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Abstract—Supporting transactions processing over wireless 

broadcasting environment has attracted a considerable amount 

of research in a mobile computing system. To allow more than 

one conflicting transactions to be committed within the same 

broadcast cycle, the main broadcast cycle need to be decompose 

into a sub cycles. This decomposition contains both the original 

data to be broadcast in Rcast cycle and the updates come from 

the committed transactions on these data items called Ucast cycle. 

Allocation of updated data items along Ucast cycles is highly 

affecting the concurrency among conflicting transactions. Given 

the conflicting degree of data items, one can design proper data 

allocation along Ucast Cycles to increase the concurrency among 

conflicting transactions. We explore in this paper the problem of 

adjusting abundant data allocations to respond in effective way to 

the changes of data conflicting probability, and develop an 

efficient algorithm ADDUcast to solve this problem. Performance 

of our adjustment algorithms is analyzed and a system simulator 

is developed to validate our results. It is shown by our results that 

the ADDUcast is highly increased the average number of 

committed transactions within the same broadcast cycle.   

Keywords—data broadcast; Dynamic Allocation; concurrency 

control; cycle decomposition;  Abundant Data 

I.  INTRODUCTION  

Data broadcast is becoming a promising way to disseminate 
information to a large population of mobile clients by mean of 
transaction. Unlike the conventional client server approach, 
where a data item have to be send  many times to deliver the 
requested data  even in the case of read –only transactions. 
Broadcast has the potential to satisfy all outstanding requests 
for the same data with a single response. It increases the 
efficiency of shared bandwidth and improves the system 
throughput. However, existing mobile technologies have to 
face several constraints such as limited network bandwidth, 
frequent disconnections and insufficient battery power. To cope 
with these constraints, there has been many studies on data 
transmission techniques using wireless data broadcasting [1], 
[7] and [8]. Generally a mobile client sends requests to the 
server and receives the response. For sending requests, mobile 
clients have to consume uplink bandwidth. The response time 
also can dramatically increase when the server is heavily 
loaded by the requests from a large number of clients. 
However, wireless data broadcast models can overcome these 
problems. For example, [1] proposed the broadcast disks 
model. The server continuously and repeatedly broadcasts all 
data in the database using a single or multiple wireless 

communication channels. Clients wait for the data in need to 
come up on the channel, and retrieve data from the channel. In 
this system, the number of mobile clients does not affect their 
access time. With its good scalability, wireless data broadcast 
is used in various mobile applications, e.g. auctions, electronic 
bidding, stock trading, weather information and traffic 
information broadcasts [9]. In these applications, the 
consistency among data items is likely to be violated by update 
transactions [8], [10] and [16]. Thus, a concurrency control 
scheme is needed to preserve data currency and consistency for 
mobile transactions. However, conventional concurrency 
control methods cannot be directly applied to mobile 
transaction processing [10], [11].  On the other hand, when an 
application involves wireless mobile clients that run multiple-
operation transactions and dynamically update the server 
database, those updates have to be appear in the next broadcast 
cycle. Earlier show up of such updates is highly improving the 
performance. In this paper we aim to decompose the main 
broadcast cycle into sub cycles which only contain a subset of 
data items in the database.  This decomposition contains both 
the original data to be broadcast and the updates come from the 
committed transactions on these data items.  At sub cycle level, 
it is more powerful for both update and read-only transactions 
which allow more than one conflicting transactions to be 
committed on the same broadcast cycle. Moreover, by using 
sub cycle the currency of the data may be higher since the 
delays in performing the updates are shorter.  There have been 
many research efforts reported in the literature that tackle the 
concurrency problems in wireless broadcast environments, 
such as Update First Ordering (UFO) [5], Multi-Version 
Broadcast [2, 3], Serialization Graph [2, 3], Broadcast 
Concurrency Control with Time Stamp Interval (BCC-TI) [6], 
F-Matrix [4], and Certification Report [7]. The drawbacks of 
these methods have been analyzed in [12, 13]. In general, some 
of these methods only support client read-only transactions, 
and some of them could have substantial processing overhead.   

