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Abstract—Elasticity is one of the key features of cloud 

computing that attracts many SaaS providers to minimize their 

services’ cost. Cost is minimized by automatically provision and 

release computational resources depend on actual computational 

needs. However, delay of starting up new virtual resources can 

cause Service Level Agreement violation. Consequently, 

predicting cloud resources provisioning gains a lot of attention to 

scale computational resources in advance. However, most of 

current approaches do not consider multi-seasonality in cloud 

workloads. This paper proposes cloud resource provisioning 

prediction algorithm based on Holt-Winters exponential 

smoothing method. The proposed algorithm extends Holt-

Winters exponential smoothing method to model cloud workload 

with multi-seasonal cycles. Prediction accuracy of the proposed 

algorithm has been improved by employing Artificial Bee Colony 

algorithm to optimize its parameters. Performance of the 

proposed algorithm has been evaluated and compared with 

double and triple exponential smoothing methods. Our results 

have shown that the proposed algorithm outperforms other 

methods. 
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I. INTRODUCTION 

Elasticity feature plays an important role in cloud 
computing by allowing SaaS providers to allocate and 
deallocate resources to their running services according to the 
demand. Elasticity allows SaaS providers to pay only for 
resources that are used by their cloud services [1]. However, 
the delay between requesting new resources and it being ready 
for use violates Service Level Agreement [2]. Therefore, 
forecasting future resource provisioning is needed to request 
resources in advance. 

Exponential Smoothing is a very popular smoothing 
method and has been used through years in many forecasting 
situations [3]. Many researchers have exploited Exponential 
smoothing methods to predict future resource provisioning for 
cloud computing applications [4][5]. However, most of them 
have used double exponential smoothing, which cannot model 
workloads if there are seasonalities. 

Most of cloud-computing applications’ workloads are 
influenced by seasonal factors (e.g., day, week, month, year) 

and have more than one seasonal pattern [6][7][8]. Workload 
has intraday seasonal pattern if there is a similarity of request 
when comparing requests of the corresponding hour from one 
day to the next day. Intraweek seasonal pattern exists if there 
is a similarity between requests in two corresponding days 
from two adjacent weeks [3]. Therefore, there is a strong 
demand to use predictive approach that is able to capture all 
seasonality patterns. 

This paper proposes resource usage prediction algorithm, 
which extends Holt-Winters exponential smoothing (HW) 
method to model multiple seasonal cycles. However, 
modeling multiple seasonal cycles requires large number of 
observation values. For example, predicting resource usage 
with intraday, intra-month, and intra-year seasonality patterns 
requires at least two years observation values. Moreover, 
finding optimal parameter values (smoothing constant, trend-
smoothing constant and seasonal-smoothing constants) for 
multiple seasonality model is not an easy task. 

Therefore, the proposed algorithm detects seasonality 
patterns from available historical data by applying seasonality 
test, and extends HW accordingly to model detected 
seasonality patterns. While historical data size grows up and 
more seasonality patterns are detected, HW is gradually 
extended to be able to model detected seasonality patterns. 
Furthermore, prediction accuracy of the proposed algorithm 
has been enhanced by using artificial bee colony algorithm to 
find near optimal values for its parameters. Thus, unlike most 
of current resource prediction approaches, the proposed 
algorithm does not require any minimum number of 
observations values before applying it. However, good 
prediction accuracy will not be achieved until several steps 
have been made. 

The proposed algorithm has been evaluated using 
CloudSim simulator with real Web server log called 
Saskatchewan Log [6]. Performance of the proposed algorithm 
has been compared with double and triple exponential 
smoothing methods. Experimental results have shown that the 
proposed algorithm outperforms algorithms that use double or 
triple exponential smoothing methods. 

This paper is organized as follows. In Section II related 
works are overviewed. The proposed algorithm is presented in 
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Section III. Performance of the proposed algorithm is 
evaluated in Section IV. Finally, Section V concludes. 

II. RELATED WORK 

The problem of predicting resource provisioning in cloud 
computing has been studied extensively over the last few 
years. Several prediction techniques have been used to predict 
cloud resource provisioning. However, most of current 
approaches do not consider multi-seasonality in cloud 
workload, and most of them use prediction techniques that do 
not have ability to model more than one seasonal cycle 
[4][9][10][11]. 

