
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

19 | P a g e

www.ijacsa.thesai.org

Dynamic Allocation of Abundant Data Along Update

Sub-Cycles to Support Update Transactions in

Wireless Broadcasting

Ahmad al-Qerem

Department of computer science,

Zarqa University Zarqa, Jordan

Abstract—Supporting transactions processing over wireless

broadcasting environment has attracted a considerable amount

of research in a mobile computing system. To allow more than

one conflicting transactions to be committed within the same

broadcast cycle, the main broadcast cycle need to be decompose

into a sub cycles. This decomposition contains both the original

data to be broadcast in Rcast cycle and the updates come from

the committed transactions on these data items called Ucast cycle.

Allocation of updated data items along Ucast cycles is highly

affecting the concurrency among conflicting transactions. Given

the conflicting degree of data items, one can design proper data

allocation along Ucast Cycles to increase the concurrency among

conflicting transactions. We explore in this paper the problem of

adjusting abundant data allocations to respond in effective way to

the changes of data conflicting probability, and develop an

efficient algorithm ADDUcast to solve this problem. Performance

of our adjustment algorithms is analyzed and a system simulator

is developed to validate our results. It is shown by our results that

the ADDUcast is highly increased the average number of

committed transactions within the same broadcast cycle.

Keywords—data broadcast; Dynamic Allocation; concurrency

control; cycle decomposition; Abundant Data

I. INTRODUCTION

Data broadcast is becoming a promising way to disseminate
information to a large population of mobile clients by mean of
transaction. Unlike the conventional client server approach,
where a data item have to be send many times to deliver the
requested data even in the case of read –only transactions.
Broadcast has the potential to satisfy all outstanding requests
for the same data with a single response. It increases the
efficiency of shared bandwidth and improves the system
throughput. However, existing mobile technologies have to
face several constraints such as limited network bandwidth,
frequent disconnections and insufficient battery power. To cope
with these constraints, there has been many studies on data
transmission techniques using wireless data broadcasting [1],
[7] and [8]. Generally a mobile client sends requests to the
server and receives the response. For sending requests, mobile
clients have to consume uplink bandwidth. The response time
also can dramatically increase when the server is heavily
loaded by the requests from a large number of clients.
However, wireless data broadcast models can overcome these
problems. For example, [1] proposed the broadcast disks
model. The server continuously and repeatedly broadcasts all
data in the database using a single or multiple wireless

communication channels. Clients wait for the data in need to
come up on the channel, and retrieve data from the channel. In
this system, the number of mobile clients does not affect their
access time. With its good scalability, wireless data broadcast
is used in various mobile applications, e.g. auctions, electronic
bidding, stock trading, weather information and traffic
information broadcasts [9]. In these applications, the
consistency among data items is likely to be violated by update
transactions [8], [10] and [16]. Thus, a concurrency control
scheme is needed to preserve data currency and consistency for
mobile transactions. However, conventional concurrency
control methods cannot be directly applied to mobile
transaction processing [10], [11]. On the other hand, when an
application involves wireless mobile clients that run multiple-
operation transactions and dynamically update the server
database, those updates have to be appear in the next broadcast
cycle. Earlier show up of such updates is highly improving the
performance. In this paper we aim to decompose the main
broadcast cycle into sub cycles which only contain a subset of
data items in the database. This decomposition contains both
the original data to be broadcast and the updates come from the
committed transactions on these data items. At sub cycle level,
it is more powerful for both update and read-only transactions
which allow more than one conflicting transactions to be
committed on the same broadcast cycle. Moreover, by using
sub cycle the currency of the data may be higher since the
delays in performing the updates are shorter. There have been
many research efforts reported in the literature that tackle the
concurrency problems in wireless broadcast environments,
such as Update First Ordering (UFO) [5], Multi-Version
Broadcast [2, 3], Serialization Graph [2, 3], Broadcast
Concurrency Control with Time Stamp Interval (BCC-TI) [6],
F-Matrix [4], and Certification Report [7]. The drawbacks of
these methods have been analyzed in [12, 13]. In general, some
of these methods only support client read-only transactions,
and some of them could have substantial processing overhead.