The major contribution of this paper is determining the 
proper allocation of abundant updated data item along the 
remaining Ucast cycles and dynamically adjustment of such 
allocation to support update transactions responding in 
effective way to the changes of data conflicting probability, and 
develop an efficient algorithm DADUcast to solve this 
problem. According to the extensive analysis and 
comprehensive performance evaluation, the proposed approach 
shows a satisfactory performance in transactions processing on 
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broadcast environments.  It is shown by our results that the 
DADUcast is highly increased the average number of 
committed transactions within the same broadcast cycle.   

The rest of this paper is organized as follows: Section II  
describes the system architecture. Section III illustrates the 
problem of abundant data and how it could affect the 
transaction processing. Section IV proposes the ADDUcast 
approach in more details. Section V presents the performance 
evaluation of our approach and show the superiority of the 
proposed algorithm. Finally, we conclude the paper in Section 
IV. 

II.  SYSTEM MODEL 

The system model of adopted in this paper allows both 
read-only transactions (reading from air without being known 
by the server) and update transactions (modifying data by 
sending requests through a low bandwidth channel after 
completion at client). All operations are executed in order.  

The broadcast cycle is divided into multiple sub-cycles of 
two types alternatively see Fig.1: read cast called Rcast and 
update cast called Ucast in alternative way. The former 
contains the data items which were predefined scheduled for 
the main broadcast cycle but distributed along many Rcast 
whereas the Ucast content is dynamics and changed based on 
the data being updated by the committed transactions in the 
previous Rcast cycles. Between any two Rcast cycles, there is a 
reserved space for Ucast to accommodate identities for all the 
data objects which are updated by transactions in the server 
after the first sub-cycle begins.  

A mobile transaction can validate its prefetched data 
consistency autonomously by accessing the Ucast cycle. Our 
goal is to reveal the write set of the committed transactions as 
soon as possible. Unfortunately, this may jumble the original 
schedule. We can tradeoff the immediate show up of the 
updated data items from the previous sub cycle and delaying all 
those updates until the beginning of a next sub cycle which will 
be accommodated in front of pre assigned Rcast index. As a 
result, the identities of all the data items which are updated by 
any transactions are included in the Ucast space after the 
current broadcast sub-cycle.  

The identities of all the extra data items with no rooms at 
the current UCAST are included in the next UCAST based on 
their conflicting probability.  At the same time, since all 
information of latest committed update transactions is 
dynamically loaded at the beginning of some Rcast index 
segment, a mobile transaction only needs to tune to the channel 
at specific periods to retrieve the requested data item and the 
control information associated with it. 

 

Fig.  1. Broadcast Cycle Decomposition 

Data broadcast usually requires a client to be active all the 
time in order to monitor the data units that go by.  This leads to 
unacceptable energy consumption on wireless mobile 
equipments, for which power saving is a very essential issue. 
To save power in data broadcast models, indexing schemes are 
proposed in [17]. The Basic idea of indexing is to insert 
pointers for data broadcast in a future schedule into a broadcast 
cycle. Consequently, a client application can go to doze mode 
after it accesses this pointer, and only wakes up at the time the 
requested data unit is on the air. Several index schemes have 
been proposed in. In all indexing schemes, an index tree of all 
data in a broadcast cycle is inserted to the schedule. Pointers to 
each real data units are located at the leaves of the index tree 
while a route to a specific leaf can be found following the 
pointer from the tree root. In our work the B-index contains 
only information about the starting time of both Rcast-index 
and Ucast-index based on the number of sub cycles and the 
sizes for each of them; this is easy know as all Ucast are of 
equal size to and the Rcast  cycles is previously determined at 
the beginning of each broadcast cycle. In addition to the index 
information provided by Rcast-index and Ucast-index, Rcast-
index contains a pointer for the next Rcast.  the Ucast-Index 
contains the actual index of the data items to be broadcasted 
and each index is associated with control information to 
validate its pre fetched data items such as sub cycle number as 
well as the conflicting degree which will be used in allocation 
and adjustment  procedure as we will be explain later in this 
paper. Fig.2 shows the structure of index information for each 
element in Ucast-index in addition to the pointer indicating the 
next Rcast-index segment as the client may arrive at any time 
during the major broadcast cycle.  
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Fig.  2. Information associated with each index in Ucast cycle 

III. PROBLEM DESCRIPTION 

By exploiting the feature of tree generation with variant- 
fan-out [14], [15] a heuristic algorithm to distribute the 
abundant data items along the coming Ucast cycle is 
developed. The tree obtained in [14] is called Ucast allocation 
tree where the depth of the allocation trees corresponds to the 
number of Ucast cycles, and those leaf nodes in the same level 
of the allocation tree correspond to those data items to be put in 
the same Ucast cycle. Fig 3 shows a hierarchical broadcast 
program with two random Ucast allocation tree where the 
upper level corresponding to the current Ucast cycle is 
allocated with two data items( assuming the Ucast size =2) and 
each other lower levels is distributed along the next coming 
Ucast2 ,Ucast3 respectively. As such, the data items in the 
upper level must be accommodated first satisfy more 
transactions than those data items in the lower level.  