Islam et al. [12] have proposed framework to predict future 
resource usage in the cloud. The proposed framework uses 
two machine-learning algorithms (Neural Network and Linear 
Regression) with sliding window and cross validation 
techniques to predict cloud resource usage. The proposed 
framework is evaluated by using dataset that is collected by 
using TPC-W benchmark. Statistical metrics is proposed to 
assess prediction accuracy. However, the proposed framework  
uses three layers feed-forward Neural Network, which does 
not able to predict resource utilization when there are long 
time lags between events. Moreover, the proposed framework 
is tested with data that are collected from 135 minutes, which 
does not contain any seasonality. Therefore, prediction with 
seasonality is not examined. 

Kanagala and Sekaran [4] have proposed dynamic 
threshold-based auto-scaling approach that considers virtual 
resource start-up and stabilization delays. Virtual resource 
utilization is predicted by using double exponential smoothing 
method, thresholds are adapted based on the predicted 
resource utilization to minimize violation of Service Level 
Agreement. However, double exponential smoothing method 
cannot be used to model seasonality. 

In [5], Huang et al. have proposed resource utilization 
prediction model based on double exponential smoothing 
method. Prediction accuracy of the proposed model has been 
evaluated using CloudSim simulator, which shows that double 
exponential smoothing has better prediction accuracy than 
simple mean based method and weighted moving average 
method. However, smoothing constant and trend-smoothing 
constant are determined using trial method, which does not 
grant quality of the final solution. 

Although, seasonal linear regression can be used to predict 
workload with seasonality, most of current approaches do not 
consider cloud workload seasonalities and use conventional 
linear regression to predict cloud resource utilization 
[1][13][14][15]. In [16], Yang et al. have proposed cost-aware 
auto-scaling approach, which predicts workload using linear 
regression model. The problem has been formulated as integer 
programming problem and solved using greedy heuristic to 
reduce costs. The proposed approach uses vertical and 
horizontal scaling methods. Allocated resources are scaled 
vertically by creating virtual machines on the same cluster 
node or using unallocated resources available at a particular 
cluster node to scale up a VM executing on it. Horizontal 
scaling is used to create virtual machines on other cluster 
nodes. 

To gain benefits from several time series prediction 
models, Messias et al. [2] have proposed cloud workload 
prediction methodology that combines several time series 
forecasting models using genetic algorithm. Each time series 
prediction model has been assigned a weight, and genetic 
algorithm adapts the assigned weights to find the best weight 
combination that maximizes prediction accuracy. 

Wei and Blake [17] have proposed an algorithm to predict 
future resource requirement in the cloud. The proposed 
algorithm uses five prediction models and differentiates 
between these models using root-mean-square-error (RMSE). 
Prediction model with the lowest RMSE is used to predict 
future resource requirement. Although, the proposed algorithm 
uses prediction techniques that do not have ability to model 
seasonality, it can be extended to include more prediction 
techniques with the ability to model seasonality. 

Salah et al. [18] have proposed analytical model based on 
Markov chains to predict minimal number of VMs and load 
balancers required to satisfy Service Level Agreement such as 
throughput and response time. The proposed model has been 
validated using experimental testsbed deployed on the 
Amazon Web Services. Discrete-event simulation has been 
used to verify correctness of the proposed model. 

III. PROPOSED ALGORITHM 

Although many researchers have employed double 
exponential smoothing for forecasting cloud applications’ 
workload [5][4], double exponential smoothing does not able 
to model seasonality [3]. HW can be used for forecasting 
seasonal workloads [3]. However, HW is only able to model 
workloads with one seasonal pattern and cloud applications’ 
workloads may have more than one seasonal pattern (e.g., 
intraday, intraweek, intra-month, intra-quarter, intra-year). 