The major contribution of this paper is determining the
proper allocation of abundant updated data item along the
remaining Ucast cycles and dynamically adjustment of such
allocation to support update transactions responding in
effective way to the changes of data conflicting probability, and
develop an efficient algorithm DADUcast to solve this
problem. According to the extensive analysis and
comprehensive performance evaluation, the proposed approach
shows a satisfactory performance in transactions processing on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

20 | P a g e

www.ijacsa.thesai.org

broadcast environments. It is shown by our results that the
DADUcast is highly increased the average number of
committed transactions within the same broadcast cycle.

The rest of this paper is organized as follows: Section II
describes the system architecture. Section III illustrates the
problem of abundant data and how it could affect the
transaction processing. Section IV proposes the ADDUcast
approach in more details. Section V presents the performance
evaluation of our approach and show the superiority of the
proposed algorithm. Finally, we conclude the paper in Section
IV.

II. SYSTEM MODEL

The system model of adopted in this paper allows both
read-only transactions (reading from air without being known
by the server) and update transactions (modifying data by
sending requests through a low bandwidth channel after
completion at client). All operations are executed in order.

The broadcast cycle is divided into multiple sub-cycles of
two types alternatively see Fig.1: read cast called Rcast and
update cast called Ucast in alternative way. The former
contains the data items which were predefined scheduled for
the main broadcast cycle but distributed along many Rcast
whereas the Ucast content is dynamics and changed based on
the data being updated by the committed transactions in the
previous Rcast cycles. Between any two Rcast cycles, there is a
reserved space for Ucast to accommodate identities for all the
data objects which are updated by transactions in the server
after the first sub-cycle begins.

A mobile transaction can validate its prefetched data
consistency autonomously by accessing the Ucast cycle. Our
goal is to reveal the write set of the committed transactions as
soon as possible. Unfortunately, this may jumble the original
schedule. We can tradeoff the immediate show up of the
updated data items from the previous sub cycle and delaying all
those updates until the beginning of a next sub cycle which will
be accommodated in front of pre assigned Rcast index. As a
result, the identities of all the data items which are updated by
any transactions are included in the Ucast space after the
current broadcast sub-cycle.

The identities of all the extra data items with no rooms at
the current UCAST are included in the next UCAST based on
their conflicting probability. At the same time, since all
information of latest committed update transactions is
dynamically loaded at the beginning of some Rcast index
segment, a mobile transaction only needs to tune to the channel
at specific periods to retrieve the requested data item and the
control information associated with it.

Fig. 1. Broadcast Cycle Decomposition

Data broadcast usually requires a client to be active all the
time in order to monitor the data units that go by. This leads to
unacceptable energy consumption on wireless mobile
equipments, for which power saving is a very essential issue.
To save power in data broadcast models, indexing schemes are
proposed in [17]. The Basic idea of indexing is to insert
pointers for data broadcast in a future schedule into a broadcast
cycle. Consequently, a client application can go to doze mode
after it accesses this pointer, and only wakes up at the time the
requested data unit is on the air. Several index schemes have
been proposed in. In all indexing schemes, an index tree of all
data in a broadcast cycle is inserted to the schedule. Pointers to
each real data units are located at the leaves of the index tree
while a route to a specific leaf can be found following the
pointer from the tree root. In our work the B-index contains
only information about the starting time of both Rcast-index
and Ucast-index based on the number of sub cycles and the
sizes for each of them; this is easy know as all Ucast are of
equal size to and the Rcast cycles is previously determined at
the beginning of each broadcast cycle. In addition to the index
information provided by Rcast-index and Ucast-index, Rcast-
index contains a pointer for the next Rcast. the Ucast-Index
contains the actual index of the data items to be broadcasted
and each index is associated with control information to
validate its pre fetched data items such as sub cycle number as
well as the conflicting degree which will be used in allocation
and adjustment procedure as we will be explain later in this
paper. Fig.2 shows the structure of index information for each
element in Ucast-index in addition to the pointer indicating the
next Rcast-index segment as the client may arrive at any time
during the major broadcast cycle.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

21 | P a g e

www.ijacsa.thesai.org

Fig. 2. Information associated with each index in Ucast cycle

III. PROBLEM DESCRIPTION

By exploiting the feature of tree generation with variant-
fan-out [14], [15] a heuristic algorithm to distribute the
abundant data items along the coming Ucast cycle is
developed. The tree obtained in [14] is called Ucast allocation
tree where the depth of the allocation trees corresponds to the
number of Ucast cycles, and those leaf nodes in the same level
of the allocation tree correspond to those data items to be put in
the same Ucast cycle. Fig 3 shows a hierarchical broadcast
program with two random Ucast allocation tree where the
upper level corresponding to the current Ucast cycle is
allocated with two data items(assuming the Ucast size =2) and
each other lower levels is distributed along the next coming
Ucast2 ,Ucast3 respectively. As such, the data items in the
upper level must be accommodated first satisfy more
transactions than those data items in the lower level.

