
Surface Texture Synthesis and Mixing Using
Differential Colors

Qing Wu Lin Shi Stephen Bond Yizhou Yu

University of Illinois at Urbana-Champaign
Email: {linshi,qingwu1,sdbond,yyz}@uiuc.edu

Abstract—In neighborhood-based texture synthesis, adjacent
local regions need to satisfy color continuity constraints in order
to avoid visible seams. Such continuity constraints seriously re-
strict the variability of synthesized textures, making it impossible
to generate new textures by mixing multiple input textures with
very different base colors. In this paper, we propose to relax such
restrictions and decompose synthesis into two relatively disjoint
stages. In the first stage, an intermediate synthesized texture is
generated by only considering the high frequency details during
region search and matching. Such a scheme broadens the search
space during texture synthesis, but may produce obvious seams
due to large discontinuities in low frequency components. In the
second stage, instead of performing local feathering along these
discontinuities, we perform Laplacian texture reconstruction,
which retains the high frequency details but computes new
consistent low frequency components to eliminate the seams.
It does not only affect texels close to the discontinuities, but
also modifies the rest of the texels. Therefore, it can be viewed
as a global feature-preserving smoothing step, and is more
effective than local feathering. Experiments indicate that our two-
stage synthesis can produce desirable results for regular texture
synthesis as well as texture mixing from multiple sources.

I. INTRODUCTION

Texture synthesis has been widely recognized as an im-
portant research topic in computer graphics. Early texture
synthesis algorithms were based on global statistical models.
Instead of enforcing global statistics, preserving the local
arrangement of pixels has proven to be more effective in terms
of visual quality. This intuition led to the neighborhood-based
search-and-copy algorithms. Given a small texture example,
these algorithms can produce larger textures that have similar
texture elements and structures as the given example. Every
output texture from such neighborhood-based texture synthesis
is essentially a spatial rearrangement of the original local
regions in the given example. When there is only a single small
texture example, the number of possible rearrangements is
actually limited because adjacent local regions need to satisfy
continuity restrictions.

We propose to relax such neighborhood-based texture syn-
thesis along two directions to improve the variability of the
synthesized results without compromising their visual quality.
First, relax the continuity restrictions. Previously, adjacent
local regions in the output texture are typically required to
have pixelwise color similarity in their overlapping portion.
When a new local region needs to be chosen from the texture
example, such a stringent condition results in a very small
number of candidates and quite often zero candidates. We

suggest to relax such region matching by focusing on the high
frequency components only and overlooking the average color
and intensity. Indeed, it is the high frequency components that
play the most important role in characterizing a texture.

Second, allow multiple input texture examples. Sampling
local regions from a single small texture example can only
produce very limited variability. Ideally, example-based syn-
thesis should generate results by sampling a large database.
However, different textures may be acquired by different
imaging devices and/or settings, under different illumination
conditions, etc. Even the same real-world texture, such as
grass, can appear very different in different texture images.
Effectively sampling, matching and mixing local regions from
multiple texture examples simultaneously is nontrivial.

In this paper, we focus on surface texture synthesis and
propose a novel two-stage synthesis approach to accommo-
date these two relaxations. In the first stage, an intermediate
synthesized texture is generated by only considering the high
frequency details during region search and matching. It is
achieved by using both features and rectified versions of the
input textures. Each pixel value in the rectified textures is
defined by its original value normalized by the accumulated
intensity within a neighborhood. Such a scheme broadens the
search space during texture synthesis. It facilitates sampling
local regions from different texture examples as well as placing
regions with very different average colors and intensities next
to each other in the output texture. However, this intermediate
texture has obvious seams due to large discontinuities in low
frequency components.