 

 
Fig.  3. Updated data item during Rcast1 = {d1, d2, d3, d4, d5, d6} and the 

size of Ucast1 = 2. The abundant updated data items {d3, d4, d5, d6} need to be 

distributed a long the next coming Ucast cycles to maximize the number of 

committed transaction within one broadcast cycle.  

Note, however, that the algorithm in [14] is designed for the 
situation where the contention degree of the data items being 
updated determined at the beginning of broadcast cycle. This 
consider non practical, as the transactions who wait for this 
data may need to span multiple broadcast cycle in order to have 
an opportunity to finish their execution and commit. Clearly, 
without adapting to the change of update frequencies, the 
broadcast program determined off-line will unavoidably lead to 
degraded performance. Thus, with the broadcast programs 
generated by [14], it is important for the broadcast programs to 
dynamically adapt to the change of the update frequencies 
during broadcast cycle so as to retain the performance and 
increase the freshness of the data items for both read-only and 
update transactions. 

The problem we study can be best understood by the 
illustrative example in Fig.4. Assume that the data items di, 1≤ i 
≤ 6 are of the same size and the number of transaction 
validating at the server during Rcasti and Rcasti+1 are 5. Denote 

that the conflicting degree of data item di as Cd(di) which is 
representing the number of validating transactions in which di 
exists in its write set. 

 

Fig.  4. Illustrative example 

Denote the total number of data items being updated in a 
certain Rcast cycle as n, and a data item as di, 1≤ i ≤ n. The 
number of Ucast Cycle in a broadcast cycle is S. Recall that 
CR(dk) is the conflict ratio  of dk in Rcasti and estimated as  
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conflicting ratio of that data item and summing up the results 
Same as in [1][19], the expected restarting cost Rc for each 
data item in the Ucast i is formulated as: 
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Where Ni us the number of data item allocated in Ucasti.  
Suppose that the number of updated data items in Rcastv  has j 

data items,  where VUcast j  and  Uacstv  accommodate 

d1, d2,.. di-1, then  di, di+1, ..., dj .. That mean, the updated data 
items in a Racstv cannot be accommodated in the 
corresponding Ucast cycle and have to be transferred to the 
next Ucast cycle. Unfortunately, the conflicting degree of the 
updated data items in a certain Rcast with no room in the 
corresponding Ucast is dynamically changed because of 
transactions who fetched those data items in Rcasti and finish 
its execution at Rcast k where k>i. The accumulation of the 
abundant updated data items come from the latest Rcast cycle 
need to be distributed properly over the coming Ucast tacking 
into considerations a dynamic change of their conflicting 
degree. The conflicting cost C of Ucastv in an allocation tree 
that has (j-i-1) abundant data items di, di+1… dj is defined as: 
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The conflict ratio CR (di) is adjusted during Rcast cycles 