Fig. 3. Updated data item during Rcast1 = {d1, d2, d3, d4, d5, d6} and the

size of Ucast1 = 2. The abundant updated data items {d3, d4, d5, d6} need to be

distributed a long the next coming Ucast cycles to maximize the number of

committed transaction within one broadcast cycle.

Note, however, that the algorithm in [14] is designed for the
situation where the contention degree of the data items being
updated determined at the beginning of broadcast cycle. This
consider non practical, as the transactions who wait for this
data may need to span multiple broadcast cycle in order to have
an opportunity to finish their execution and commit. Clearly,
without adapting to the change of update frequencies, the
broadcast program determined off-line will unavoidably lead to
degraded performance. Thus, with the broadcast programs
generated by [14], it is important for the broadcast programs to
dynamically adapt to the change of the update frequencies
during broadcast cycle so as to retain the performance and
increase the freshness of the data items for both read-only and
update transactions.

The problem we study can be best understood by the
illustrative example in Fig.4. Assume that the data items di, 1≤ i
≤ 6 are of the same size and the number of transaction
validating at the server during Rcasti and Rcasti+1 are 5. Denote

that the conflicting degree of data item di as Cd(di) which is
representing the number of validating transactions in which di
exists in its write set.

Fig. 4. Illustrative example

Denote the total number of data items being updated in a
certain Rcast cycle as n, and a data item as di, 1≤ i ≤ n. The
number of Ucast Cycle in a broadcast cycle is S. Recall that
CR(dk) is the conflict ratio of dk in Rcasti and estimated as

)1..(....................
)(

)(
)(

1 


n

i
i

k
k

dCd

dCd
dCR .

Multiplying the conflicting ratio of each data item dk

)(kdCR

by the expected cost of restarting transactions due to

conflicting ratio of that data item and summing up the results
Same as in [1][19], the expected restarting cost Rc for each
data item in the Ucast i is formulated as:

)2..(..........1 


 iN

x
iN

xiN
cR

Where Ni us the number of data item allocated in Ucasti.
Suppose that the number of updated data items in Rcastv has j

data items, where VUcast j and Uacstv accommodate

d1, d2,.. di-1, then di, di+1, ..., dj .. That mean, the updated data
items in a Racstv cannot be accommodated in the
corresponding Ucast cycle and have to be transferred to the
next Ucast cycle. Unfortunately, the conflicting degree of the
updated data items in a certain Rcast with no room in the
corresponding Ucast is dynamically changed because of
transactions who fetched those data items in Rcasti and finish
its execution at Rcast k where k>i. The accumulation of the
abundant updated data items come from the latest Rcast cycle
need to be distributed properly over the coming Ucast tacking
into considerations a dynamic change of their conflicting
degree. The conflicting cost C of Ucastv in an allocation tree
that has (j-i-1) abundant data items di, di+1… dj is defined as:

)3..().........d(CR
1ij

k)1ij(
C

1ij

1k

j

i
j,i  



 




 

The conflict ratio CR (di) is adjusted during Rcast cycles

while transactions execution. In essence, the value of Ci,j is
related to the average restarting cost resulting from the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

