
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

33 | P a g e

www.ijacsa.thesai.org

Methods of Isolation for Application Traces Using

Virtual Machines and Shadow Copies

George Pecherle

Faculty of Electrical Engineering and

Information Technology, University

of Oradea Oradea, Romania

Cornelia Győrödi

Faculty of Electrical Engineering and

Information Technology, University

of Oradea Oradea, Romania

Robert Győrödi

Faculty of Electrical Engineering and

Information Technology, University

of Oradea Oradea, Romania

Abstract—To improve the user's experience, almost all

applications save usage data: web browsers save history and

cookies, chat programs save message archives and so on.

However, this data can be confidential and may compromise the

user's privacy. There are third party solutions to automatically

detect and wipe these traces, but they have two problems: they

need a constantly updated database of files to target, and they

wipe the data after it has been written to the disk. Our proposed

solution does not need a database and it automatically reverts the

application to its initial (clean) state, leaving no traces behind.

This is done by using a monitoring process developed by us and

the Volume Shadow Copy Service that takes snapshots when the

application runs and restores them at the end of the run.

Keywords—security; privacy; application traces; data wiping;

virtual machines; shadow copies; sandbox

I. INTRODUCTION

Storage capacity of disks has increased during the recent
years - sometimes exponentially - facilitating a large number of
programs to work together and make sometimes very complex
operations, and also facilitating the amount of data that these
programs work with. Therefore, for the user of a modern
computer system, it has become impossible to know or
manually check the data and the software stored on a computer
system, for reasons that relate to the huge volume that is stored
and to the way programs hide and/or encrypt data during their
normal operations. It is noted in this context, that there is a
strong need to protect the data stored on a computer system
against external agents that might compromise the security
without the user's knowledge, to ensure the user's privacy and a
proper functioning of the operating system.

This protection was achieved by designing modern
operating systems and even computer systems to avoid
vulnerabilities to external factors and facilitate the
implementation of subsystems designed for maintaining the
security of the data.

The study from [1] shows that any system has
vulnerabilities, 14,900 files being detected as files that are part
of programs designed to attack an Android operating system,
based on the Linux kernel, that has not traditionally been the
target of attacks until recently.

Another important issue that comes up is that programs can
leave traces of their usage that contain private information
about the user. This is why most Internet browsers have
features that allow the user to start private sessions that don't

save usage traces, such as data about the accessed sites,
passwords and other data entered in web forms [2] or so-called
cookies used for saving sessions on specific portals that require
registration or other information to identify the user, features
that improve the user's experience on the web. The need to
solve this problem started to become real, especially because of
websites that lead the user to expose more data to the Internet
browser (such as online shopping sites, flight bookings,
banking services, etc.), very often on devices that do not belong
to the user and that can be accessed by other people, programs
or sites that are not trustable.

II. CURRENT SOLUTIONS TO PROBLEMS OF DATA

SECURITY AND PRIVATE DATA PROTECTION

There are a lot of software methods to ensure data
protection (both in terms of system reliability and data security)
and they are implemented in various combinations by the
operating systems and by specialized software.

Along with the methods and mechanisms that ensure data
security and fault tolerance of the system (built into the
operating system), there are also methods of protection
provided by third parties. These programs are either actively
working to detect problems generated in the system (such as
suites of programs that detect viruses and other malware, or
software that verify the integrity of data or of different
subsystems), or programs that are passive. The experience
shows that none of these methods can fully respond to security
and privacy needs of the user. What differentiates security
solutions from the user's perspective is their ability to either
prevent a problem, or try to solve it after it has been generated.

Of course, users prefer the first method (preventive
security) and this paper is about this type of security protection.
Two methods will be presented and then how we used them to
design our privacy protection system, that isolates private data
using virtual machines and shadow copies.

A. Virtual Machines

A good compromise between performance / data
accessibility and data security can be made by using virtual
machines that are essentially computer systems with a similar
behavior as the original (physical) ones. They are actually
abstract implementations of real systems [3], and because of
this reason, they can be protected against external factors, by
filtering the communication ways with the outside
environment, and also by the fact that the state of these
machines can be saved periodically so there is always the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

34 | P a g e

www.ijacsa.thesai.org

possibility of rolling back to a pre-infection state. Virtual
machines can benefit from the existence of more processor
modes, the supervisor mode of the virtual machine being
named the "hypervisor".

