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Abstract—In this paper we describe the 3-D Telegraph 

Equation (3-DTEL) with the use of Alternating Direction Implicit 

(ADI) method on Geranium Cadcam Cluster (GCC) with 

Message Passing Interface (MPI) parallel software. The 

algorithm is presented by the use of Single Program Multiple 

Data (SPMD) technique. The implementation is discussed by 

means of Parallel Design and Analysis with the use of Domain 

Decomposition (DD) strategy. The 3-DTEL with ADI scheme is 

implemented on the GCC cluster, with an objective to evaluate 

the overhead it introduces, with ability to exploit the inherent 

parallelism of the computation. Results of the parallel 

experiments are presented. The Speedup and Efficiency from the 

experiments on different block sizes agree with the theoretical 

analysis.  
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I. INTRODUCTION  

Parallel computing has greatly motivated the research 
works on the parallel design and analysis of the 3-DTEL in 
parallel cluster system. Cluster applications have more 
processor cores to manage and exploit the computational 
capacity of high-end machines providing effective and 
efficient means of parallelism even as the challenges of 
providing effective resources management grows. It is a 
known fact that high capacity computing platform are 
expensive, and are characterized by long-running, high 
processor-count jobs. The performance of message-passing 
programs depends on the parallel target machine, and the 
parallel programming model to be applied to achieve 
parallelism. In a cluster machines having large number of 
processing units’ scalability becomes an important issue. 
Many programs from scientific computing have a large 
potential for parallelism that is exploited best in such a 
programming model for mixed fast and data parallelism where 
the parallelism can be structured in the form of concurrent 
multi-processor tasks [21].      

 Developing parallel applications have its own 
challenges in the field of parallel computing. With reference to 
[11], there are theoretical challenges such as task 
decomposition, dependence analysis, and task scheduling. 
Then they are practical challenges such as portability, 
synchronization, and debugging. However, there exist an 
alternative and cost effective way of achieving performance 
through the use of loosely connected system of processors 
with a local area network [3]. Hence, for a global task with 
other processors relevant data needs to be passed from 

processor to processor through a message-passing mechanism 
[20, 15], since there is greater demand for computational speed 
and the computations must be completed within reasonable 
time period. A multi-processor task can be implemented on a 
subset of processors, and one of the advantages is based on the 
fact that for many message-passing machines communication 
costs are affected by the number of participating processors.  

Design and analysis for finite difference DD for 2-D heat 
equation has been discussed in [23], and the parallelization for 
3-DTEL on parallel virtual machine with DD [8] show 
effective load scheduling over various mesh sizes, which 
produce the expected inherent speedups. Parallel algorithms 
have been implemented for the finite difference method by 
[12], and [21, 13] use the discrete eigen functions method with 
the AGE method on telegraph equation problem.  

The theoretical properties of the 3-D ADI algorithm with 
the parallel design approach employing SPMD model with DD 
are promising, achieving good performance as to what was 
done by [7] in practice can be challenging. There is a tradeoff 
between the reduction of the time required for an inherently 
sequential part of an algorithm, and an increase in the number 
of the iterations required to converge [2]. Previous work on 3-
D ADI scheme did not consider the parallel design approach 
on parallelism and improvement on scalability. To write 
SPMD programs using one of the standard message-passing 
software like MPI [13] requires the explicit administration of 
processors with a large user group. In this paper, we present a 
support for the implementation of parallel design and analysis 
with the use of DD strategy. Our programming style allows the 
application programmer to specify the program organization in 
a clear and readable program code. 

We presented a detailed study of using parallel design and 
analysis on 3-DTEL, and solved by the use of ADI method on 
a GCC cluster MPI. The SPMD model is employed with DD 
to enhance overlapping communication with computation that 
resulted in significant improved speedup, effectiveness, and 
efficiency across varying mesh sizes as compared to [7].  