22 | P a g e

www.ijacsa.thesai.org

conflicting degree of abundant data items in Ucast v.
Theoretically, generating a broadcast program can be viewed as
a partition problem for data items. Given the number of Ucast
in a broadcast cycle and the contention degree all data items in
the corresponding Rcast, we shall determine the proper set of
data items that should be allocated to each Ucast with the
purpose of maximizing the number satisfactory request within
one broadcast cycle. The problem of distribution updated data
items over a K Ucast cycles can be viewed as a discrete
maximization problem: Given a list of n data items with their
contention degree, partition them into K parts so that the
number satisfactory requests of all data items is maximized. As
pointed out in previous section, a distribution updated data
items over a K Ucast cycles can be represented as an allocation
tree with a height of K. Note that the leaf nodes in the same
level of the allocation tree correspond to a set of data items to
be put in the same Ucast cycle. The value of Ci,j is related to the
average delay result from the conflicting degree of leaf nodes
in level v. This paper investigates the problem of adjusting the
data broadcast program at a certain points (i.e. Ucast cycle) to
satisfy as much transactions as possible. In order not to distract
readers from the main theme of this paper for dynamically
adjusting broadcast programs, readers interested in the details
of update transactions processing in broadcast data model are
referred to [13][16]. Once the change of conflicting degree is
larger than the predetermined value, algorithm ADDUcast will
be executed to reach the new configuration with minimal
conflicting. In accordance with the conflicting degree of data
items at Rcast1 and the number of Ucast cycles given, the
allocation tree was determined based on the their committed
time. It can be seen in Fig 4, at time Rcast i+1 allocation tree
differ from the one at Rcast i due to the change of conflicting
ratio. Consequently, data items should be moved among levels
within the given allocation tree in response to the change of
conflicting ratio of data items. Clearly, such movements have
an impact on the average response time for all transactions.

IV. ALLOCATION AND ADJUSTMENTS APPROACH

We devise in this paper an algorithm, referred to as
algorithm ADDUcast, to dynamically adjust the broadcast
programs by shuffling data items among different levels in the
allocation tree. in this paper we propose an algorithm, referred
to as algorithm ADDUcast, to dynamically adjust the abundant
data allocations by shuffling data items among different Ucasts
in order to reflect the contention status therapy increasing the
currency and utility of those data items. The process of
algorithm ADDUcast can be decomposed into two phases,
namely (1) the basement adjustment phase and (2) the smooth
adjustment phase. In the basement adjustment phase,
algorithm ADDUcast moves data items among the remaining
Ucast cycles so as to enable the costs of most Ucasts in the
allocation tree to be smaller than or equal to average cost as we
describe in algorthim1. Then, for smooth adjustment, algorithm
ADDUcast adjusts the data items between consecutives Ucast
with the objective of minimizing the total cost of these two
consecutive Ucasts.

Since the basement adjustment intends to let the total cost
of allocation tree be evenly allocated to all levels, it is possible
that some data nodes would move back and forth between
neighboring levels.

For execution efficiency, the number of runs for the
basement adjustment is limited to be K-1. Basement tuning
described in algorithm 3 is developed to move data items in
Ucast i so as to satisfy the purpose of the basement adjustment.
By exploiting the basement adjustment, data items are roughly
allocated to each Ucast of an allocation tree with the costs of
most Ucasts are smaller than or equal to average cost.

The Ucast status table UST is created to record the cost of
each Ucast in the allocation tree, and the number of rows in
UST is equal to the number of Ucasts in a broadcast cycle (see
algorithm 1 line 7-10). UST(i).D = UST(i).C −UST(i).P.
Where UST(i).P is the cost of data items in Ucast i previously,
whereas the value of UST(i).C represent the cost of data items
in Ucast i regarding the conflicting probability of the latest
Rcast cycle. Also, UST(i).check is a Boolean variable used to
indicate whether the basement tuning is performed or not.

1. Algorithm 1: Abundant data Distribution over Ucast

cycle ADDUcast

2. Input:

3. K: number of remaining Ucast cycles

4. Usize: number of room in each Ucast cycle.

5. UST: The Ucast status table (UST) with K rows.

6. Output: Minimal conflict Ucast allocation tree up to next

Broadcast Cycle

7. /* Construction and initialization of UST content */

8. for each row i in UST do

9. { UST(i).D=UST(i).C-UST(i).P;

10. UST(i).Checked=false }

11. /* Vector  has K-1 elements which record the conflicting

cost difference between two consecutive Ucasts */

12. For each element i in vector  do

13. {  [i]:= |UST(i).C − UST(i + 1).C|

14. Base-checking=0 }

15. /* The Basement adjustment phase */

16. Select ri  UST such that UST(i).D is maximal;/*Select

row of maximal difference */

17. repeat

18. begin

19. if (i==1)

20. call Basement Tuning (i, i+1);

21. else if (i==k)

22. call Basement Tuning (i, i-1);

23. else

24. {select the row j where j∈ (i − 1, i + 1) such that ST(j).G is

false and  [j] is maximal;

25. Call Basement Tuning (i, j); }

26. base-checking ++;

27. update UST and Vector accordingly ;

28. select the row i from UST where UST(i).C is maximal and

UST(i).Check is false;