This method, of using virtual machines, although it is useful
in some situations - for example when you want to obtain a
controlled environment to implement solutions with specific
purposes, of "closed box" type [4] - has only minor advantages
from a security point of view, compared to an operating system
on a real machine. This is because, in most scenarios, the
virtual machine cannot be completely isolated from the outside
environment in order to meet the usage guidelines. And the
more the accessibility of virtual machines increases, the more
the security level of virtual machines becomes closer to that of
a real system.

B. Sandboxes

A good method to secure the data and the operating system,
that is closer to using virtual machines, are the so-called
"sandboxes". These are programs that allow the execution of
other programs (called host programs) with a limited and
controlled set of resources.

These sandboxes work in different ways, depending on the
purpose they were designed for. A recent trend that is worth
mentioning is that part of the modern and the most successful
operating systems, low-level sandboxes (close to the operating
system layer) have been implemented for a large amount of
applications [5].

Using a sandbox for a secure system can be achieved very
easy, by installing and using a virtual machine with an
operating system installed, for example Oracle VM Virtual Box
[21].

III. COMPARISON WITH OTHER SIMILAR METHODS

There are a lot of solutions (especially software programs)
that can automatically detect and securely delete traces of
application usage. There are usually two types of solutions:

 Solutions that detect application traces and react to this
phenomenon AFTER the data has been written to disk
(securely erase it), sometimes long after that (e.g. when
the user launches the erase process), leading to serious
privacy concerns.

 Solutions that detect application traces and react to this
phenomenon BEFORE the data is written to the disk.
This is the most efficient and secure method because
there is a very low risk for sensitive data to fall into the
wrong hands.

Our method described in this paper falls into the second
category and its originality comes from the way modified data
is intercepted and handled: saving snapshots of the original
data using the Volume Shadow Copy Service then restore it at
the end. Before restoring the original data, a secure erase of the
modified files could be implemented (we could make a list of
modified files, using the preparation callback routines of the
minifilter driver).

We have also identified another method that is also from
the second category above and it is called Sandboxie [19]. This
solution saves application traces in a special sandbox, not on
their original locations. This way, sensitive data can be erased
all at once, from the same place.

A problem we have detected with our method is: what if the
user wants to save data in a file and that should remain
modified? Taking into consideration the idea from the
Sandboxie solution described above, we could modify our
solution to declare a "safe" area, where this data can be saved
and that should be the user's responsibility to clean after he no
longer needs that data.

A limitation of our solution, but also of many other
available solutions is that it's only for Windows operating
systems.

The disadvantages of the solutions from the first category
(just detect where applications save data and securely erase it)
are obvious: there will always be a delay between saving
sensitive data and erasing it. During this time, the data can fall
into the wrong hands. Also, the locations where applications
save data change rapidly, so a constantly updated database of
locations needs to be maintained. And this can lead to sensitive
data not being caught and erased.

Also, another method that is worth mentioning and that was
previously proposed by me, implements an algorithm that
determines the sensitivity of files using a pre-defined set of
rules made by the user. These rules are self-adaptable, in a way
that they can improve themselves, taking into account patterns
detected in other files securely erased by the user [20].

IV. PROPOSED SANDBOXED SOLUTION TO ISOLATE

PRIVATE DATA

The research we have performed and that will be presented
here is a sandbox whose purpose is to isolate only files that are
accessed by the host programs, using features already
implemented in the Windows operating system. Some of them
are features related to the file system, driver development for
the Windows operating system and the Volume ShadowCopy
Service (VSS).

The main benefit introduced by this research is the change
of the rules imposed by a traditional sandbox, through
controlled accessibility to files stored on the disk. The effects
of this solution and also its efficiency in solving the data
privacy problems will be presented next in this paper.

A. Motivation

In this section, we will present a research that demonstrates
the flexibility and the simple way in which the security and
protection methods of the operating systems can be extended.
This design and implements a sandbox that is limited to
protecting and isolating changes made by applications in the
file system.