while transactions execution. In essence, the value of Ci,j is 
related to the average restarting cost resulting from the 
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conflicting degree of abundant data items in Ucast v. 
Theoretically, generating a broadcast program can be viewed as 
a partition problem for data items. Given the number of Ucast 
in a broadcast cycle and the contention degree all data items in 
the corresponding Rcast, we shall determine the proper set of 
data items that should be allocated to each Ucast with the 
purpose of maximizing the number satisfactory request within 
one broadcast cycle. The problem of distribution updated data 
items over a K Ucast cycles can be viewed as a discrete 
maximization problem: Given a list of n data items with their 
contention degree, partition them into K parts so that the 
number satisfactory requests of all data items is maximized. As 
pointed out in previous section, a distribution updated data 
items over a K Ucast cycles can be represented as an allocation 
tree with a height of K. Note that the leaf nodes in the same 
level of the allocation tree correspond to a set of data items to 
be put in the same Ucast cycle. The value of Ci,j is related to the 
average delay result from the conflicting degree of leaf nodes 
in level v. This paper investigates the problem of adjusting the 
data broadcast program at a certain points (i.e. Ucast cycle) to 
satisfy as much transactions as possible. In order not to distract 
readers from the main theme of this paper for dynamically 
adjusting broadcast programs, readers interested in the details 
of update transactions processing in broadcast data  model are 
referred to [13][16]. Once the change of conflicting degree is 
larger than the predetermined value, algorithm ADDUcast will 
be executed to reach the new configuration with minimal 
conflicting. In accordance with the conflicting degree of data 
items at Rcast1 and the number of Ucast cycles given, the 
allocation tree was determined  based on the their committed 
time. It can be seen in Fig 4, at time Rcast i+1 allocation tree 
differ from the one at Rcast i due to the change of conflicting 
ratio. Consequently, data items should be moved among levels 
within the given allocation tree in response to the change of 
conflicting ratio of data items. Clearly, such movements have 
an impact on the average response time for all transactions.  

IV. ALLOCATION AND ADJUSTMENTS APPROACH 

We devise in this paper an algorithm, referred to as 
algorithm ADDUcast, to dynamically adjust the broadcast 
programs by shuffling data items among different levels in the 
allocation tree. in this paper we propose an algorithm, referred 
to as algorithm ADDUcast, to dynamically adjust the abundant 
data allocations by shuffling data items among different Ucasts 
in order to reflect the contention status therapy increasing the 
currency and utility of those data items. The process of 
algorithm ADDUcast can be decomposed into two phases, 
namely (1) the basement adjustment phase and (2) the smooth 
adjustment phase.  In the basement adjustment phase, 
algorithm ADDUcast  moves data items among the remaining 
Ucast cycles so as to enable the costs of most Ucasts in the 
allocation tree to be smaller than or equal to average cost as we 
describe in algorthim1. Then, for smooth adjustment, algorithm 
ADDUcast adjusts the data items between consecutives Ucast 
with the objective of minimizing the total cost of these two 
consecutive Ucasts.  

Since the basement adjustment intends to let the total cost 
of allocation tree be evenly allocated to all levels, it is possible 
that some data nodes would move back and forth between 
neighboring levels.  

For execution efficiency, the number of runs for the 
basement adjustment is limited to be K-1. Basement tuning 
described in algorithm 3 is developed to move data items in 
Ucast i so as to satisfy the purpose of the basement adjustment. 
By exploiting the basement adjustment, data items are roughly 
allocated to each Ucast of an allocation tree with the costs of 
most Ucasts are smaller than or equal to average cost.   

The Ucast status table UST is created to record the cost of 
each Ucast in the allocation tree, and the number of rows in 
UST is equal to the number of Ucasts in a broadcast cycle (see 
algorithm 1 line 7-10). UST(i).D = UST(i).C −UST(i).P. 
Where UST(i).P is the cost of data items in Ucast i previously, 
whereas the value of UST(i).C represent the cost of data items 
in Ucast i regarding the conflicting probability of the latest  
Rcast cycle. Also, UST(i).check is a Boolean variable  used to 
indicate whether the basement tuning is performed or not. 

1. Algorithm 1:  Abundant data Distribution over Ucast 

cycle ADDUcast 

2. Input: 

3. K: number of remaining Ucast cycles 

4. Usize: number of room in each Ucast cycle. 

5. UST: The Ucast status table (UST) with K rows. 

6. Output: Minimal conflict Ucast allocation tree up to next 

Broadcast Cycle 

7. /* Construction and initialization of UST content */ 

8. for each row i in UST do  

9. {    UST(i).D=UST(i).C-UST(i).P; 

10. UST(i).Checked=false              } 

11. /* Vector   has K-1 elements which record the conflicting 

cost difference between two consecutive Ucasts */  

12. For each element i in vector   do  

13. {    [i]:= |UST(i).C − UST(i + 1).C|  

14. Base-checking=0                       } 

15. /* The Basement adjustment phase */ 

16. Select ri   UST such that UST(i).D is maximal;/*Select 

row of maximal difference  */   

17. repeat 

18. begin 

19. if (i==1) 

20. call Basement Tuning (i, i+1); 

21. else if (i==k) 

22. call Basement Tuning (i, i-1); 