In the second stage, to seamlessly mix local regions to-
gether and create smooth transitions among them, we perform
texture reconstruction using differential colors, which is in the
same spirit of Poisson image editing [1] and related surface
editing [2]. It retains the high frequency details, but computes
new consistent low frequency components for all local regions
so that the seams among them disappear. Therefore, it can
be viewed as a global feature-preserving smoothing step,
and is more effective than local feathering. The Laplacian
operator extracts local differential quantities which represent
high frequency texture details. Given the Laplacian of the
intermediate texture, we set up a sparse linear system with
the new texture colors as the unknowns. The solution of this
system not only retains the original texture details, but also
provides a consistent coloring to all the texels in the synthe-
sized texture without discontinuities along the boundaries of
adjacent regions.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

236| P a g e
www.ijacsa.thesai.org

A. Related Work

This paper is partially inspired by the recent success of
texture synthesis [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. 2D textures are frequently modeled as Markov Random
Fields, which give rise to the neighborhood based texture
synthesis algorithms. Some algorithms model textures as a
set of features, and generate new images by matching feature
statistics, such as histograms and co-occurrences, potentially
across multiple resolutions [3]. Patch-based texture synthesis
[4], [5], [7], [8] achieved better results than earlier methods
in terms of both quality and efficiency. Feature continuity on
the boundary of two adjacent patches is an important issue
and [5], [7], [8] have attempted to alleviate this problem
using dynamic programming, graph cuts, and feature maps,
respectively. Further improvements include real-time parallel
synthesis on GPUs [9] and multiscale synthesis [10]. Recently,
techniques have been developed to support the synthesis of
textures with multiple layers using either signed distance
functions or levelsets [11], [12].

There has also been much work [13], [14], [15], [16],
[17], [18] on generalizing 2D texture synthesis onto meshes
with arbitrary topology. Neighborhood based 2D synthesis was
generalized to meshes in [13], [14], which perform hierarchical
vertex-based synthesis. A binary texton mask was introduced
in [16] as guidance data to improve synthesis results and
reduce the number of broken features. Patch-based synthesis
has also been generalized to meshes [15], [17]. A hierarchical
patch-based approach was proposed in [15], and an efficient
synthesis method on triangle meshes was introduced in [17] . A
very fast synthesis technique accelerated by precomputed Jump
Maps was introduced in [18]. Neighborhood or patch matching
in these methods is directly based on color differences instead
of differences in high frequency components.

Meanwhile, researchers have synthesized textures from
multiple input examples by mixing together different elements
from them [3], [16]. In [3], statistical learning trees are used to
mix textures. On the other hand, the technique in [16] focuses
on creating a progressive transition between different texture
elements. However, these texture mixing techniques cannot
globally adjust the colors of the mixed textures to make them
more consistent with each other.

II. OVERVIEW

The input to our algorithm is a triangle mesh as well as
one or more texture examples. The output is the same mesh
covered with a texture synthesized from the given examples.
In the case of multiple input textures, the synthesized texture
is a spatial mixture of the texture elements from the texture
examples.

Our Laplacian texture synthesis algorithm has three basic
steps.

1) Apply a revised version of the method in [17] to
generate an initial texture patch assignment on the
mesh. The method in [17] does not directly synthesize
textures on a mesh. Instead, it assigns a triangular
texture patch in the input textures to each triangle
in the mesh. The assigned texture patches of two
adjacent triangles have a certain degree of continuity

along their shared edge. Our revised version tries to
emphasize high frequency details, but overlook the
differences in the average colors of local regions.
At the end of this step, each triangle in the mesh
is associated with three pairs of texture coordinates
which record the locations of the corners of its
corresponding triangular texture patch in the input
texture examples.

2) Each triangle in the mesh is tesselated with a high-
resolution grid and the assigned texture patch of
the triangle is resampled onto this grid. A graphcut
algorithm is further executed to refine the boundary
between two adjacent texture patches so that such
a boundary is not necessarily coincidental with the
shared edge between two adjacent triangles any more.
As a result, the transitions of details among texture
patches are improved though their average colors may
still be quite different.

3) Laplacian texture reconstruction is performed simul-
taneously on all the resampled texture patches from
the previous step to eliminate the color discontinuities
between adjacent patches. The Laplacian at each grid
point is obtained from the original colors in the input
texture examples.