As shown previously, the full virtualization and very
restrictive sandboxes don't always meet the security and data
protection requirements of the users.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

35 | P a g e

www.ijacsa.thesai.org

Moreover, the increased complexity of a virtual machine or
that of a sandbox that abstracts levels very close to the kernel
generates security problems that are similar to those of the
operating system itself. Also, modern operating systems offer
advanced protection mechanisms and policies that have been
thoroughly tested. For this reason, it is enough to use features
that are present in the operating system.

B. Requirements

Our research had to meet the following requirements:

 To be fully compatible with all recent Windows
operating systems

 To run with minimal hardware resources

 To integrate with the operating system (through context
menus, for example)

 To integrate with the graphical user interface of the
host operating system

 To allow the user to choose the application to start in
protected mode

 To prevent altering system files by the application that
has started in protected mode

 To use a minimum amount of memory and to add a
minimum wait time when the application is launched

 To avoid writing on the disk as much as possible

 To use a minimum amount of source code to avoid
errors

 To use a minimum amount of source code that runs in
supervisor mode

 The application should work transparently to the user

C. Specifications

The research we have done is based on a system
application, and for this reason, we have used the C++
programming language that offers system oriented
development features and that is very well supported by some
of the Windows API functions, by their functionality and the
documentation that is available for them. In order to develop a
driver that we will use to monitor and block I/O requests with
the file system, we have identified the filter drivers of the file
system as being the type of drivers that we should use. These
drivers had to be implemented in the C programming language.
Another technology we have identified and that we have used
to implement the file manipulation system is the VSS (Volume
Shadow Copy Service). This technology was introduced in
Windows Server 2003, it works with the NTFS file system and
facilitates the creation of snapshots (saving the state of the file
system on an NTFS volume), without affecting the normal
operation of the system, using a technique similar to Copy-On-
Write at block level [6] [7]. This technique operates at block
level (not file level) and makes differential copies instead of
full copies of the original data. First, a copy of the original data
is created. Then, whenever a change to the original volume
occurs, before this is written to disk, the block that is about to
be modified is written to an area that stores "differences" to the

original data. Using the original data blocks and the differences
blocks, a shadow copy can be built that represents the copy of
the data at the time it was created. The main advantage of this
method is the speed, because it only writes the differences [18].

Fig. 1. The workflow chart of the monitoring process and its interaction with

the protected (targeted) application

The minifilter driver can be implemented using a file
system minifilter [8]. This makes it possible to write a small
amount of source code for the supervisor mode, minimizing the
risks of programming errors.

The concept of minifilter drivers is simple: a user makes a
request for file I/O. Then the I/O manager sends the request to
the file system. At that point, the filter manager intercepts the
I/O request and calls the registered minifilters in their altitude
orders. The altitude of a minifilter is a unique identifier that
determines the order of attachment. The altitudes are allocated
and managed by the operating system and it ensures that an
instance of a minifilter driver is loaded at a location that is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

36 | P a g e

www.ijacsa.thesai.org

appropriate to other instances of minifilter drivers. Also,
minifilter drivers can register a preoperation callback routine,
or a postoperation callback routine or both of them.
Preoperation callback routines are called in descending order of
altitudes (in case there are more minifilters drivers installed),
then the I/O operation takes place, then the postoperation
callback routines are called in ascending order of altitudes,
from lowest to highest. [16]

To edit the C and C++ source code, we have used the
integrated development environment of Microsoft Visual
Studio 2012. In order to test and debug the program, we have
used a virtual machine provided by Microsoft for Windows 7 -
called the Windows XP Mode. The use of a virtual machine is
just a method of protection of the system we have developed,
on which we do not want to run untested code in supervisor
mode.

Figure 1 describes the general workflow chart of the
monitoring process and its interaction with the protected
(targeted) application. One important thing to note is that the
monitoring process will be launched when the user starts the
protected (targeted) application.