Our results demonstrated the overlap communication with 
computation, and the ability to arbitrary use of varying mesh 
sizes distribution on GCC to reduce memory pressure while 
preserving parallel efficiency. On the other hand, the 
advantage of our platform is to have somewhat specification 
mechanism through a static distribution, and an execution 
implementation. 
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The rest of the paper is organized as follows. Section 2 
presents related work. Section 3 introduces the model for the 
3-DTEL and the 3-D ADI scheme. Section 4 introduces the 
parallel design and analysis. Section 5 introduces the results of 
several experiments, which illustrate and evaluate the 
parallelization possible with our platform. Section 6 gives the 
conclusion.  

II. RELATED  WORK 

A work by [16] achieved configuration of MPI-based 
message passing programs, and various other platforms for the 
application of telegraph and heat equations have been done in 
[7, 8]. Description of application aware job scheduler that 
dynamically controls resource allocation among concurrently 
executing jobs was done by [22]. A framework called 
‘Gridway’ for adaptive execution of applications in Grids was 
described by [14]. Parallelization by time decomposition was 
first proposed by [18] with motivation to achieve parallel real-
time solutions, and even the importance of loop parallelism, 
loop scheduling have been extensively studied [1]. The ADI 
method for the Partial Differential Equations (PDE) proposed 
by [19] has been widely used for solving algebraic systems 
resulting from finite difference method analysis of PDE in 
several scientific and engineering applications. Works on 
parallel implementation of 2-D Telegraph problem on cluster 
systems have been done in [10, 12].   

In [12] the unconditional stability of the alternating 
difference schemes has similarity to our scheme and shows 
that the unconditional stability application is useful to its 
speedup and efficiency as studied. Our implementation in the 
GCC platform has several aspects that differentiate it from the 
above. GCC is designed for application running on distributed 
memory clusters, which can dynamically and statically 
calculate partition sizes based on the run-time performance of 
the application. We use an efficient algorithm with stability 
which maps data using message passing over the GCC cluster. 
We evaluated our system using experimental results from 
speedup and efficiency for the system utilization. Our 
approach is best suited to applications where data and 
computations are uniformly distributed across processors. 

III. THE MODEL PROBLEM 

We consider the second order telegraph equation in 3-D: 
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where a RC GL  , let zandyx  , be the grid 

spacing in the x, y, z and t directions, where 

mzyx /1 , m is a positive integer. We can solve 

(3.1) by extending the 1-D simple implicit finite difference 
method [21] of the telegraph equation to the above 3-D 
telegraph equation, (3.1) becomes: 
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although this simple implicit scheme is unconditionally 
stable, therefore, the computational time is extremely huge.  

A. ADI Method on 3-DTEL 

We derive the ADI method for 3-DTEL of the simple 
implicit finite difference method by using a general ADI 
procedure [6] extended to (3.1). The ADI method is a well-
known method for solving the PDE. The main feature of ADI 
is to sweep directions alternatively. In contrast to the standard 
finite-difference formulation with only one iteration to 
advance from the nth to (n + 1)th time step, the formulation of 
the ADI method requires multilevel intermediate steps to 
advance from the nth to (n + 1)th time step. Equation (3.2) can 
be rewritten as:                       
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where the operators of I, Ams, and the constants of Co, C1 
are define as: 
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the constant of x , y and z are: 
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TABLE I. THE ADI 3-DTELALGORITHM 
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Then splitting (3.3) by using an ADI procedure as in [17], 
we get a set of recursion relations as follows:  
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A2 and A3 on the left side of (3.14) and (3.16), we get the 3-D 
ADI algorithm as in Table 1. 