III. INITIAL TEXTURE ASSIGNMENT

Our initial texture assignment is based on the method in
[17], where a texton is defined to be a distinct local texture
neighborhood. By clustering all neighborhoods with a fixed
size from the given texture example, a small collection of
textons can be extracted. They are the representatives of the
clusters. During synthesis, triangular texture patches are grown
on the mesh one by one to cover all the triangles. Note that
each triangle in the mesh shares an edge with at most three
adjacent triangles. During each step of synthesis, this method
focuses on one triangle and counts the number of its adjacent
triangles that have been covered with texture. If none of them
has been covered, the current triangle is a seed and should be
covered with a random patch. If one of them has been covered,
we need to search for a texture patch in the given texture
example that agrees well with the texture on this adjacent
patch, which means that the two texton sequences on the shared
edge should be similar. This strategy can be easily generalized
to cases where two or three adjacent triangles are already
covered with textures.

To emphasize high frequency details but overlook differ-
ences in average intensity and color, in our revised version of
this method, we utilize a rectified version of each input texture.
The rectified version of a texture is a greyscale image with a
normalized intensity value at each pixel. We set the initial
greyscale value at a pixel to be its luminance value which is a
weighted average of the original three color channels. Suppose
we define an N×N neighborhood for each pixel and the lumi-
nance at a neighbor (i, j) is Iij . The luminance value at each
pixel is further normalized by the accumulated luminance in its
neighborhood, which is (

∑
ij I

2
ij)

1/2. In this rectified texture,
we essentially have removed the low frequency components,
but retained the important high frequency details. We only
use greyscale values because they are weighted averages of
three color channels and contain high frequency details from
all of them. In practice, using greyscale values indeed can

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

237| P a g e
www.ijacsa.thesai.org

(a) (b) (c)

Fig. 1. (a) The original PEBBLES texture. (b) The rectified greyscale image of (a). (c) A feature image of (a) obtained by filtering.

O

QR

P

D

BA

F
E

C

B’

C’

P’

Q’
R’

A’

Input Texture

(a) (b) (c)

Fig. 2. (a) A fine grid defined within a triangle. (b) A graphcut is performed inside the quadrilateral region OAPB to obtain a refined boundary between the
two adjacent texture patches. (c) An extended hexagonal texture patch corresponding to ∆ABC in (b).

produce better matching results than using three independent
color channels. An example of a rectified texture is shown in
Fig. 1(b). In practice, we set the size of the neighborhoods to
be 11× 11.

In addition to the rectified textures, we also obtain a feature
image for each of the input texture examples. We first apply bi-
lateral filtering [19] to remove noise while preserving features.
In the bilateral filter, the scale of the closeness function σd is
set to 2.0, and the scale of the similarity function σr is set to
10 out of 256 greyscale levels. We then use finite differences
along the two image axes as a simple gradient estimator to
obtain an edge response at every pixel. The pixelwise gradient
estimation is used to form the feature images. An example of
a feature image is shown in Fig. 1(c).

In our revised version of the method in [17], we use these
rectified textures along with the feature images as the input
to texton clustering. Thus, the neighborhood corresponding to
each texton has a normalized greyscale pattern and a feature
pattern. Both patterns emphasize high frequency details. In
practice, weighted versions of these patterns are used for texton
clustering. The weight for the greyscale pattern is set to 1.0,
and the weight for the feature pattern is set to 0.3. These
weighted patterns are treated as different channels of the same
texture neighborhood during texton clustering. Once we have

the collection of textons, the rest of the synthesis steps follow
[17].

When there are multiple input textures, every time we need
to search for a texture patch for a triangle, we find the best
candidate from each input texture and then choose among them
the one with the highest matching score. Usually, we would
like to set up for each input texture a target percentage in the
output texture. To approximately control the synthesis process
using these target percentages, we define a Gaussian function
for each input. The standard deviation of the Gaussian is set
to be the target percentage of the input texture. The function
value of the Gaussian is used to modulate the matching score.
When the actual percentage is lower than the target percentage,
the Gaussian returns a large value which does not obviously
affect the matching score; when the actual percentage is
higher than the target percentage, the Gaussian returns a small
value which significantly decreases the matching score. Thus,
these Gaussian functions implicitly control the likelihood of
sampling a specific input texture.