If the file system minifilter driver is not present, the
application will ask the user to install the driver before exiting.
If the driver is present, the targeted application will be launched
automatically. Then, a data structure will be created inside the
monitoring process, to store a list of accessed files for each
process of the targeted application. The monitoring process will
continue to execute in parallel with the process (or the
processes) of the targeted application. When an I/O request
from one of the monitored processes is detected, the type of I/O
request will be verified. For input operations, a preventive
snapshot will be done (as optimization method). However, for
output operations, the operation will be blocked until the
Volume Shadow Copy Service performs the snapshot. For both
situations (input and output operations), an internal verification
will be done to detect when the execution of the targeted
applications ends. If it's not ended, the monitoring process will
continue to monitor the targeted application. If the targeted
application ends, the original files will be restored using the
Volume ShadowCopy Service snapshot and the execution of
the monitoring process will end.

D. Implementation

The implementation consists of three separate components,
each representing a separate project in Visual Studio:

 The monitoring process - that will monitor all I/O
requests from the targeted application

 A service that will use SCM (Service Control Manager)
[9] to start the monitoring process automatically and
also to avoid User Account Control (UAC) messages,
that elevate permissions for users. We will use the
functions to install and uninstall the service.

 The file system minifilter driver

The documentation required for each of these components
was obtained from:

 The documentation about writing Windows
applications available from the MSDN (Microsoft
Developer Network) website [10],

 The documentation about writing services in C++ using
the Visual Studio 2012 development environment [11]
and

 The documentation to write a file system minifilter
driver, that is also available from MSDN [12]

The application has been integrated in the Windows
graphical user interface using the Windows Registry, by
extending a shell component (the main component of the
Windows GUI), more exactly by changing a registry key from
the Windows Registry as shown at [13]. The extension was
done on the "exefile" subclass, and this means that a new
context menu option will be present only for executable files
and their shortcuts. We have called this context menu option,
"Run in Protected Mode", as shown in Figure 2.

E. The Protected Mode Service

To start the monitored process in protected mode, we have
used a service, that we called the Protected Mode Service. This
is actually run in command line and can accept various
command line parameters. The usage of the Protected Mode
service is below:

pmservice [mode] [servicecommandstype]

[command]

The [mode] parameters can accept 2 values: "service" or
"process". If it's "process", normal process work is done. If it's
"service", the next parameter is verified that it has one the
following values:

 "config": the user can run some configuration
commands, such as "query" (to retrieve and display the
current service configuration, using the DoQuerySvc()
function), "describe" (to update the service description
to a default value, using the DoUpdateSvcDesc()
function), "disable" (to disable the service, using the
DoDisableSvc() function), "enable" (to enable the
service, using the DoEnableSvc() function), "delete"
(to delete the service, using the DoDeleteSvc()
function).

 "control": the user can run some control commands,
such as "start" (to start the service, if possible, using
the DoStartSvc() function), "dacl" (to update the
service DACL [14] to grant start, stop, delete, and read
control access to the Guest account, using the
DoUpdateSvcDacl() function), "stop" (to stop the
service, using the DoStopSvc() function).

 "install": the service is installed in the Service Control
Manager (SCM) database [15] by using the SvcInstall()
function that we have implemented. Then a new entry
("Run in Protected Mode") is added in the context
menu of executable files, by creating a special registry
key under HKEY_CLASSES_ROOT, as below:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

37 | P a g e

www.ijacsa.thesai.org

LPWSTR pm_command =

(LPWSTR)"C:\\dev\\ProtectedMode\\PMService.exe

process \"%1\"\0";

HKEY hkey;

DWORD dwDisposition;

DWORD dwType, dwSize;

if (RegCreateKeyEx(HKEY_CLASSES_ROOT,

TEXT("exefile\\shell\\Run in Protected

Mode\\command"), 0, NULL, 0, 0, NULL, &hkey,

&dwDisposition) == ERROR_SUCCESS)

{

dwType = REG_SZ;

 dwSize = (wcslen(pm_command) + 1) *

sizeof(WCHAR);

 RegSetValueEx(hkey, NULL, 0, dwType,

(LPBYTE)&pm_command, dwSize);

 RegCloseKey(hkey);

}

And of course, we have implemented a class called
ProcessMonitor, that has a constructor with the following
arguments: ProcessMonitor(TCHAR *handlePath, TCHAR
*monitoredProcPath) and that starts the monitored process as a
child process, using the CreateProcess() function [17] and then
makes the processing as described.