IV. PARALLEL IMPLEMENTATION, DESIGN AND ANALYSIS 

A. The Parallel Platform 

  The Geranium Cadcam Cluster consist of 32 Intel 
Pentium dual core processor at 1.73GHZ and 0.99GB RAM. 
Communication is through a fast Ethernet of 100 MBits per 
seconds running Linux, located at the University of Malaya. 
The cluster performance has high memory bandwidth with a 
message passing supported by MPI [13]. The program is 
written in C and provides access to MPI through calling MPI 
library routines. The platform contains more computations on 
varying set of mesh sizes. Performance in the platform 
concerns the resource assessment and code placement on 
computing resources [5]. The 3-DTEL with ADI scheme is 
implemented on the GCC cluster, with an objective to evaluate 
the overhead it introduces with ability to exploit the inherent 
parallelism of the computation. We observed the scalability 
across the varying number of processors and mesh sizes, to 
enable the speedup we need convergence in fewer than N 
iterations. 

 
B. Domain Decomposition 

The parallelization of the computations is implemented by 
means of grid partitioning technique. The computing domain 
is decomposed into many blocks with reasonable geometries. 
Along the block interfaces, auxiliary control volumes 
containing the corresponding boundary values of the 
neighboring block are introduced, so that the grids of 
neighboring blocks are overlapped at the boundary. When the 
domain is split, each block is given an I-D number by a 
“master” task, which assigns these sub-domains to “slave” 
tasks running in individual processors. In order to couple the 
sub-domains’ calculations, the boundary data of neighboring 
blocks have to be interchanged after each iteration. The 
calculations in the sub-domains use the old values at the sub-
domains’ boundaries as boundary conditions. This may affect 
the convergence rate; however, because the algorithm is 
implicit, the blocks strategy can preserve nearly same accuracy 
as the sequential program.  

The DD is used to distribute data between different 
processors; the static load balancing is used to maintain same 
computational points for each processor. The partitioning and 
load balancing is done in the pre-processing stage giving no 
room for extra storage when the parallel program is executed. 
Data parallelism originated the SPMD [17], thus, the finite 
difference approximation used in this paper can be treated as 
an SPMD problem. Same computation is performed for 
multiple data sets, and the multiple data are different parts of 
the overall grid.   

C. Parallel ADI with MPI 

We focus on computational domain partitions in 
implementing the parallel 3-DTEL ADI scheme on GCC 
platform. We need divide the dimensions into sub-domains 
with no unique way of partitioning the domain of computation. 
The case of making a balance between the implementation of 
the algorithm and the communication efficiency is paramount 
to balance. The partitioning considered is the orientation of 
slices changing with the sweeps according to [4].  

The ADI 3-DTEL Algorithm 
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After x-sweeps, the orientation changes to the y or the z 
direction. In this process each processor owns three data 
domains, one for each direction. Implementing the parallel 
algorithm for solving (3.1) is based on: indication of sweeping 
direction for each sub-domain. Sweeping direction of each 
sub-domain must be in opposite direction of its neighbors. For 
example, we must use left right direction for odd sub-domains 
and right left direction for even sub-domains. Updating start 
node of each sub-domain with (3.14) and (3.16), each 
processor of the parallel machine works only on its specific 
portion of the grid and when processor needs information from 
the nearest neighbor a message is passed through the MPI 
message passing library. For the best parallel performance, 
one would like to have optimal load balancing and as little 
communication between processors as possible. Considering 
load balancing first, one would like each processor to do 
exactly the same amount of work, hence, each processor is not 
idle. For the finite difference code, the basic computational 
element usually is the node; it makes sense to partition the grid 
such that each processor gets an equal number of nodes to 
work on. The second criterion is that the amount of 
communication between processors be made as small as 
possible. To minimize communication, the program must 
divide the domain in a way that minimizes the length of the 
touching faces in the different sub-domains. The number of 
processors that one processor has to communicate with also 
contributes to additional communication time, because of the 
latency penalty for starting the new message. At first step, we 

divide the spatial computational domain to 321 PPPP  . 

We can use the non-blocking message passing for this 
communication stage to reduce computing time by allowing 
work to be done while communication is in progress. 

