
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

155 | P a g e
www.ijacsa.thesai.org

DUT Verification Through an Efficient and Reusable

Environment with Optimum Assertion and Functional

Coverage in SystemVerilog

Deepika Ahlawat

VLSI Group

Department of Electrical, Electronics & Communication

Engineering, ITM University,

Gurgaon, (Haryana), India

Neeraj Kr. Shukla

VLSI Group

Department of Electrical, Electronics & Communication

Engineering, ITM University,

Gurgaon, (Haryana), India

Abstract—Verification is the most integral part of chip

manufacturing and testing and is as important as the designing.

Verification provides with the actual implementation and

functionality of a Design under Test (DUT) and checks if it meets

the specifications or not. In this paper, a communication protocol

has been verified as per the design specifications. The

environment so created completely wraps the design under

verification and observes an optimum functional and assertion

based coverage. The coverage so obtained is 100% assertion

based coverage and 83.3% functional coverage using SV
(SystemVerilog). The total coverage so obtained is 91.66%.

Keywords—Assertions; Coverage; Environment; Mailbox;

Randomization;SystemVerilog; Threads; Transactions

I. INTRODUCTION

With increasing complexity of the input constraints and the
need for better control of the statistical distribution, imperative
test benches are being replaced by more declarative
specification methods using languages such SystemVerilog [1].

A. Need of Verification

Exponentially increasing complexity of chips particularly
SOCs made verification more challenging. Major portion of
development time (~70%) of a complex SOC is spent on
verification. Reducing verification effort or time spent on
verification has a strong impact on Time-to-Market (TTM). In
order to satisfy such growing complex verification needs
powerful verification languages and verification methodologies
are employed [2].

In general IP Verification requires in depth verification with
coverage based and constraint random simulation technique,
which needs an advanced test bench equipped with various
components such as coverage monitors and scoreboards. But if
an IP was fully verified before and has a minor design change,
it is not necessary to verify all features in detail. A few directed
cases and simple checkers might be sufficient [3].

Except for simple cases, the behavioral specification of
hardware designs is mostly incomplete, leaving the design’s
response to many input stimuli undefined. During verification,
unspecified inputs must be excluded from examination to avoid
undetermined or spurious erroneous behavior. In a simulation-
based verification setting, the concept of a “test bench” is

applied to specify valid input sequences as well as the expected
design responses for them [4].

B. Need of System Verilog

SV is built on top of Verilog 2001. SV improves the
productivity, readability, and reusability of Verilog based code.
It brings a higher level of abstraction to design and verification.
The language enhancements in SV provide more concise
hardware descriptions, while still providing an easy route with
existing tools into current hardware implementation flows[5].

SV provides a complete verification environment,
employing Directed and Constraint Random Generation,
Assertion Based Verification and Coverage Driven
Verification. These methods improve the verification process
dramatically. It also provides enhanced hardware-modeling
features, which improve the RTL (Register Transfer Level)
design productivity and simplify the design process.

Advantages of Using SV

1) SV was adopted as a standard by the Accellera

organization, and is approval by IEEE. These ensure a wide

embracing and support by multiple vendors of EDA

(Electronics Design & Automation) tools and verification IP's,

as well as interoperability between different tools and vendors

[5].

2) Since SV is an extension of the popular Verilog

language, the adoption process of SV by engineers is extremely

easy and straightforward. SV enables engineers to adopt a

modular approach for integrating new modules into any

existing code. As a result, the risks and costs of adopting a new

verification language are reduced.

3) Being an integral part of the simulation engine,

eliminates the need for external verification tools and

interfaces, and thus ensures optimal performance (running at

least x2 faster than with any other verification languages) [5].

4) SV brings a higher level of abstraction to the Verilog

designer. Constructs and commands like Interfaces, new Data

types (logic, int), Enumerated types, Arrays, Hardware-specific

always (always_ff, always_comb) and others allow modeling of

RTL designs easily, and with less coding.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

156 | P a g e
www.ijacsa.thesai.org

5) SV extends the modeling aspects of Verilog by adding a

Direct Programming Interface which allows C, C++, SystemC

and Verilog code to work together without the overhead of the

Verilog PLI (Programmable Logic Interface).
A declarative description of input constraints is

significantly easier to develop in terms of avoiding over
constraining or under constraining the inputs as well as
controlling the desired distribution. It is expressed as a
predicate on the design’s input variables such that an input
stimulus is valid if and only if the predicate evaluates to true.
Advanced test benches must handle cases in which the validity
of an input stimulus may differ from design state to design
state, which makes the constraints dependent on state variables
[4].

The paper is organized as follows, after an overview of
verification and advantages of using SV, section II describes
the DUT taken and gives a brief introspection on its working.
Section III discusses the test bench architecture and all the
components it comprises of. Section IV describes how the SV
environment works and the various phases of the test bench.
Section V consists of the simulation results in the form of
waveforms and the coverage report based on assertion coverage
and functional coverage.