Therefore, in this paper, HW has been extended to be able 
to accommodate multi-seasonal patterns. As shown in 
equations 1-5, HW has been extended by adding seasonal 
indices and smoothing equation for each seasonal pattern. 
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where   is an index denoting a time period,    is smoothed 
value at time  ,    is observed value at time  ,    is trend 

factor at time  ,      is seasonal indices for seasonality pattern 

 ,    is number of periods in  a completed seasonal cycle for 
seasonality pattern    α is the smoothing constant,      the 
trend-smoothing constant,    is seasonal-smoothing constant 
for seasonality pattern       s number of seasonality patterns, 

and  ̂     is the k-step-ahead forecast at time  . 
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Initial smoothed value for the level,    , is calculated as 
average of the first     periods, which are periods in the first 
two cycles from the first seasonal pattern. If there is no 
seasonality patterns,   is initialized by the first observation 
value   . Initial value for the trend factor,     is calculated as 
     of average of the difference between first    
observations and second    observations. If there is no 
seasonality patterns,    is initialized as a difference between 
second observation value and first observation value     
    . 

For each seasonal cycle, at least three completed seasonal 
data are required to initialize its seasonal indices. Seasonal 
indices are initialized as average of ratios of observed value to 
its centered moving average (calculated from    periods 
around observed value), taken from the corresponding period 
in each of the first two completed seasonal data, which starts 
from       . For example, seasonal indices for seasonality 
pattern   are calculated as following: 
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Finally, artificial Bee colony algorithm is applied to 
determine near optimal values for smoothing constant, trend-
smoothing constant and seasonal-smoothing constants that 
minimize Mean Squared Error (MSE). 
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Algorithm 1 shows steps of the proposed algorithm. The 
first input is initial list of observation values that contains 60 
observation values (from 60 minutes). This number of 
observation values is specified to start with enhanced 
accuracy. The second input is the list of completed seasonal 
cycles’ length of expected seasonal patterns. Instead of 
applying seasonality test periodically, the second input 
specifies time points to test existence of seasonality patterns. 
The outputs are list of predicted values and list of seasonal 
cycles’ length of detected seasonal patterns. 

In the first line, initial smoothed value    is set to the 
observed value   , and initial trend factor    is set to     
    . Best values for smoothing constant α and trend-
smoothing constant   are obtained by using Bee Colony 
Algorithm (Algorithm 2). At this point, number of seasonal 
cycles    . Therefore, equations 1-5 are minimized to the 
following equations, which represent equations associated 
with Double Exponential Smoothing. 

                                                  

                                                   

 ̂                                                                                      

Therefore, prediction accuracy of the proposed algorithm 
during the interval from                  (where    is 
the number of periods in completed seasonal cycle for the first 
seasonal pattern) is very similar to prediction accuracy of 
double exponential smoothing. 

If   equals to     
  , where   

    , seasonality test is 
applied to check if the list of observed values   has seasonal 
pattern with length   

  or not. New seasonal pattern is detected 
if autocorrelation coefficient is greater than or equal 0.3. 
Length of the detected seasonal pattern   

  is added to the list of 
seasonal cycles’ length  , and number of detected seasonal 
patterns   is increased. List of seasonal indices for the new 
seasonal pattern is calculated and added to  . Smoothing 
constant, trend-smoothing constant, and seasonal-smoothing 
constants are updated to the near optimal values using 
artificial Bee colony algorithm. Finally, extended formula is 

employed to predict future required resources. 

Algorithm 2 shows steps of determining best values for 
smoothing constant α, trend-smoothing constant  , and 

ALGORITHM 1: The proposed algorithm 

INPUTS: 

𝑋: initial list of observation values  

𝐿 : list of expected seasonal cycles’ length 

OUTPUTS: 

�̂� 𝑘 : list of k-step-ahead predicted values  

𝐿: list of seasonal cycles’ length 

Begin 

1: 𝑠  𝑥    
2: Initialize 𝑆 and add 𝑠  to 𝑆 

3: 𝑏  𝑥   𝑥  

4: Initialize trend factor list B and add 𝑏  to 𝐵 
5: Get Best Constants Using Bee Colony Algorithm 

6: 𝑛   , where   is the number of seasonal cycles in 𝑋 

7: 𝑡   , where   is an index denoting a time period   

8: while 𝑡     

9:      Calculate 𝑠𝑡 using equation 1 and add it to 𝑆 

10:      Calculate 𝑏𝑡 using equation 2 and add it to 𝐵 

11:      Calculate �̂�𝑡 𝑘  using equation 5 and add it to �̂� 𝑘  
12:      𝑡    
13: end while  

14: for each new observation value 𝑥𝑡 at time t 

15:      Add 𝑥𝑡 𝑡𝑜 𝑋 

16:      if  𝑡   𝐿   
17:            Apply seasonality test 

18:            if  autocorrelation coefficient  .  