29. end

30. until base-checking ==K-1;

31. Call smooth adjustment phase

Vector  has K-1 elements that record the cost difference
between two consecutive Ucast cycles (see algorithm 1 from
line 12 to line 14). As can be seen in basement adjustment
algorthim1, algorithm ADDUcast makes sure that most Ucasts
of the allocation tree meet the requirement of the basement
adjustment. Since the casual adjustment intends to let the total

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

23 | P a g e

www.ijacsa.thesai.org

cost of allocation tree be evenly allocated to all levels, it is
possible that some data nodes would move back and forth
between neighboring levels. By take advantage of basement
adjustment, data items are roughly allocated to each Ucast of
based on corresponding allocation tree with the costs of most
Ucasts are smaller than or equal to average cost. For execution
efficiency, the number of runs for the basement adjustment is
limited to be K-1. Procedure basement tuning is developed to
move data items in Ucast i so as to satisfy the purpose of the
basement adjustment.

1. Construct a priority queue PQ;

2. /* A priority queue returns the element with the minimal

conflicting value */

3. for each element i in Vector do

4. Insert  [i] into the PQ;

5. While (PQ is not empty) and Ucast.CurrentSize < USize

6. begin

7. remove the element i from PQ;

8. if (UST(i).C<UST(i+1).C)

9. /* if there is no movement between Ucast i and Ucast i+1,

moving equals to -1 */

10. Moving=push up (i, i+1);

11. CurrentSize = CurrentSize +1

12. else

13. Moving=pull down(i, i+1);

14. CurrentSize = CurrentSize -1

15. if (the movement occur: moving <> -1)

16. Update the elements in PQ and UST accordingly;

17. end

Then, algorithm ADDUcast employs the smooth
adjustment algorithm 2 to adjust data items between
consecutive Ucasts. As can be seen from line 2 to line 18 of
algorithm 2, consecutive Ucasts are examined on finding
potential movements with the purpose of minimizing the total
cost of consecutive Ucasts. Specifically, in line 8 of algorithm
2, the sequence of performing the smooth tuning is determined
by identifying the largest cost difference among those between

consecutive Ucasts (i.e., the largest value in ). After
identifying the consecutive Ucasts (e.g., level I and level i+1)
to perform the smooth tuning, one should determine the data
movements between these Ucast. Note that there are two kinds
of movements, i.e., pushing up and polling down. Judiciously
applying these movements is able to reduce the total cost of
these two consecutive Ucasts. Clearly, if the cost of Ucast i is
smaller than Ucast i+1, we should move data items from level
i+1 to level i and vice versa.

From line 7 to line 18, algorithm 2 adjusts data items in
consecutive Ucasts iteratively with the objective of minimizing
the total cost until there is no further adjustment required (i.e.,
queue PQ is empty).

1. Algorithm 3: Basement Tuning (Ucast i, Ucast j)

2. { sort those data items in Ucast i according their conflict

probabilities;

3. if (i<j)

4. begin

5. while  


k

1i k

C).i(UST
C).i(UST do

6. Move the data item in the rightist side of Ucast i to Ucast j

and update ST(i).C accordingly;

7. end

8. else

9. begin

10. while  


k

1i k

C).i(UST
C).i(UST do

11. move the data item in the leftist side of Ucast i to Ucast j

and update ST(i).C accordingly;

12. end

13. }

Once determining the movement's direction among Ucasts,

we should determine the number of data items considering the
available space in hosting Ucast. Such a number determine
based on the conflict reduction gain result from the movement
which is limited also by the available space. To do so, we will
use the move up and move down procedures as follows:
Suppose that data items in each Ucasts are sorted according to
the descending order of conflicting probability.

Conflict reduction gain occurs by moving N data items
from Ucasti to Ucasti+1 can be estimated by: CRG-U(N) = (Ci,k
+Ck+1,j)−(Ci,k+p +Ck+p+1,j) assuming that Ucasti has k−i+1 data
items, di, di+1, ..., dk and Ucast i+1 has j−k data items, dk+1, dk+2,
..., dj . The following procedure move-up Fig.5 determine the
set of data items in Ucasti+1 to be moved upward to Ucasti in
order to maximize the conflict reduction gain between these
consecutive Ucasts.