II. DUT – THE SPI CORE

The serial interface consists of slave select lines, serial
clock lines, as well as input and output data lines. All transfers
are full duplex transfers of a programmable number of bits per
transfer (up to 64 bits). It can drive data to the output data line
in respect to the falling (SPI/Microwire compliant) or rising
edge of the serial clock, and it can latch data on an input data
line on the rising (SPI/Microwire compliant) or falling edge of
a serial clock line [6].

Data Transmission

The bus master configures the clock first, using a frequency
less than or equal to the maximum frequency the slave device
supports. Such frequencies are commonly in the range of
10kHz–100 MHz [6].

During each SPI clock cycle, a full duplex data
transmission occurs [7]:

a) the master sends a bit on the MOSI line; the slave

reads it from that same line

b) the slave sends a bit on the MISO line; the master

reads it from that same line

Transmissions may involve any number of clock cycles.
When there is no more data to be transmitted, the master stops
toggling its clock. Normally, it then deselects the slave.

Transmissions often consist of 8-bit words, and a master
can initiate multiple such transmissions if it wishes/needs. The
master must select only one slave at a time [6].

Fig. 1. SPI Architecture [7]

WISHBONE BUS

The Wishbone Busis an open source hardware computer
bus, intended to allow parallel communication between the
parts of an integrated circuit. This System-on-Chip
interconnection architecture is used in order to create a
common interface between different IP cores. The Wishbone
interconnect is intended as a general purpose interface. As
such, it defines a master / slave standard for data exchange
between IP core modules, in terms of signals, clock cycles, and
high & low levels.

III. SYSTEMVERILOG TESTBENCH ARCHITECTURE

The testbench architecture has various modules as
discussed below. The interconnection between these modules
can be seen in figure 2.

A. Test Generation

A Test case is a program block which provides an entry
point for the test. The test case generator will provide all the
valid test cases to the driver. The test cases are generated by
randomizing certain inputs and registers while keeping some
fixed.

To perform this type of randomization i.e. constraint
randomization a function called random is created [8].

B. Driver

The driver will reset and configure the DUT.

It will call the tasks from test generator and will form a
packet in the packet generator module and will unpack the
packet in the driver module and implement it on the DUT. The
interfaces of the Driver are: clk_i, rst_i, add_i, data_i, sel_i,
we_i, stb_i, cyc_i, sclk, miso.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

157 | P a g e
www.ijacsa.thesai.org

C. Monitor

Monitor will keep track of all the test cases provided to the
driver. It will also look at all the signals coming from the DUT.
Monitor thus will call the packet in the scoreboard module and
compare it with the output from the DUT present in the
checker. Hence the duty of monitor is to complete simulation
when all cases have been read. It will also generate error
message if there is any discrepancy in data out coming from
DUT and the teat generator. The interfaces of the monitor are:
data_out,int_o, ack_o, ss, err_o, mosi.

Fig. 2. Verification Flow [8]

D. Responder

Responder is a block which acts as a slave and gives out
miso_pad_i to the DUT which is processed or stored or read
from the DUT. It is given sclk or slave clock from the DUT and
sends miso to the core.

E. Scoreboard

The output from monitor is checked with the expected
output. Ihe output genetared by the DUT as observed by the
monitor is passed to the scoreboard through mailbox. If the
actual output does not match the expected output an error
message is generated else if it matches a pass message is
displayed.

F. Coverage

Coverage will check the functional coverage of the DUT by
the test cases tested by the driver and monitored by the
monitor. It will also create an error counter which will show the
TEST FAIL and TEST PASS status [8].

IV. COMPILATION IN SYSTEMVERILOG

Following are the methods which defined in the
environment class of the SV testbench[6].

A. build (): In this method , all the objects like driver, output

monitor and mailboxes are constructed.

B. reset (): in this method all the signals are put at a known

state.

C. start (): in this method, all the methods which are declared
in the other components like driver, output monitor and

scoreboard are called.

D. wait_for_end (): this method is used to wait for the end of
the simulation. Wait is done until all the required

operations in other components are done.

E. report (): This method is used to print the results of the
simulation, based on the error count.

F. run (): This method calls all the above declared methods in

a sequence.

The way the DUT interface with the driver, monitor and
responder/slave can be seen in figure 3.

Fig. 3. Architectural overview of the verification modules as implemented in

the proposed verification environment

V. DESIGN SIMULATION

A. Randomization

Random testing is more effective than a traditional
approach of directed testing. One can easily create tests that can
find hard-to-reach corner cases, by specifying constraints.
SystemVerilog allows users to specify constraints in a more
compact and declarative way. The constraints are then
processed by a solver that generates random values that meet
the constraints [5]. The stimuli randomizes are data input, slave
select and address input as seen in figure 4.

Fig. 4. Randomized value of signals

B. DUT Signals Generated

ack
The acknowledge output [ack_o] indicates the normal

termination of a valid bus cycle.
The ack signal obtained can be seen in the figure 5 below.

Fig. 5. Acknowledgment signal generated

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

158 | P a g e
www.ijacsa.thesai.org

Sclk
SCK [sck_o] (figure 6) is generated by the master device

and synchronizes data movement in and out of the device
through the MOSI [mosi_o] and MISO [miso_o] lines. The SPI
clock is generated by dividing the WISHBONE clock [clk_i].