IV. TEXTURE RESAMPLING AND BOUNDARY
REFINEMENT

Since we would like to perform boundary refinement on the
triangular texture patches and Laplacian reconstruction over

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

238 | P a g e
www.ijacsa.thesai.org

(a) (b)

Fig. 3. (a) Initial texture patch assignment result with two of the seams
indicated by arrows. (b) Result obtained from boundary refinement with
Graphcut.

the entire synthesized texture, indexing the texture patch for
each triangle as three pairs of texture coordinates in the input
texture space becomes insufficient. To facilitate these later
steps, we resample the texture patches onto a high-resolution
grid over the original mesh surface. The high-resolution grid
within each triangle is set up using barycentric coordinates as
shown in Fig. 2(a). That is, every edge of the triangle has the
same number of sample points. We actually further enforce
that all edges in the triangle mesh have the same number of
sample points. Thus, the subgrids within two adjacent triangles
coincide on their shared edge to avoid T-junctions. If the
original triangle mesh has some overly large or elongated
triangles, we split those triangles in a preprocessing step while
avoiding T-junctions.

We resample the texture patches previously assigned to the
triangles onto this high-resolution grid. As shown in Fig. 2(b)-
(c), suppose a triangle ∆ABC in the mesh has a corresponding
triangular texture patch ∆A′B′C ′ in one of the input texture
examples. To facilitate boundary refinement at a later step,
we actually resample an area larger than ∆A′B′C ′. Suppose
∆ABD, ∆BCE and ∆CAF are the three triangles adjacent
to ∆ABC. Their centers are P , Q and R, respectively.
We first flatten these three triangles onto the same plane
where ∆ABC resides and obtain the new locations of their
centers. From these new locations, we can further obtain their
corresponding locations P ′, Q′ and R′ in the 2D texture space.
We resample the entire hexagonal area A′P ′B′Q′C ′R′ in the
texture space onto the corresponding region, APBQCR, of
the high-resolution grid. Thus, each resampled texture patch
of a triangle extends into its three adjacent triangles. Suppose
the center of ∆ABC is O. During this resampling, ∆OAB,
∆OBC and ∆OCA not only obtain color values from the
texture patch originally assigned to ∆ABC, but also obtain
a second color value from the extended hexagonal patches
corresponding to the three adjacent triangles of ∆ABC.

During initial texture patch assignment discussed in the
previous section, each triangle is assigned a triangular texture
patch. The boundary between two adjacent texture patches
coincide with the shared edge of their corresponding triangles.
In a subsequent boundary refinement procedure, we apply the
graphcut algorithm in [7] to refine the boundaries between
resampled texture patches on the high-resolution grid. We need
to take into account the extended hexagonal texture patches
to perform this procedure. Consider triangles ∆ABC and

∆ABD in Fig. 2(b). Suppose their hexagonal texture patches
are HTPO and HTPP , respectively. These two texture patches
have an overlapping quadrilateral region, OAPB. We set up a
minimum graph cut problem as follows. The grid points closest
to OA and OB are constrained to have colors from the texture
patch HTPO while the grid points closest to PA and PB are
constrained to have colors from the patch HTPP . The vertices
A and B also have fixed colors. We then seek a minimum
graph cut between A and B and within the region OAPB.
The algorithm in [7] is applied to find this cut which can
provide a better transition between the high frequency details
of the two texture patches than the original boundary. The grid
points falling on the same side of the cut as O obtain colors
from patch HTPO while the grid points on the other side of
the cut obtain colors from patch HTPP . Note that we still use
the rectified textures during boundary refinement because the
original texture colors may have large discontinuities along
the triangle edges, which prevent the graphcut algorithm to
find a different cut that provides better transition for high
frequency details. Fig. 3(a)-(b) demonstrate the effectiveness
of this boundary refinement procedure.