Procedure Move-up (Ucasti, Ucasti+1)

{Determine
'N such that CRG-U (

'N) = max{1≤N≤j−k {CRG-U

(N)};

/* determine the maximal value of CRG-U (N)) such that N 1≤N≤ j-k.

*/

if CRG-U (
'N) > 0

Move data items 1kd
, 2kd

, ...,
"Nk

d
 to Ucasti;

else
'N =-1; /* no movement is performed since there is no cost-effective

movement. */ }

Fig. 5. Move-up procedure

In the same way of Move-up procedure, the Move-down
procedure in Fig.6 evaluate the set of data items in Ucast i to be
moved downward to Ucasti+1with the purpose of maximizing
the conflict reduction gain of these consecutive Ucasts.

The CRG-U(N) for Move-down estimated as = (Ci,k
+Ck+1,j)−(Ci,k-p +Ck-p+1,j) assuming that Ucasti has k−i+1 data
items, di, di+1, ..., dk and Ucasti+1 has j−k data items, dk+1, dk+2,
..., dj .

Procedure Move-down (Ucasti, Ucasti+1)

{Determine
'N such that CRG-U (

'N) = max {1≤N≤ k-i-1 {CRG-

U (N)};

/* determine the maximal value of CRG-U (N)) such that N 1≤N≤ k-

i-1. */

if CRG-U (
'N) > 0

Move data items
1"Nk

d ,
2"Nk

d , ..., kd to Ucasti+1;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

24 | P a g e

www.ijacsa.thesai.org

else
'N =-1; /* no movement is performed since there is no cost-effective

movement. */

}

Fig. 6. Move-down procedure

V. PERFORMANCE EVALUATION

We will investigate the performance of our approach in
average response time of the transactions as well as the average
restart time of the transactions under different workload and
system setting. Table 1 shows the important configuration
parameters and their definitions. Read-only and update
transactions are simulated based on the ratios defined in the
table. Each transaction in the simulation consists of several data
access operations and computation operations before or after
each data access. A transaction's length is the number of access
operations in it. The transaction length is uniformly distributed.

The computation time between two access operations is the
operation inter-arrival time. Time between the starts of two
consecutive transactions in a simulated system is denoted as
transaction inter-arrival time. Each simulation run uses only
one client. Large numbers of clients are emulated by using a
small average transaction inter-arrival time from one client.
Since the amount of abundant data depends on the probability
of data conflicts among mobile transactions, we will test our
approach when the mobile transactions have different data
access patterns. The Zipf distribution with a parameter theta is
often used to model non uniform access. It produces access
patterns that become increasingly skewed as theta increases.
The updates come from the mobile transactions are generated
following a Zipf distribution similar to the read access
distribution at the client. The update distribution is across the
range 1 to UpdateRange. in order to simplify the model, A flat
broadcast disk is assumed for selecting data items for broadcast
along Rcast cycles.

TABLE I. SIMULATION PARAMETERES

The number of Ucast and Rcast cycle determined based on

the decomposition factor which represent number of Rcast and
Ucast cycle in the main broadcast cycle (i.e. when the
decomposition factor equal to 2 this mean that the broadcast

cycle consists of 2 Ucast and 2 Rcast cycles). Recall that the
alternative to the use of dynamic allocation of an abundant data
items is to randomly distribute the abundant data along
remaining Ucast. A scheme that randomly distributes data
items over Ucast cycles, referred to as UD-RAN, is
implemented for comparison purposes. To see how the
protocols influence the performance, for each configuration the
average response time the average restart time are also
recorded for UD-RAN and compared with the value obtained
under our approach.

Performance of algorithms ADDUcast and UD-RAN is
comparatively evaluated It is shown that ADDUcast
significantly outperforms RAN due to the proper allocation of
data along Ucast that maximize the utilization of data for the
active mobile transactions based on the conflict cost heuristic.
It is important to see that the advantage of ADDUcast over
UD-RAN becomes even more prominent when the skew of
updates increases, showing the dynamic allocation and
adjustment is even more beneficial when the update is more
skewed. See Fig. 7, where the y-axis corresponds to the
average response time and the x-axis corresponds to the value
of skew factor θ.

In addition, performance of algorithms ADDUcast and UD-
RAN is evaluated for different Ucast cycle size. The
corresponding results are shown in Fig. 8, where it can be seen
that algorithm ADDUcast consistently outperforms algorithm
UD-RAN for various values of n. The advantage of ADDUcast
over UD-RAN increases as the Ucast cycle size decreases
while skew factor is constant. When the size of Ucast is large
enough to accommodate all the updated data (i.e.no abndunt
data) the performance of ADDUcast are very simller toUD-
RAN see Fig. 9.