Miso
The Master In Slave Out line is a unidirectional serial data

signal. It is an output from a slave device and an input to a
master device (figure 6).

Mosi
The Master Out Slave In line is a unidirectional serial data

signal. It is an output from a master device and an input to a
slave device (figure 6).

Fig. 6. sclk, miso and mosi signals generated

C. Output Waveform

The output waveform as shown in figure 7, displays all the
signals being generated by the DUT. The internal registers are
also seen to be crunching data and displaying corresponding
outputs through SPI signals.

Fig. 7. Output Waveform of SPI Core

D. Coverage

1) Assertion Coverage
Assertions are mechanism or tool used by HDL’s (VHDL

and Verilog) to detect a design’s expected behavior. The
assertion fails if a property that is being checked for in a
simulation does not behave the way we expect it to or we can
say that, the assertion fails if a property that is forbidden from
happening in a design happens during simulation.

It helps capturing the designer’s interpretation of the
specification [5]. The assertion coverage based on
randomization function assertion is shown in figure 8.

Fig. 8. Coverage report based on assertion

2) Total Coverage Percentage
Total coverage here (figure 9) includes both the assertion

based coverage and the functional coverage. The functional
coverage is based on the coverpoints of the corresponding
covergroup. Bins have been created and have been hit properly
to generate functional coverage.

Fig. 9. Coverage report including functional and assertion based coverage

VI. CONCLUSIONS

The code for environment has been simulated. The outputs
from DUT have been observed. Environment contains the
instances or the objects of the driver, monitor, scoreboard and
the DUT. The task performed by the monitor, driver and
scoreboard is called along with the mailboxes which contain
the received and sent information in the form of randomized
packets. The mailbox implemented to carry the packets shows
results after every transaction. The environment so created
completely wraps the design under verification and observes an
optimum functional and assertion based coverage. Bins have
been created based on the constraints and 85-100% functional
coverage has been obtained on them. The coverage so obtained
is 100% assertion based coverage and 83.3% functional
coverage using System Verilog. The total coverage so obtained
is 91.66%.

ACKNOWLEDGMENT

The authors are grateful to their respective organization for
help and support.

REFERENCES
[1] Sutherland S, Davidmann S, Flake P, “SystemVerilog for Design: A

Guide to Using SystemVerilog for Hardware Design and Modeling,”
Norwell, MA: Kluwer Academic Publishers, 2003.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

159 | P a g e
www.ijacsa.thesai.org

[2] SudhishNaveen, BR Raghavendra, YagainHarish, "An Efficient Method

for Using Transaction Level Assertions in a Class Based Verification
Environment," International Symposium on Electronic System

Design,pp.72-76, 2011

[3] Yun Young-Nam, Kim Jae-Beom, Kim Nam-Do, Min Byeong, “Beyond
UVM for practical SoC verification,” SoC Design Conference (ISOCC),

pp. 158 – 162, Nov 2011

[4] Welp Tobias, Kitchen Nathan, and Kuehlmann Andreas, “Hardware
Acceleration for Constraint Solving for Random Simulation,”IEEE

Transactions On Computer-Aided Design of Integrated Circuits And
Systems, vol-31, No. 5, May 2012

[5] [Online]Available:

http://www.systemverilog.in/systemverilog_introduction.php

[6] K.Aditya,M.Sivakumar,FazalNoorbasha, T.PraveenBlessington, “Design
and Functional Verification of A SPI Master Slave Core Using System

Verilog,” International Journal of Soft Computing and Engineering
(IJSCE), vol-2, Issue-2, May 2012

[7] SrotSimon, “SPI Master Core Specification,”Rev. 0.6, March 15, 2004

[8] RaoAbhiram. What is SystemVerilog?[Online]

Available:http://electrosofts.com/systemverilog/introduction.html

ABOUT THE AUTHORS

DeepikaAhlawat,completed her B.Tech in Electronics and Communication
Engineering from Gurgaon College of Engineering for Women, Gurgaon in
2012. She is now pursuing her Master of Technology (M.Tech) in VLSI Design
at ITM University, Gurgaon. Her interest includes Digital Design, ASIC
Design, VLSI Testing and FPGA prototyping.

Dr. Neeraj Kr. Shukla (IEEE, IACSIT, IAENG, IETE, IE, CSI, ISTE, VSI-
India), an Asst. Professor in the Department of Electrical, Electronics &
Communication Engineering, ITM University, Gurgaon, (Haryana) India. He
has received his M.Tech. Degree in Electronics Engineering and B.Tech.
Degree in Electronics & Telecommunication Engineering from the J.K.
Institute of Applied Physics & Technology, University of Allahabad, Allahabad
(Uttar Pradesh) India in the year of 1998 and 2000, respectively. His main
research interests are in Low-Power Digital VLSI Design and its Multimedia
Applications, Digital Hardware Design, Open Source EDA, Scripting and their
role in VLSI Design, and RTL Design.