Since the colors of the mesh vertices are not refined at
all during the aforementioned boundary refinement, we also
designed another graphcut procedure specifically tailored for
them. We first define an umbrella region centered at each
vertex, and then flatten that region onto a parameterization
plane. A subsequent graph cut is performed in this flattened
region to refine the boundaries of the texture patches there.
However, in our experiments, we have not observed any
obvious improvements in visual quality due to this vertex-
centric refinement. Therefore, we leave it as an optional step.

V. LAPLACIAN TEXTURE RECONSTRUCTION

The synthesis process in the previous sections focuses on
high frequency details. We call the surface texture synthe-
sized by the previous steps the intermediate texture. There
are obvious seams inbetween adjacent texture patches in the
intermediate texture because of discontinuities in the low
frequency components. To remove these large discontinuities
while still preserving high frequency texture details, we present
a texture reconstruction technique based on the Laplacian
operator which encodes high frequency features. Given the
estimated Laplacians of the intermediate texture, the recon-
struction process tries to obtain a new continuous surface
texture which can reproduce the Laplacians. The reconstruction
process uses the high-resolution grid previously generated for
texture resampling.

A. A Weighted Laplacian Operator

The Laplacian of a vertex vi in the high-resolution grid is
computed by collecting the colors of its 1-ring neighbors as
shown in Fig. 4. To compensate the non-uniform shape of the
triangles, Fujiwara weights [20] are used:

L(vi) = −
∑

0≤j<N(i)

1

eij
(ci − cij), (1)

where vij is a vertex directly connected to vi, eij represents
the edge length between vi and vij , ci and cij represent
the colors at the vertices, and N(i) represents the number of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

239| P a g e
www.ijacsa.thesai.org

iv

0i
v

1i
v

2i
v

3i
v

4i
v

0i
e

1i
e 2i

e

3i
e

4i
e

Fig. 4. The 1-ring structure of a vertex, vi.

neighboring vertices of vi. This Laplacian operator can also
be rewritten as:

L(vi) = −
∑

0≤j<N(i)

Lf (vi,vij ,vij+1), (2)

where Lf (vi,vij ,vij+1) =
1

2eij
(ci− cij)+

1
2eij+1

(ci− cij+1).

Lf (vi,vij ,vij+1) only involves the three vertices of a triangu-
lar face in the 1-ring structure of vi. This formulation allows
us to consider the Laplacian operator as a summation of these
facewise terms.

Since we would like to remove discontinuities along patch
boundaries but still preserve original high frequency features
within the texture patches, it is desirable to have spatially adap-
tive smoothing. To achieve this goal, we designed a weighted
Laplacian operator which imposes potentially different weights
on the edges. Eqs. (1) and (2) thus become

Lw(vi) = −
∑

0≤j<N(i)

wij

eij
(ci − cij) (3)

= −
∑

0≤j<N(i)

Lf
w(vi,vij ,vij+1), (4)

where wij is a positive weight for the edge between vi and
vij , and Lf

w(vi,vij ,vij+1) is also a facewise term similar
to Lf (vi,vij ,vij+1). If both vi and vij are from the same
texture patch, we simply set wij = 1; otherwise, wij can be
either smaller or larger than 1. If the weight of an edge is
less than 1, the bonding between the two vertices of the edge
is weakened, and there is less smoothing across the edge. Too
small a weight may increase the stiffness of the resulting linear
system discussed in the next section.