Fig. 2. Screenshot of the context menu with our new option "Run in

Protected Mode" that will launch the monitoring process on this application

V. CONCLUSIONS

This paper implements a new way to protect the data
manipulated by applications: isolating the data in a protected
environment. This is a requirement because most applications
have an uncontrollable and unpredictable way of saving their
data and this can lead to privacy issues.

This is done using a system feature used for backup and
system restore purposes, the Volume ShadowCopy Service, by
doing a snapshot when the application makes the first I/O
request and restoring it when the application ends.

The Windows operating system offers developers a set of
programming interfaces that allow the extension of the system
capabilities, also in supervisor mode, without the need to write
long and complicated programs that are likely to have errors.
The driver system, especially the filter drivers system, allows
the extension of the functionality set for developers who need
to obtain a different system behavior, by taking advantage of
the hardware capabilities. On another note, the system offers
security and protection measures that are meant to increase the
system's reliability and the user's experience.

In the future, we would like to extend this research to
mobile applications taking into account that data privacy on
mobile devices is now a requirement of both home and
corporate users.

REFERENCES

[1] Y. Namestnikov, IT Threat Evolution: Q2 2012, Kaspersky Lab ZAO,
http://www.securelist.com/en/analysis/204792231/IT_Threat_Evolution_
Q1_2012.

[2] Private Browsing - Browse the web without saving information about the
sites you visit, https://support.mozilla.org/en-US/kb/private-browsing-
browse-web-without-saving-info.

[3] J. E. Smith and R. Nair, The architecture of virtual machines,Computer,
vol. 38, nr. 5, pag. 32-38, 2005.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum and D. Boneh, Terra: A
virtual machine-based platform for trusted computing, ACM SIGOPS
Operating Systems Review, vol. 37, nr. 5, pag. 193-206, 2003.

[5] App Sandbox Design Guide - http://goo.gl/tjG5B

[6] B. Milewsky, Virtual Machines: Memory -
http://corensic.wordpress.com/2011/11/28/virtual-machines-memory/

[7] M. Howard, Address Space Layout Randomization in Windows Vista, -
http://blogs.msdn.com/b/michael_howard/archive/2006/05/26/608315.as
px

[8] File System Minifilter Drivers -
http://msdn.microsoft.com/library/windows/hardware/ff540402

[9] Microsoft TechNet - Service Control Manager -
http://technet.microsoft.com/en-us/library/dd349449(v=ws.10).aspx

[10] Windows Development Reference - http://msdn.microsoft.com/en-
us/library/windows/desktop/hh447209(v=vs.85).aspx

[11] Windows Service Template (C++) - http://msdn.microsoft.com/en-
us/library/8dy6h580(v=vs.80).aspx

[12] File System Minifilter Drivers -
http://msdn.microsoft.com/library/windows/hardware/ff540402

[13] Extending Shortcut Menus - http://msdn.microsoft.com/en-
us/library/windows/desktop/cc144101(v=vs.85).aspx

[14] DACLs and ACEs (Windows) - http://msdn.microsoft.com/en-
us/library/windows/desktop/aa446597(v=vs.85).aspx

[15] Service Control Manager (Windows) - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms685150(v=vs.85).aspx

[16] Filter Manager Concepts (Windows Drivers) -
http://msdn.microsoft.com/en-US/library/windows/hardware/ff541610

[17] CreateProcess function (Windows) - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms682425(v=vs.85).aspx

[18] How Volume Shadow Copy Service Works -
http://technet.microsoft.com/en-us/library/cc785914(v=ws.10).aspx

[19] Sanboxie - Sandbox software for application isolation and secure Web
browsing - http://www.sandboxie.com/

[20] George Pecherle, Cornelia Gyorödi, Robert Gyorödi, Bogdan Andronic,
Iosif Ignat "New Method of Detection and Wiping of Sensitive
Information", ICCP 2011, IEEE 7th International Conference on
Intelligent Computer Communication and Processing, 2011, Cluj-
Napoca, Romania, 25-27 August, ISBN 978-1-4577-1478-8, CFP
1109D-PRT, pages 145-148

[21] Oracle VM VirtualBox - https://www.virtualbox.org/