D. Load Balancing 

With static load balancing, the computation time of parallel 
subtasks should be relatively uniform across processors; 
otherwise, some processors will be idle waiting for others to 
finish their subtasks. Therefore, the domain decomposition 
should be reasonably uniform. A better load balancing is 
achieved with the pool of tasks strategy, which is often used in 
master – slave programming [2]: the master task keeps track of 
idle slaves in the distributed pool and sends out the next task 
to the first available idle slave. With this strategy, the 
processors are kept busy until there is no further task in the 
pool. If the tasks vary in complexity, the most complex tasks 
are sent out to the most powerful processor first. With this 
strategy, the number of sub-domains should be relatively large 
compared to the number of processors.  

Otherwise, the slave solving the last sent block will force 
others to wait for the completion of this task; this is especially 
true if this processor happens to be the least powerful in the 
distributed system. The block size should not be too small 
either, since the overlap of nodes at the interfaces of the sub-
domains become significant. This results in a doubling of the 
computations of some variables on the interfacial nodes, 
leading to a reduced efficiency. Increasing the block number 
also lengthens the execution time of the master program, 
which leads to a reduced efficiency. 

E. Speedup and Efficiency 

A simple speedup analysis with reference to [2] produces 
the following: 

 ,
)1( KKNr

N


                                                     (4.1) 

where r is the ration of the time taken by coarse 
propagation to fine propagation over the same time interval, K 
is the number of iterations required for convergence, and 
communication overhead is ignored. In the limit 
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K
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algorithm for the scheme is performed on a distributed 
memory system of p processors, assumes that each processors 
initially stores n = N/p objects distributed over the entire 
physical domain. In the first iteration of the algorithm, the 
domain is decomposed into two sub-domains so that the 
difference between the sums of the weight of the sub-domain 
is as small as possible. Then the same process is applied to two 
sub-domains in parallel, and process is repeated recursively, 
for log p iteration. In other words, during iteration i, 

1 logi p,  the p processors are group into 
12 i

groups of 

1/ 2ip 
processors each. At the beginning of the iteration, the 

problem domain is already partitioned into 
12i

sub-domains 
and the objects in each sub-domain are stored in single group 
of processors. At the end of the iteration, each processor group 
is divided into two groups, and the corresponding sub-domain 
is divided into two sub-groups with the object in one sub-
domain residing in one half the processors and the other 
objects in the other sub-domain residing in the other half of 
processor 

V. RESULTS AND DISCUSSION 

Consider the Telegraph Equation of the form: 
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the boundary condition and initial condition posed are: 

                        0

100)1,,(

0)0,,(

100),1,(

0),0,(

100),,1(

0),,0(






























t

yxv

yxv

zxv

zxv

zyv

zyv

                        (5.2) 

 

      ,),,( xyzezyxv                                                         (5.3) 

A. Parallel Efficiency 

The speedup and efficiency obtained for various sizes, for 
70x70x6 to 210x210x6, are for various numbers of sub-
domains, for B = 50 are listed in Tables 2 – 4. In the Tables 
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we also listed the wall (elapsed) time for the master task, ,WT  

(this is necessarily greater than the maximum wall time 

returned by the slaves), the master CPU time, ,MT  the 

average slave computational time, ,SCT  and the average slave 

data communication time, ,SDT all in seconds. The speedup 

and efficiency versus the number of processors are shown in 
Fig. 1 and Fig. 2, respectively, with block number B as a 
parameter. 

The results in the Tables show that the parallel efficiency 
increases with increasing grid size for given block number, 
and decreases with the increasing block number for given grid 
size. As the number of processors increase, though this leads 
to a decrease in execution time, but a point is reached when 
the increased processors will not have much impact on total 
execution time. Hence, when the numbers of processors 
increase, balancing the number of computational cells per 
processors will become a difficult task due to significant load 
imbalance. The gain in increasing execution time for certain 
mess sizes is due to uneven distribution of the computational 
cell, and the execution time has a very small change due to DD 
influence on performance in parallel computation.  