19:                  𝑛    

20:                  Add 𝑡    to 𝐿  

21:                  Initialize seasonal indices list In for seasonal 

cycle with length     
22:                  Get Best Constants Using Bee Colony 

Algorithm 

23:            end if 

24:      end if 

25:      Calculate 𝑠𝑡 using equation 1 and add it to 𝑆 

26:      Calculate 𝑏𝑡 using equation 2 and add it to 𝐵 

27:      Calculate 𝐼𝑖 𝑡 using equation 3 for all 𝑖      . .  𝑛 and  

add it to 𝐼 
28:      Calculate �̂�𝑡 𝑘  using equation 5 and add it to �̂� 𝑘  
29: end for  
30: return   

End 
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seasonal-smoothing constants   by using artificial Bee colony 
optimization algorithm. 

At the beginning, initial population   is initialized with    
scout bees, which are randomly scattered across solution 
space. Here, all constants (smoothing constant α, trend-
smoothing constant  , and seasonal-smoothing constants  ) 
are greater than zero and less than or equal one. For each scout 
bee in   , flower patch is delimited that contains its 
neighborhood. 

MSE is calculated for each scout bee by applying 
equations 1-5 from      to   ‖ ‖, where    is number of 
periods in completed seasonal cycle for the largest seasonal 
pattern. if    , MSE is calculated by applying equations 1-5 
from     to   ‖ ‖. Scouts are sorted in ascending order 
according to their MSE. 

Best sites    with lowest MSE are selected from   , and 
elite sites    with most lowest MSE are selected from   . 

Each scout in    performs waggle dance to recruit forager 
bees to search further in its flower patch. Such that, number of 

recruited forager bees to    (    ) is greater than number of 

recruited forager bees to the remaining best sites    
   (    ). 

To find fittest bee of each flower patch, recruited forager 
bees are randomly distributed in flower patch. MSE is 
calculated for each bee. If there is recruited forager bee with 
MSE lower than MSE of its scout bee, fittest bee will be 
selected as a new scout. Otherwise, flower patch will be 
shrunken around its scout. After pre-specified number of 
search cycles, the fittest bee of each flower patch is returned 
as a local optimal solution. 

New solutions are generated randomly for non-best sites 
     , and all scout in    are sorted in ascending order 
according to their MSE. This search cycle will be repeated 
until reaching termination condition. Finally, values of 
smoothing constant α, trend-smoothing constant  , and 
seasonal-smoothing constants   are obtained from fittest scout 
bee in current population. 

IV. PERFORMANCE EVALUATION 

To evaluate performance of the proposed algorithm, its 
performance have been compared with double and triple 
exponential smoothing methods. The following subsections, 
describe evaluation environment settings and discuss 
simulations’ results. 

A. Evaluation environment settings 

The proposed algorithm has been evaluated using real Web 
server log called Saskatchewan Log [6]. Saskatchewan log 
contains HTTP requests to the University of Saskatchewan's 
WWW server, which is located in Saskatoon, Saskatchewan, 
Canada. This log was collected from 00:00:00 June 1, 1995 to 
23:59:59 December 31, 1995, a total of 214 days [6]. 

Cloudlets have been generated according to Saskatchewan 
log and sent to CloudSim simulator. For each minute, 
CloudSim simulator calculates total required CPU to process 
incoming requests without violating Service Level Agreement. 
The proposed algorithm receives required CPU as observed 
value and predicts required CPU after k-minutes. K has been 
set to 15, where k is a virtual machine startup delay. 

To evaluate accuracy of the proposed algorithm, three 
evaluation metrics have been used: 

- Mean absolute percentage error (MAPE), which is 
defined as following: 
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where       is mean absolute percentage error at time t, 

 ̂     is the k-step-ahead forecast at time  , and      is 
observed value at time    . A smaller value of       
implies a better prediction accuracy. 