23. else 

24. {select the row j where j∈ (i − 1, i + 1) such that ST(j).G is 

false and   [j] is maximal; 

25. Call Basement Tuning (i, j); }  

26. base-checking ++; 

27. update UST and Vector  accordingly ; 

28. select the row i from UST where UST(i).C is maximal and 

UST(i).Check is false; 

29. end 

30. until base-checking ==K-1; 

31. Call smooth adjustment phase 

Vector   has K-1 elements that record the cost difference 
between two consecutive Ucast cycles (see algorithm 1 from 
line 12 to line 14). As can be seen in basement adjustment 
algorthim1, algorithm ADDUcast makes sure that most Ucasts 
of the allocation tree meet the requirement of the basement 
adjustment. Since the casual adjustment intends to let the total 
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cost of allocation tree be evenly allocated to all levels, it is 
possible that some data nodes would move back and forth 
between neighboring levels. By take advantage of basement 
adjustment, data items are roughly allocated to each Ucast of 
based on corresponding allocation tree with the costs of most 
Ucasts are smaller than or equal to average cost. For execution 
efficiency, the number of runs for the basement adjustment is 
limited to be K-1. Procedure basement tuning is developed to 
move data items in Ucast i so as to satisfy the purpose of the 
basement adjustment.  

1. Construct a priority queue PQ;  

2. /* A priority queue returns the element with the minimal 

conflicting value */ 

3. for each element i in Vector  do  

4. Insert   [i] into the PQ; 

5. While (PQ is not empty) and Ucast.CurrentSize < USize 

6. begin 

7. remove the element i from PQ; 

8. if (UST(i).C<UST(i+1).C)  

9. /* if there is no movement between Ucast i and Ucast i+1, 

moving equals to -1 */ 

10. Moving=push up (i, i+1); 

11. CurrentSize = CurrentSize +1 

12. else 

13. Moving=pull down(i, i+1); 

14. CurrentSize = CurrentSize -1 

15. if (the movement occur: moving <> -1)  

16. Update the elements in PQ and UST accordingly; 

17. end  
 

Then, algorithm ADDUcast employs the smooth 
adjustment algorithm 2 to adjust data items between 
consecutive Ucasts. As can be seen from line 2 to line 18 of 
algorithm 2, consecutive Ucasts are examined on finding 
potential movements with the purpose of minimizing the total 
cost of consecutive Ucasts. Specifically, in line 8 of algorithm 
2, the sequence of performing the smooth tuning is determined 
by identifying the largest cost difference among those between 

consecutive Ucasts (i.e., the largest value in  ). After 
identifying the consecutive Ucasts (e.g., level I and level i+1) 
to perform the smooth tuning, one should determine the data 
movements between these Ucast. Note that there are two kinds 
of movements, i.e., pushing up and polling down. Judiciously 
applying these movements is able to reduce the total cost of 
these two consecutive Ucasts. Clearly, if the cost of Ucast i is 
smaller than Ucast i+1, we should move data items from level 
i+1 to level i and vice versa.  

From line 7 to line 18, algorithm 2 adjusts data items in 
consecutive Ucasts iteratively with the objective of minimizing 
the total cost until there is no further adjustment required (i.e., 
queue PQ is empty).  

1. Algorithm 3: Basement Tuning (Ucast i, Ucast j) 

2. { sort those data items in Ucast i according their conflict 

probabilities;  

3. if  (i<j)   

4. begin 

5. while  


k

1i k

C).i(UST
C).i(UST  do 

6. Move the data item in the rightist side of Ucast i to Ucast j 

and update ST(i).C  accordingly; 

7. end 

8. else 

9. begin 

10. while  


k

1i k

C).i(UST
C).i(UST  do 

11. move the data item in the leftist side of Ucast i to Ucast j 

and update ST(i).C accordingly; 

12. end 

13. } 

 
Once determining the movement's direction among Ucasts, 

we should determine the number of data items considering the 
available space in hosting Ucast. Such a number determine 
based on the conflict reduction gain result from the movement 
which is limited also by the available space. To do so, we will 
use the move up and move down procedures as follows: 
Suppose that data items in each Ucasts are sorted according to 
the descending order of conflicting probability.  