The total CPU time is composed of three parts: the CPU 
time for the master task, the average slave CPU time for data 
communication and the average slave CPU time for 

computation, .SCSDM TTTT   

TABLE II. THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE 

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T, 
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF 

70X70X6, WITH B = 50 BLOCKS AND NITER = 100.  

 

  

 

 

 

 

 

 
 

TABLE III. THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE 

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T, 
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF 

120X120X6, WITH B = 50 BLOCKS AND NITER = 100. 

 

TABLE IV.  THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE 

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T, 
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF 

210X210X6, WITH B = 50 BLOCKS AND NITER = 100. 

 

 

 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 1245 38 4 522 564 1.000 1.000 

2 621 36 3 281 320 1.761 0.881 

3 318 36 3 188 227 2.482 0.827 

4 257 36 3 158 197 2.865 0.716 

5 238 36 3 131 170 3.324 0.665 

6 219 36 3 107 146 3.864 0.644 

7 206 36 3 92 131 4.321 0.617 

8 205 36 3 76 115 4.918 0.615 

12 183 36 3 60 96 5.921 0.493 

16 176 36 3 44 83 6.824 0.427 
20 155 36 3 28 67 8.211 0.411 

24 138 36 3 25 64 8.926 0.372 

28 125 36 3 21 60 9.412 0.336 

32 112 36 3 14 53 10.896 0.341 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 2721 119 13 1589 1721 1.000 1.000 

2 1292 113 13 822 948 1.818 0.909 

3 694 113 13 497 623 2.764 0.921 

4 482 113 13 347 473 3.641 0.910 

5 449 113 13 325 451 3.817 0.763 

6 408 113 13 243 369 4.663 0.777 

7 396 113 13 225 351 4.912 0.702 

8 385 113 13 167 293 5.873 0.734 

12 371 113 13 135 261 6.618 0.552 

16 372 113 13 97 223 7.738 0.484 

20 348 113 13 59 185 9.328 0.466 

24 322 113 13 37 163 10.611 0.442 

28 308 113 13 28 154 11.322 0.404 

32 284 113 13 12 138 12.589 0.393 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 13825 378 55 8086 8519 1.000 1.000 

2 6439 374 54 4189 4617.3 1.845 0.923 

3 3427 374 54 2662 3090 2.757 0.919 

4 2718 374 54 1909 2337 3.646 0.914 

5 2589 373 54 1548 1975 4.315 0.863 

6 2443 373 54 1286 1713 4.974 0.829 

7 2094 373 54 1124 1551 5.495 0.785 

8 2019 373 54 970 1398 6.184 0.773 

12 1924 373 54 562 989 8.616 0.718 
16 1918 373 54 396 823 10.352 0.647 

20 1710 373 54 278 705 12.1 0.605 

24 1621 373 54 230 656.6 12.984 0.541 

28 1597 373 54 163 591 14.448 0.516 

32 1481 373 54 132 558 15.264 0.477 
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Fig. 1. Speedup versus the number of processors for mesh 

70x70x6,120x120x6 and 210x210x6 

 
Fig. 2. Parallel efficiency versus the number of processors for mesh 

70x70x6, 120x120x6 and 210x210x6 

B. Numerical Efficiency 

The numerical efficiency includes the DD efficiency and 
convergence rate behavior. The DD efficiency includes the 
increase of floating point operations induced by grid overlap at 
interfaces and the CPU time variation generated by DD 
techniques. In Table 5, we listed the total CPU time 
distribution over various grid sizes and block numbers running 
with only one processor. In Table, the DD efficiency can be 
calculated, and the result as shown in Fig. 3. Note that the DD 
efficiency can be greater than one, even with one processor. 
Fig. 3 also shows that the optimum number of sub-domains, 

which maximizes the DD efficiency EDD, increases with the 
grid size. The convergence rate behavior, the ratio of the 
iteration number for the best sequential CPU time on one 
processor and the iteration number for the parallel CPU time 
on n processor, describes the increase in the number of 
iterations required by the parallel method to achieve a 
specified accuracy, as compared to the serial method. This 
increase is caused mainly by the deterioration in the rate of 
convergence with increasing number of processors and sub-
domains. Because the best serial algorithm is not known 
generally, we take the existing parallel program running on 
one processor to replace it. Now the problem is that how the 
decomposition strategy affects the convergence rate? The 
results are summarized in Table 6 and Fig. 4, and Table 7 and 
Fig. 5.  