-Percentage of predictions within 25% (PRED(25)), 
percentage of prediction within 25% at time   is defined as 
following: 
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ALGORITHM 2: Determine Best Constants Using Bee Colony 

Algorithm 

INPUTS: 

𝑆: list of smoothed values  
𝑋: list of observed values 
𝐵: trend factor list 
𝐼: seasonal indices list 
𝑛: number of detected seasonality patterns 
𝐿: list of seasonal cycles’ length  
𝑀𝑎𝑥𝐼𝑡𝑒𝑟: maximum iteration number  
𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟: maximum allowed error 

OUTPUTS: 

Near optimal values for smoothing constant α, trend-
smoothing constant 𝛽, and seasonal-smoothing constants 𝛾 

Begin 

1: Generate initial population 𝑃 with    scout bees   
2: Specify flower patch for each scout in 𝑛𝑏  
3: Calculate MSE for each scout in 𝑃 
4: Sort scouts in P in ascending order based on their MSE 

values 

5: 𝑖    
6: while 𝑖  𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or  

  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖   𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟  

7:      𝑖    

8:      Select best sites 𝑛𝑏 from 𝑛𝑠  
9:      Select elite sites 𝑛𝑒 from 𝑛𝑏  
10:    Recruit forager bees to 𝑛𝑒 and 𝑛𝑏  𝑛𝑒 

11:    Apply local search to find fittest bee of each flower patch   

12:    Generate random solutions for non-best sites 𝑛𝑠  𝑛𝑏  

13:    Calculate MSE for non-best sites        

14:    Sort all scouts in    in ascending order based on their 
MSE values 

15:     𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑖  𝑀𝑆𝐸 of the first scout in the sorted 𝑛𝑠 

16: end while  
17: Determine constants’ value according to fittest scout in 

population 𝑃 
18: return   

End 
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          values are between 0 and 1. Prediction will be 

more effective if           value is closer to 1. 

-Root Mean Squared Error (RMSE), RMSE at time   is 
defined as following: 

      √
 

 
∑  ̂          

 

 

   

  

A smaller value of       implies better prediction 
accuracy. 

B. Evaluation results 

Although, the proposed algorithm has been evaluated with 
many real workload traces such as [6][7][8] in this evaluation 
only one of them has been shown, which is Saskatchewan-
http. 

Fig. 1 compares the proposed multi-seasonal algorithm 
with double and triple exponential smoothing methods using 
Mean Absolute Percentage Error (MAPE), which has been 
defined in the previous section. As shown in Fig. 1, MAPE of 
the proposed multi-seasonal algorithm stays below 29% while 
triple and double are above 44% and 135% respectively. Fig. 2 
shows that more than 57% of predicted values by using the 
proposed multi-seasonal algorithm are with prediction error 
less than 25%. In another side, 38% of triple exponential 
smoothing predictions are within 25%, and 8-18% of double 

exponential smoothing predictions are within 25%. Finally, 
Root Main Square Error of the proposed multi-seasonal 
algorithm has been compared with double and triple 
exponential smoothing methods in Fig. 3, which shows that 
RMSE of the proposed multi-seasonal algorithm is better than 
other methods. 

 
Fig. 1. Mean Absolute Percentage Error comparison 

 
Fig. 2. Percentage of Predictions Within 25% comparison 

 
Fig. 3. Root Main Square Error comparison 

V. CONCLUSION 

This paper has proposed predictive algorithm to predict 
cloud resource provisioning. According to available historical 
data and detected seasonal cycles, Holt-Winters exponential 
smoothing method has been extended to allow modeling 
multiple seasonal cycles with minimum number of 
observation values. Artificial Bee Colony algorithm has been 
exploited to find near optimal parameters value for the 
proposed algorithm. Prediction accuracy of the proposed 
algorithm has been evaluated by using CloudSim simulator 
with real workload called Saskatchewan-http. Our results have 
shown the effectiveness of the proposed algorithm among 
other methods. Finally, the paper concludes that modeling 
multiple seasonal cycles during predicting cloud resource 
provisioning is an essential step toward accurate cloud 
resource prediction. 

As future work, long short-term memory recurrent neural 
networks will be incorporated with the proposed algorithm to 
predict cloud resource utilization when there are very long and 
variant time lags between events. Because, in seasonality 
patterns, seasonal cycle length is considered constant for each 
seasonal pattern. However, in some cases, lags between events 
are variant and have to be considered during prediction. 
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