B. Laplacian Reconstruction

Given the Laplacians of the intermediate texture, we would
like to reconstruct a new texture with the same Laplacians.
Therefore, we set up a linear system with one equation per
vertex. The equation for vertex vi is expressed as

−
∑

0≤j<N(i)

(
wij

2eij
(ci − cij) +

wij+1

2eij+1

(ci − cij+1)) = Li, (5)

where ci and cij represent unknown vertex colors in the new
texture we would like to solve and Li represents the estimated
Laplacian of the intermediate texture at vi using Eq. (3). The

left hand side of this equation is actually the weighted Lapla-
cian of the unknown new texture at vi. Since the weighted
Laplacian is a linear operator, this equation is a linear equation
of the unknown vertex colors. Note that if the textures have
three color channels, there are three equations for each vertex.
The collection of equations for all the vertices form a sparse
linear system which has a symmetric coefficient matrix. Since
the Laplacian operator is translation invariant, we need to fix
the color of at least one vertex in order to obtain a unique
solution of the linear system. Such fixed colors essentially
form a boundary condition of the equations. Efficient iterative
solvers [21] are a good choice for such a sparse linear system.
In practice, we use a preconditioned (Incomplete Choleskey
Factorization) conjugate gradient method [22].

1) Laplacian Estimation at Patch Boundaries: There are
additional details concerning the estimation of the right hand
side of Eq. (5) since the intermediate texture consists of
patches with discontinuities on their boundaries. According to
Eq. (3), the weighted Laplacian of a vertex can be estimated by
accumulating a simpler term, Lf

w(vi,vij ,vij+1), over all the
triangular faces surrounding the vertex. However, a triangle
may stride two or more texture patches. We summarize the
estimation of this term as follows.

• If vi, vij and vij+1 belong to the same patch, we
directly use their colors to estimate Lf

w(vi,vij ,vij+1).

• If the three vertices belong to two different patches, we
should not directly use their existing colors because
there may be a large gap among them. Since there
must be a dominant patch having two of the three
vertices, during the estimation of Lf

w(vi,vij ,vij+1),
the color of the third vertex should be taken from an
extended version of the dominant patch to avoid large
gaps.

• If the three vertices belong to three different patches,
we simply randomly choose a dominant patch from the
three. The colors of the other two vertices are taken
from an extended version of that dominant patch.

2) Global Reconstruction: When the average brightness
and color of the patches in the intermediate texture differ
significantly (e.g. when they are from different complicated
textures), we set up a sparse boundary condition and simul-
taneously solve the system of equations in (5) to remove
the differences. As mentioned earlier, the boundary condition
should consist of at least one constraint on the variables. A
simple equality constraint is declared by setting the color of a
vertex to be a fixed value. Such constraints reduce the number
of variables in the linear system. The reduced linear system has
a unique solution. The user can choose to interactively specify
such constraints. In the absence of user-defined constraints, our
program chooses to fix the colors at the centers of a random
subset of the patches in the mesh. A more sophisticated con-
straint is defined by setting a linear combination of the vertex
colors to be a fixed value. For example, we experimented
with setting the average of all vertex colors to be a fixed
value. Such linear constraints can be integrated into the linear
system by considering them as additional equations. When
there is exactly one linear constraint, the resulting enhanced
linear system has a unique solution which defines a globally
continuous new surface texture. When there is more than one

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

240 | P a g e
www.ijacsa.thesai.org

linear constraints, the system becomes overdetermined, and a
least-squares solution should be obtained.

3) Local Reconstruction: When the average brightness and
color of the patches in the intermediate texture are similar
(e.g. when they are all from the same sample texture), locally
reconstructing the texture can produce good results with much
less computational cost than the global reconstruction. This
is done by imposing color constraints on all the boundary
vertices of the texture patches. The constrained color for
every boundary vertex vi is computed by simply blending the
existing colors in its 1-ring structure,

cfixed(vi) =
1

N(i)

∑
0≤j<N(i)

cij , (6)

where the neighboring vertices of vi, {vij}, may belong to
different patches. These dense color constraints effectively
disconnect the texture patches from each other. The resulting
linear system can be solved patch by patch. In practice, this
scheme is a few times faster than the global reconstruction.
Nevertheless, it only propagates information within each tex-
ture patch, which makes it better than local feathering along
the patch boundaries but prevents it from resolving color
differences on patches that are remote to each other. Therefore,
this local scheme provides a tradeoff between quality and
efficiency.