Fig.7 and Fig.8 show the performance of average response
time compared to transaction arrival time among simulated
transactions under both UD-RAN and ADDUcast. Each
simulation run records the response time of all transactions,
which is the time period between a transaction’s invoked time
and the time it commits. It can include the duration of multiple
runs of a transaction if the transaction has ever been aborted
and restarted. Average response time is the average response
value among all transactions read-only and update transactions
without considering the transaction lengths. These figures show
the results under different decomposition factor with different
Ucast size. It shows that the response time under ADDUcast is
less than the UD-RAN as the decomposition factor increase
and Ucast size decreases. It also shows that at small Ucast size,
the abundant data increase and the allocation of these data
items a long remaining Ucast cycles according to ADDUcast is
highly decrease the response time of transactions involving in
accessing those data items. Actually this is reasonable because
the response time is highly affected by the restart rate of
transactions as we can see in the next experiments Fig.10, Fig.
11

VI. CONCLUSIONS

The presence of update transactions in wireless broadcast
environment make it more difficult to deal with conflicting
transactions within the same broadcast cycle. Many researchers
tackle the problem of concurrent executions of these

Parameters Value

decomposition factor 2, 4, 6, 8, 10

Zipf parameter ɵ 0.0–1.0

Database size 10000 items

Ucast size /Rcast Ratio 1/4

Ucast size 20 data items

Transaction size (number of

operations)

8,10,12,16

Read operation ratio (for update

transactions)

0.5

Read-only transaction ratio 0.7

Average delay between

operations

1 (exponentially

distributed)

Average delay between

transactions

5,10,50 (exponentially

distributed)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

25 | P a g e

www.ijacsa.thesai.org

transactions and many of them suggest that broadcast cycle
decomposition is a proper technique to increase the
concurrency and the system performance as well. As a result,
the identities of all the data items which are updated by any
transactions in a certain sub cycle we call it Rcast are included
in the reserved space after the current broadcast sub-cycle
called Ucast. The identities of all the extra data items with no
rooms at the current Ucast are included in the next Ucast based
on commit sequence of their transactions. Actually, The
accumulation of such abundant updated data items is highly
affect the system performance and need to be distributed
properly over the coming Ucast tacking into considerations a
dynamic change of their conflicting degree We explored in this
paper the problem of adjusting broadcast programs to cope
with the variation of conflicting probability during transactions
execution. By exploiting the features of the basement
adjustment and the smooth adjustment, we proposed a heuristic
based algorithm ADDUcast to adjust abundant data allocations
therapy satisfying as much transactions as possible.
Performance of algorithm ADDUcast was analyzed and a
system simulator was developed to validate our results. It was
shown by our simulation results that the allocation achieved by
algorithm ADDUcast are highly maintain the freshness of data
items with reduced response time. This feature and the
efficiency of algorithm ADDUcast justify its practical
importance.

Fig. 7. Average response time with avergae Ucast size

Fig. 8. Average response time under different Ucast cycle size

Fig. 9. Average response with large Ucast cycle

Fig. 10. Average restart times with avergae Ucast size

Fig. 11. Average restart times under different Ucast cycle size

ACKNOWLEDGMENT

This research is funded by the Deanship of Research and
Graduate Studies in Zarqa Private University /Jordan"

REFERENCES

[1] Acharya, S., Alonso, R., Franklin, M., and Zdonik, S., “Broadcast disks:
data management for asymmetric communication environments,” Proc.
of the ACM SIGMOD Conference, pp.199-210, 1995.

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e

Zipf Parameter θ

Decomposition Factor=10, Ucast size= 10

UD-RAN

ADDUcast

0

200

400

600

800

1000

1200

10 20 30 40 50 60

A
ve

ra
ge

 r
es

p
o

n
se

 t
im

e

Ucast cycle size

Decomposition Factor=10, θ=0.5

UD-RAN

ADDUcast

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e

Zipf Parameter θ

Decomposition Factor=10, Ucast size= 50

UD-RAN

ADDUcast

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
ve

ra
ge

 r
e

st
ar

t
ti

m
e

s

Zipf Parameter θ

Decomposition Factor=10, Ucast size= 10

UD-RAN

ADDUcast

0
2
4
6
8

10
12

10 20 30 40 50 60A
ve

ra
ge

 r
e

st
ar

t
ti

m
e

s

Ucast cycle size

Decomposition Factor=10, θ=0.5

UD-RAN

ADDUcast

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 4, 2014

26 | P a g e

www.ijacsa.thesai.org

[2] Bernstein, P. A., Hadzilacos, V., and Goodman, N., Concurrency control
and recovery in database systems, Addison-Wesley Publishing
Company, 1987.