Conflict reduction gain occurs by moving N data items 
from Ucasti to Ucasti+1 can be estimated by:  CRG-U(N) = (Ci,k 
+Ck+1,j)−(Ci,k+p +Ck+p+1,j) assuming that Ucasti has k−i+1 data 
items, di, di+1, ..., dk and Ucast i+1 has j−k data items, dk+1, dk+2, 
..., dj . The following procedure move-up Fig.5 determine the 
set of data items in Ucasti+1 to be moved upward to Ucasti in 
order to maximize the conflict reduction gain between these 
consecutive Ucasts.  

 

Procedure Move-up (Ucasti, Ucasti+1) 

{Determine 
'N  such that CRG-U (

'N ) = max{1≤N≤j−k {CRG-U 

(N)}; 

/* determine the maximal value of CRG-U (N)) such that N 1≤N≤ j-k. 

*/ 

if CRG-U (
'N )  > 0  

Move data items 1kd
, 2kd

, ..., 
"Nk

d
  to Ucasti; 

else 
'N =-1; /* no movement is performed since there is no cost-effective 

movement. */  } 

Fig.  5. Move-up procedure 

In the same way of Move-up procedure,  the Move-down 
procedure in Fig.6 evaluate the set of data items in Ucast i to be 
moved downward to Ucasti+1with the purpose of  maximizing 
the conflict reduction gain of these consecutive Ucasts.  

The CRG-U(N)  for Move-down  estimated as = (Ci,k 
+Ck+1,j)−(Ci,k-p +Ck-p+1,j) assuming that Ucasti has k−i+1 data 
items, di, di+1, ..., dk and Ucasti+1 has j−k data items, dk+1, dk+2, 
..., dj . 

Procedure Move-down (Ucasti, Ucasti+1) 

{Determine 
'N  such that CRG-U (

'N ) = max {1≤N≤ k-i-1 {CRG-

U (N)}; 

/* determine the maximal value of CRG-U (N)) such that N 1≤N≤ k-

i-1. */ 

if CRG-U (
'N )  > 0 

Move data items
1"Nk

d , 
2"Nk

d , ..., kd to Ucasti+1; 
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else 
'N =-1; /* no movement is performed since there is no cost-effective 

movement. */ 

} 

Fig.  6. Move-down procedure 

V. PERFORMANCE EVALUATION 

We will investigate the performance of our approach in 
average response time of the transactions as well as the average 
restart time of the transactions under different workload and 
system setting. Table 1 shows the important configuration 
parameters and their definitions. Read-only and update 
transactions are simulated based on the ratios defined in the 
table. Each transaction in the simulation consists of several data 
access operations and computation operations before or after 
each data access. A transaction's length is the number of access 
operations in it. The transaction length is uniformly distributed.  

The computation time between two access operations is the 
operation inter-arrival time. Time between the starts of two 
consecutive transactions in a simulated system is denoted as 
transaction inter-arrival time. Each simulation run uses only 
one client. Large numbers of clients are emulated by using a 
small average transaction inter-arrival time from one client. 
Since the amount of abundant data depends on the probability 
of data conflicts among mobile transactions, we will test our 
approach when the mobile transactions have different data 
access patterns. The Zipf distribution with a parameter theta is 
often used to model non uniform access. It produces access 
patterns that become increasingly skewed as theta increases. 
The updates come from the mobile transactions are generated 
following a Zipf distribution similar to the read access 
distribution at the client. The update distribution is across the 
range 1 to UpdateRange. in order to simplify the model, A flat 
broadcast disk is assumed for selecting data items for broadcast 
along Rcast cycles. 

TABLE I.  SIMULATION  PARAMETERES 

 
The number of Ucast and Rcast cycle determined based on 

the decomposition factor which represent number of Rcast and 
Ucast cycle in the main broadcast cycle (i.e. when the 
decomposition factor equal to 2 this mean that the broadcast 

cycle consists of 2 Ucast and 2 Rcast cycles). Recall that the 
alternative to the use of dynamic allocation of an abundant data 
items is to randomly distribute the abundant data along 
remaining Ucast. A scheme that randomly distributes data 
items over Ucast cycles, referred to as UD-RAN, is 
implemented for comparison purposes. To see how the 
protocols influence the performance, for each configuration the 
average response time the average restart time are also 
recorded for UD-RAN and compared with the value obtained 
under our approach.    