Fig. 5 demonstrates the visual quality of both local and
global texture reconstruction. In the intermediate textures, there
are obvious seams among the patches due to differences in
low frequency components. Local Laplacian reconstruction can
certainly remove these seams and create smooth transitions
among the patches. However, it fails to produce large-scale
changes that would make the base colors of the patches more
consistent. On the other hand, global Laplacian reconstruc-
tion can perform such large-scale changes and produce more
desirable results. To fully test the capability of global recon-
struction, in the last example shown in Fig. 5, we artificially
add a large random color shift to every texture patch in the
intermediate texture. Global reconstruction can successfully
remove these large color shifts and recover a consistent base
color for all the patches. The reconstructed surface texture
appears similar to the original input texture.

VI. ADDITIONAL EXPERIMENTAL RESULTS

We have conducted a large number of experiments on
surface texture synthesis and mixing using the algorithm
developed in this paper. Besides the examples shown in Fig. 5,
we show a few additional results in Fig. 6. The first example in
Fig. 6 gives a good demonstration on the fact that our algorithm
can significantly improve the variability of the synthesized
textures. The original FLOWERS texture has too few color
variations. Extending such a texture over a large surface area
would not make the result very appealing. By mixing it with
the two leaf textures, the synthesized results become more
interesting. In the first row of Fig. 6, the left one is the
local reconstruction result while the right one is the global
reconstruction result. In this particular case, both of them look
interesting. The local result retains the rich colors of the three
input textures while the global result has a smooth and subtle
color change over the entire mesh.

TABLE I. THE NUMBER OF VERTICES AND FACES IN THE MESHES AND
THEIR CORRESPONDING FINE GRIDS USED IN OUR EXPERIMENTS.

mesh vertices/faces # grid vertices/faces
Bunny 2503 / 5002 640258 / 1280512
Camel 2444 / 4884 625154 / 1250304
Pawn 510 / 1016 130050 / 260096

V-shape 170 / 336 43010 / 86016

TABLE II. THE AVERAGE RUNNING TIMES (IN SECONDS) OF
DIFFERENT STAGES OF OUR ALGORITHM ON THREE MESHES. THESE TIMES
WERE MEASURED ON A 3.2GHZ AMD PROCESSOR. ”INITIAL” REFERS TO

THE INITIAL TEXTURE PATCH ASSIGNMENT STAGE; ”REFINEMENT”
REFERS TO THE TEXTURE RESAMPLING AND BOUNDARY REFINEMENT

STAGE; ”LOCAL/GLOBAL LAPL” REFERS TO LOCAL AND GLOBAL
LAPLACIAN TEXTURE RECONSTRUCTION.

Initial Refinement Local / Global Lapl
Bunny 8 5 13 / 25
Camel 3 4 13 / 28
Pawn < 1 1 2 / 4.5

The statistics of the meshes used in our experiments are
summarized in Table I. The running times of various stages of
our algorithm are also summarized in Table II.

VII. CONCLUSIONS

In this paper, we proposed to decompose texture synthesis
into two relatively disjoint stages. In the first stage, an inter-
mediate synthesized texture is generated by only considering
the high frequency details during neighborhood search and
matching. In the second stage, we perform Laplacian texture
reconstruction which retains the high frequency details but
computes consistent low frequency components. It does not
only affect texels close to discontinuities, but also modifies
the rest of the texels. Therefore, it can be viewed as a
global feature-preserving smoothing step, and is more effective
than local feathering. Experiments indicate that our two-stage
synthesis can produce desirable results for regular texture
synthesis as well as texture mixing from multiple sources. In
future, we would like to implement Laplacian reconstruction
and other time-consuming steps on GPUs to achieve interactive
performance.

REFERENCES

[1] P. Perez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. on Graphics, vol. 22, no. 3, pp. 313–318, 2003.

[2] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh editing with poisson-based gradient field manipulation,” ACM
Trans. Graph., vol. 23, no. 3, pp. 644–651, 2004.