[3] Ozsu, M. T., and Valduriez, P., Principles of distributed database
systems, Prentice Hall, 1991.

[4] Lam, K. Y., Au, M. W., and Chan, E., “Broadcast of consistent data to
read-only transactions from mobile clients,” Proc. of the Second IEEE
Workshop on Mobile Computing Systems and Applications, 1999.

[5] Pitoura, E., “Supporting read-only transactions in wireless
broadcasting,” Proc. of the DEXA98 International Workshop on
Mobility in Databases and Distributed Systems, pp. 428-422, 1998.

[6] Pitoura, E., and Chrysanthis, P. K., “Scalable processing of read-only
transactions in broadcast push,” Proc. Of the 19th IEEE International
Conference on Distributed Computing System, 1999.

[7] Lee, SangKeun, Hwang, Chong-Sun, Kitsuregawa, Masaru,. Efficient,
energy conserving transaction processing in wireless data broadcast.
IEEE Transactions on Knowledge and Data Engineering 18 (9), 1225–
1237. September 2006.

[8] Lee, V., Lam, K., Son, S.H., Chan, E, On transaction processing with
partial validation and timestamps ordering in mobile broadcast
environments. IEEETransactions on Computers 15 (10), 1196–1211
2002.

[9] Cho, H. Concurrency control for read-only client transactions in
broadcast disks. IEICE Transactions on Communications E86-B (10),
3114–3122. 2003

[10] Lee, Victor C.S., Lam, Kwok Wa, Kuo, Tei-Wei, Efficient validation of
mobile transactions in wireless environments. Journal of Systems and
Software, 183–193. 2004.

[11] Lee, SangKeun, Hwang, Chong-Sun, Kitsuregawa, Masaru. Using
predeclaration for efficient read-only transaction processing in wireless
data broadcast. IEEE Transactions on Knowledge and Data Engineering
15 (6), 1579– 1583. Nov/Dec, 2003.

[12] Imielinski, T., and Viswanathan, S., and Badrimath, B., “Energy
efficient indexing on air,” Proc. of the ACM SIGMOD Conference,
1994.

[13] Huang, Y., and Lee, Y. H., “Concurrency control protocol for
broadcastbased transaction processing and correctness proof," ISCTA
PDCS 2001,in press, August 2001.

[14] W.-C. Peng and M.-S. Chen. Dynamic Generation of Data Broadcasting
Programs for a Broadcast Disk Array in a Mobile Computing
Environment. In Proceeding of the ACM 9th International Conference
on Information and Knowledge Management, pages 38—45, November
2000.

[15] Jiun-Long Huang, Ming-Syan Chen: Dynamic Leveling: Adaptive Data
Broadcasting in Mobile Computing Environment.MONET 8(4): 355-364
(2003)

[16] Sunggeun Park, Sungwon Jung; An energy-efficient mobile transaction
processing method using random back-off in wireless broadcast
environments The Journal of Systems and Software vol 82 pp 2012–
2022, 2009

[17] Vikas Goel, Ajay Kumar Anil Kumar Ahlawat; A Comparative Study of
Energy Efficient Air Indexing Techniques for Uniform Broadcasting
International Journal of Computer Applications COMNET-2011

AUTHOR PROFILE

Ahmad Alqerem obtaining a BSc in 1997 from
JUSTUniversity and a Masters in computer science from
Jordan University in 2002. PhD in mobile computing at
Loughborough University, UK in 2008. He is interested in
concurrency control for mobile computing environments,
particularly transaction processing. He has published
several papers in various areas of computer science.

After that he was appointed a head of internet technology Depts. Zarka
University.

http://www.informatik.uni-trier.de/~ley/pers/hd/c/Chen:Ming=Syan.html
http://www.informatik.uni-trier.de/~ley/db/journals/monet/monet8.html#PengHC03