Performance of algorithms ADDUcast and UD-RAN is 
comparatively evaluated It is shown that ADDUcast 
significantly outperforms RAN due to the proper allocation of 
data along Ucast that maximize the utilization of data for the 
active mobile transactions based on the conflict cost heuristic. 
It is important to see that the advantage of ADDUcast over 
UD-RAN becomes even more prominent when the skew of 
updates increases, showing the dynamic allocation and 
adjustment is even more beneficial when the update is more 
skewed. See Fig. 7, where the y-axis corresponds to the 
average response time and the x-axis corresponds to the value 
of skew factor θ.   

In addition, performance of algorithms ADDUcast and UD-
RAN is evaluated for different Ucast cycle size. The 
corresponding results are shown in Fig. 8, where it can be seen 
that algorithm ADDUcast consistently outperforms algorithm 
UD-RAN for various values of n. The advantage of ADDUcast 
over UD-RAN increases as the Ucast cycle size decreases 
while skew factor is constant. When the size of Ucast is large 
enough to accommodate all the updated data (i.e.no abndunt 
data ) the performance of ADDUcast are very simller toUD- 
RAN see Fig. 9.  

Fig.7 and Fig.8 show the performance of average response 
time compared to transaction arrival time among simulated 
transactions under both UD-RAN and ADDUcast. Each 
simulation run records the response time of all transactions, 
which is the time period between a transaction’s invoked time 
and the time it commits. It can include the duration of multiple 
runs of a transaction if the transaction has ever been aborted 
and restarted. Average response time is the average response 
value among all transactions read-only and update transactions 
without considering the transaction lengths. These figures show 
the results under different decomposition factor with different 
Ucast size. It shows that the response time under ADDUcast is 
less than the UD-RAN as the decomposition factor increase 
and Ucast size decreases. It also shows that at small Ucast size, 
the abundant data increase and the allocation of these data 
items a long remaining Ucast cycles according to ADDUcast is 
highly decrease the response time of transactions involving in 
accessing those data items. Actually this is reasonable because 
the response time is highly affected by the restart rate of 
transactions as we can see in the next experiments Fig.10, Fig. 
11 

VI. CONCLUSIONS 

The presence of update transactions in wireless broadcast 
environment make it more difficult to deal with conflicting 
transactions within the same broadcast cycle. Many researchers 
tackle the problem of concurrent executions of these 

Parameters  Value 

decomposition factor   2, 4, 6, 8, 10 

Zipf parameter ɵ  0.0–1.0 

Database size  10000 items  

Ucast size /Rcast Ratio 1/4 

Ucast size  20 data items 

Transaction size (number of 

operations)  

8,10,12,16 

Read operation ratio (for update 

transactions)  

0.5 

Read-only transaction ratio  0.7 

Average delay between 

operations  

1 (exponentially 

distributed) 

Average delay between 

transactions  

5,10,50  (exponentially 

distributed) 
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transactions and many of them suggest that broadcast cycle 
decomposition is a proper technique to increase the 
concurrency and the system performance as well. As a result, 
the identities of all the data items which are updated by any 
transactions in a certain sub cycle we call it Rcast are included 
in the reserved space after the current broadcast sub-cycle 
called Ucast. The identities of all the extra data items with no 
rooms at the current Ucast are included in the next Ucast based 
on commit sequence of their transactions.  Actually, The 
accumulation of such abundant updated data items is highly 
affect the system performance and need to be distributed 
properly over the coming Ucast tacking into considerations a 
dynamic change of their conflicting degree We explored in this 
paper the problem of adjusting broadcast programs to cope 
with the variation of conflicting probability during transactions 
execution. By exploiting the features of the basement 
adjustment and the smooth adjustment, we proposed a heuristic 
based algorithm ADDUcast to adjust abundant data allocations 
therapy satisfying as much transactions as possible. 
Performance of algorithm ADDUcast was analyzed and a 
system simulator was developed to validate our results. It was 
shown by our simulation results that the allocation achieved by 
algorithm ADDUcast are highly maintain the freshness of data 
items with reduced response time. This feature and the 
efficiency of algorithm ADDUcast justify its practical 
importance.    

 

 

Fig.  7. Average response time with avergae Ucast size 

 

Fig.  8. Average response time under different Ucast cycle size 

 

Fig.  9. Average response with large Ucast cycle  

 

Fig.  10. Average restart times with avergae Ucast size 

 

Fig.  11. Average restart times under different Ucast cycle size 
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