[3] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman, “Texture
mixing and texture movie synthesis using statistical learning,” IEEE
Transactions on Visualization and Computer Graphics, vol. 7, no. 2,
pp. 120–135, 2001.

[4] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum, “Real-time texture
synthesis using patch-based sampling,” ACM Trans. Graphics, vol. 20,
no. 3, pp. 127–150, 2001.

[5] A. Efros and W. Freeman, “Image quilting for texture synthesis and
transfer,” in SIGGRAPH’01, 2001, pp. 341–346.

[6] J. Dischler, K. Maritaud, B. Levy, and D. Ghazanfarpour, “Texture
particles,” Computer Graphics Forum, vol. 21, no. 3, pp. 401–410, 2002.

[7] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut tex-
tures: Image and video synthesis using graph cuts,” ACM Transactions
on Graphics, vol. 22, no. 3, pp. 277–286, 2003.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

241| P a g e
www.ijacsa.thesai.org

(a) (b) (c) (d)

Fig. 5. (a) Input texture examples. (b) Synthesized intermediate textures with color discontinuities among patches. (c) Textures computed from local Laplacian
reconstruction. (d) Textures computed from global Laplacian reconstruction. Note that local reconstruction works reasonably well for the texture mixture in
the first row because the colors of the mixed texture patches are not too different. However, for the remaining three mixture examples, global reconstruction
produces more natural and consistent low frequency components. The intermediate texture in the last row is artificially modified by adding a random color shift
to each texture patch. Global texture reconstruction can successfully remove such color shifts.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

242 | P a g e
www.ijacsa.thesai.org

Fig. 6. Additional surface texture synthesis and mixing results.

[8] Q. Wu and Y. Yu, “Feature matching and deformation for texture
synthesis,” ACM Trans. Graph., vol. 23, no. 3, pp. 364–367, 2004.

[9] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,”
ACM Transactions on Graphics, vol. 24(3), pp. 777–786, 2005.

[10] C. Han, E. Risser, R. Ramamoorthi, and E. Grinspun, “Multiscale
texture synthesis,” ACM Transactions on Graphics, vol. 27(3), 2008.

[11] A. Rosenberger, D. Cohen-Or, and D. Lischinski, “Layered shape
synthesis: automatic generation of control maps for non-stationary
textures,” in ACM Transactions on Graphics (TOG), vol. 28, no. 5.

ACM, 2009, p. 107.

[12] R. Wu, W. Wang, and Y. Yu, “Optimized synthesis of art patterns and
layered textures,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 3, pp. 436–446, 2014.

[13] G. Turk, “Texture synthesis on surfaces,” in SIGGRAPH’01, 2001, pp.
347–354.

[14] L.-Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold
surfaces,” in SIGGRAPH’01, 2001, pp. 355–360.

[15] C. Soler, M.-P. Cani, and A. Angelidis, “Hierarchical pattern mapping,”

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

243 | P a g e
www.ijacsa.thesai.org

in SIGGRAPH’02, 2002, pp. 673–680.
[16] J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum, “Synthesis of

progressively-variant textures on arbitrary surfaces,” in SIGGRAPH’03,
2003, pp. 295–302.

[17] S. Magda and D. Kriegman, “Fast texture synthesis on arbitrary
meshes,” in Eurographics Symposium on Rendering, 2003, pp. 82–89.

[18] S. Zelinka and M. Garland, “Jump map-based interactive texture syn-
thesis,” ACM Transactions on Graphics, vol. 23, no. 4, pp. 929–1073,
2004.

[19] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. Intl. Conf. on Computer Vision, 1998, pp. 836–846.

[20] K. Fujiwara, “Eigenvalues of laplacians on a closed riemannian mani-
fold and its nets,” in Proceedings of the American Mathematical Society,
1995, pp. 123:2585–2594.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, 1996.

[22] D. Kershaw, “The incomplete cholesky–conjugate gradient method
for the iterative solution of systems of linear equations,” Journal of
Computational Physics, vol. 26, no. 1, pp. 43–65, 1978.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

243| P a g e
www.ijacsa.thesai.org

