y. Qi, and M. Humphrey, “Comprehensive elastic
resource management to ensure predictable performance for scientific
applications on public iaas clouds,” in Utility and Cloud Computing
(UCC), 2014 IEEE/ACM 7th International Conference on, Dec 2014,
pp. 355–362. DOI: 10.1109/UCC.2014.45

[12] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Gener. Comput.
Syst., vol. 28, no. 1, pp. 155–162, Jan. 2012. DOI:
10.1016/j.future.2011.05.027

[13] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, “Workload predicting-
based automatic scaling in service clouds,” in 2013 IEEE Sixth
International Conference on Cloud Computing, June 2013, pp. 810–815.
DOI: 10.1109/CLOUD.2013.146

[14] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “Automatic
resource provisioning: A machine learning based proactive approach,”
in 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom), Dec 2014, pp. 168–173. DOI:
10.1109/CloudCom.2014.147

[15] A. Bankole and S. Ajila, “Predicting cloud resource provisioning using
machine learning techniques,” in 2013 26th Annual IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), May
2013, pp. 1–4. DOI: 10.1109/CCECE.2013.6567848

[16] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J.
Chen, “A cost-aware auto-scaling approach using the workload
prediction in service clouds,” Information Systems Frontiers, vol. 16, no.
1, pp. 7–18, 2014. DOI: 10.1007/s10796-013-9459-0

[17] Y. Wei and M. B. Blake, “Proactive virtualized resource management
for service workflows in the cloud,” Computing, vol. 98, no. 5, pp. 523–
538, 2016. DOI: 10.1007/s00607-014-0419-4

[18] K. Salah, K. Elbadawi, and R. Boutaba, “An analytical model for
estimating cloud resources of elastic services,” Journal of Network and
Systems Management, vol. 24, no. 2, pp. 285–308, 2016. DOI:
10.1007/s10922-015-9352-x