It can be seen that the convergence rate decreases with 
increasing block number and increasing number of processors 
for given grid size. The larger the grid size, the higher the 
convergence rate.  

TABLE V. THE TOTAL COMPUTATIONAL TIME T FOR 100 ITERATIONS 

AS A FUNCTION OF VARIOUS BLOCK NUMBERS 

 

 B = 1 B = 8 B = 

16 

B = 

24 

B = 

50 

      

70x70x6 411 437 481 509 564 

120x120x6 572 641 987 1394 1721 

210x210x6 3493 4168 4928 6294 8519 

 

 
Fig. 3. The DD efficiency versus the number of sub-domains for various 

meshes. 

TABLE VI. THE NUMBER OF ITERATION TO ACHIEVE A GIVEN 

TOLERANCE OF 10
-3

 FOR A GRID OF 70X70X6 

 

N B = 1 B = 16 B = 50 

1 1796 1987 2129 

2 1796 2206 2346 

4 1796 2293 2492 

8 1796 2371 2524 
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12 1796 2396 2598 

16 1796 2417 2609 

28 1796 3214 4968 

32 1796 3486 5291 

 

TABLE VII. THE NUMBER OF ITERATION TO ACHIEVE A GIVEN 

TOLERANCE OF 10
-2

 FOR A GRID OF 120X120X6 

 

N B = 1 B = 16 B = 50 

1 2138 2313 2434 

2 2138 2329 2518 

4 2138 2348 2531 
8 2138 2461 2687 

12 2138 2461 2692 

16 2138 2518 2698 

28 2138 3763 5321 

32 2138 3775 5711 

 

 
Fig. 4. Convergence behavior with domain decomposition for mesh 70x70x6 

 

 
Fig. 5. Convergence behavior with domain decomposition for mesh 

120x120x6 

VI. CONCLUSION  

The results presented in this paper show the study on the 
parallel design and analysis for 3-D TEL ADI scheme with 
MPI. The objective is to present a design for the GCC for 
distributed computation, because they depend on empirical 
concern. The system allows a parallel collection of 
overlapping communication to avoid unnecessary 
synchronization and to have the impact of parallel 
convergence. In addition to the use of ease of our platform, 
compared to other approaches show negligible overhead with 
effective load scheduling over various mesh sizes, which 
produce the expected inherent speedups. It was also confirmed 
that flexible scheduling for the overlapping communication are 
important, and this is easy on with SPMD model as seen from 
the Tables and Figures. Computational results obtained have 
clearly shown the benefits of parallelization. The DD greatly 
influences the performance of the 3-DTEL ADI scheme on the 
parallel computers. On the basis of the current parallelization 
strategy, more sophisticated models can be attacked 
efficiently. Similarly, we are interested in improving our 
algorithms and testing implementations on additional 
architectures.  

VII. FUTURE WORK 

The description of 3-DTEL with the use of ADI method on 
GCC Cluster System with MPI employing the SPMD 
technique has been carried out. This paper allows a parallel 
collection of overlapping communication to avoid unnecessary 
synchronization and to have the impact of parallel 
convergence. We suggest future work to be carried out on the 
3-DTEL employing the used of Iterative Alternating Direction 
Implicit (IADE) method. Parallel implementation for the 
scheme could use the Input File Affinity Measure on a tightly 
coupled distributed environment with dynamic allocation of 
task with varying mesh sizes. 
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