
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

122 | P a g e
www.ijacsa.thesai.org

On the Parallel Design and Analysis for 3-D ADI

Telegraph Problem with MPI

Simon Uzezi Ewedafe

Department of Computing

The University of the West Indies,

Mona Kingston 7, Jamaica

Rio Hirowati Shariffudin

Institute of Mathematical Sciences

Universiti Malaya

Kuala Lumpur, Nigeria

Abstract—In this paper we describe the 3-D Telegraph

Equation (3-DTEL) with the use of Alternating Direction Implicit

(ADI) method on Geranium Cadcam Cluster (GCC) with

Message Passing Interface (MPI) parallel software. The

algorithm is presented by the use of Single Program Multiple

Data (SPMD) technique. The implementation is discussed by

means of Parallel Design and Analysis with the use of Domain

Decomposition (DD) strategy. The 3-DTEL with ADI scheme is

implemented on the GCC cluster, with an objective to evaluate

the overhead it introduces, with ability to exploit the inherent

parallelism of the computation. Results of the parallel

experiments are presented. The Speedup and Efficiency from the

experiments on different block sizes agree with the theoretical

analysis.

Keywords—3-DTEL; ADI; MPI; SPMD; DD; Parallel Design

I. INTRODUCTION

Parallel computing has greatly motivated the research
works on the parallel design and analysis of the 3-DTEL in
parallel cluster system. Cluster applications have more
processor cores to manage and exploit the computational
capacity of high-end machines providing effective and
efficient means of parallelism even as the challenges of
providing effective resources management grows. It is a
known fact that high capacity computing platform are
expensive, and are characterized by long-running, high
processor-count jobs. The performance of message-passing
programs depends on the parallel target machine, and the
parallel programming model to be applied to achieve
parallelism. In a cluster machines having large number of
processing units’ scalability becomes an important issue.
Many programs from scientific computing have a large
potential for parallelism that is exploited best in such a
programming model for mixed fast and data parallelism where
the parallelism can be structured in the form of concurrent
multi-processor tasks [21].

 Developing parallel applications have its own
challenges in the field of parallel computing. With reference to
[11], there are theoretical challenges such as task
decomposition, dependence analysis, and task scheduling.
Then they are practical challenges such as portability,
synchronization, and debugging. However, there exist an
alternative and cost effective way of achieving performance
through the use of loosely connected system of processors
with a local area network [3]. Hence, for a global task with
other processors relevant data needs to be passed from

processor to processor through a message-passing mechanism
[20, 15], since there is greater demand for computational speed
and the computations must be completed within reasonable
time period. A multi-processor task can be implemented on a
subset of processors, and one of the advantages is based on the
fact that for many message-passing machines communication
costs are affected by the number of participating processors.

Design and analysis for finite difference DD for 2-D heat
equation has been discussed in [23], and the parallelization for
3-DTEL on parallel virtual machine with DD [8] show
effective load scheduling over various mesh sizes, which
produce the expected inherent speedups. Parallel algorithms
have been implemented for the finite difference method by
[12], and [21, 13] use the discrete eigen functions method with
the AGE method on telegraph equation problem.

The theoretical properties of the 3-D ADI algorithm with
the parallel design approach employing SPMD model with DD
are promising, achieving good performance as to what was
done by [7] in practice can be challenging. There is a tradeoff
between the reduction of the time required for an inherently
sequential part of an algorithm, and an increase in the number
of the iterations required to converge [2]. Previous work on 3-
D ADI scheme did not consider the parallel design approach
on parallelism and improvement on scalability. To write
SPMD programs using one of the standard message-passing
software like MPI [13] requires the explicit administration of
processors with a large user group. In this paper, we present a
support for the implementation of parallel design and analysis
with the use of DD strategy. Our programming style allows the
application programmer to specify the program organization in
a clear and readable program code.

We presented a detailed study of using parallel design and
analysis on 3-DTEL, and solved by the use of ADI method on
a GCC cluster MPI. The SPMD model is employed with DD
to enhance overlapping communication with computation that
resulted in significant improved speedup, effectiveness, and
efficiency across varying mesh sizes as compared to [7].

Our results demonstrated the overlap communication with
computation, and the ability to arbitrary use of varying mesh
sizes distribution on GCC to reduce memory pressure while
preserving parallel efficiency. On the other hand, the
advantage of our platform is to have somewhat specification
mechanism through a static distribution, and an execution
implementation.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

123 | P a g e
www.ijacsa.thesai.org

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 introduces the model for the
3-DTEL and the 3-D ADI scheme. Section 4 introduces the
parallel design and analysis. Section 5 introduces the results of
several experiments, which illustrate and evaluate the
parallelization possible with our platform. Section 6 gives the
conclusion.

II. RELATED WORK

A work by [16] achieved configuration of MPI-based
message passing programs, and various other platforms for the
application of telegraph and heat equations have been done in
[7, 8]. Description of application aware job scheduler that
dynamically controls resource allocation among concurrently
executing jobs was done by [22]. A framework called
‘Gridway’ for adaptive execution of applications in Grids was
described by [14]. Parallelization by time decomposition was
first proposed by [18] with motivation to achieve parallel real-
time solutions, and even the importance of loop parallelism,
loop scheduling have been extensively studied [1]. The ADI
method for the Partial Differential Equations (PDE) proposed
by [19] has been widely used for solving algebraic systems
resulting from finite difference method analysis of PDE in
several scientific and engineering applications. Works on
parallel implementation of 2-D Telegraph problem on cluster
systems have been done in [10, 12].

In [12] the unconditional stability of the alternating
difference schemes has similarity to our scheme and shows
that the unconditional stability application is useful to its
speedup and efficiency as studied. Our implementation in the
GCC platform has several aspects that differentiate it from the
above. GCC is designed for application running on distributed
memory clusters, which can dynamically and statically
calculate partition sizes based on the run-time performance of
the application. We use an efficient algorithm with stability
which maps data using message passing over the GCC cluster.
We evaluated our system using experimental results from
speedup and efficiency for the system utilization. Our
approach is best suited to applications where data and
computations are uniformly distributed across processors.

III. THE MODEL PROBLEM

We consider the second order telegraph equation in 3-D:

 0
2

2

2

2

2

2

2

2


































z

v

y

v

x

v

t

v
a

t

v
 (3.1)

where a RC GL  , let zandyx  , be the grid

spacing in the x, y, z and t directions, where

mzyx /1 , m is a positive integer. We can solve

(3.1) by extending the 1-D simple implicit finite difference
method [21] of the telegraph equation to the above 3-D
telegraph equation, (3.1) becomes:

0

)(

2

)(

2

)(

2

2)(

2

2

1

1,,

1

,,

1

1,,

2

1

,1,

1

,,

1

,1,

2

1

,,1

1

,,

1

,,1

1

,,

1

,,

2

1

,,,,

1

,,






















































































z

vvv

y

vvv

x

vvv

t

vv
a

t

vvv

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

 (3.2)

although this simple implicit scheme is unconditionally
stable, therefore, the computational time is extremely huge.

A. ADI Method on 3-DTEL

We derive the ADI method for 3-DTEL of the simple
implicit finite difference method by using a general ADI
procedure [6] extended to (3.1). The ADI method is a well-
known method for solving the PDE. The main feature of ADI
is to sweep directions alternatively. In contrast to the standard
finite-difference formulation with only one iteration to
advance from the nth to (n + 1)th time step, the formulation of
the ADI method requires multilevel intermediate steps to
advance from the nth to (n + 1)th time step. Equation (3.2) can
be rewritten as:

02 1

,,1,,

1

,,

3

1









 



 n

kji

n

kjio

n

kji

m

m vCvCvAI (3.3)

where the operators of I, Ams, and the constants of Co, C1
are define as:

n

kji

n

kji vIv ,,,,  (3.4)

 n

kji

n

kji

n

kjix

n

kji vvvvA ,,1,,,,1,,1 2    (3.5)

 n

kji

n

kji

n

kjiy

n

kji vvvvA ,1,,,,1,,,2 2    (3.6)

 n

kji

n

kji

n

kjiz

n

kji vvvvA 1,,,,1,,,,3 2    (3.7)
















t

a

tt
Co

2)(

1

)(

1
22

 (3.8)




























t

a

tt

a

t
C

2)(

1

2)(

1
221 (3.9)

the constant of x , y and z are:

 














t

a

tx

b
x

2)(

1

)(22
 (3.10)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

124 | P a g e
www.ijacsa.thesai.org
















t

a

ty

b
y

2)(

1

)(22
 (3.11)
















t

a

ty

b
y

2)(

1

)(22
 (3.12)

TABLE I. THE ADI 3-DTELALGORITHM

and set

1

,,,,

(*)1

,, 2   n

kji

n

kji

n

kji vvv (3.13)

which is a prediction of
1

,,

n

kjiv by the extrapolation method.

Then splitting (3.3) by using an ADI procedure as in [17],
we get a set of recursion relations as follows:

)2(

)()(

1

,,1,,0

(*)1

,,32

)1(1

,,1









n

kji

n

kji

n

kji

n

kji

vCvC

vAAvAI
 (3.14)

(*)1

,,2

)1(1

,,

)2(1

,,2)(  n

kji

n

kji

n

kji vAvvAI (3.15)

(*)1

,,3

)2(1

,,

)3(1

,,3)(  n

kji

n

kji

n

kji vAvvAI (3.16)

where
)2(1

,,

)1(1

,, ,  n

kji

n

kji vv are the intermediate solutions and

the desired solution is
)3(1

,,

1

,,

  n

kji

n

kji vv . Finally, expanding A1,

A2 and A3 on the left side of (3.14) and (3.16), we get the 3-D
ADI algorithm as in Table 1.

IV. PARALLEL IMPLEMENTATION, DESIGN AND ANALYSIS

A. The Parallel Platform

 The Geranium Cadcam Cluster consist of 32 Intel
Pentium dual core processor at 1.73GHZ and 0.99GB RAM.
Communication is through a fast Ethernet of 100 MBits per
seconds running Linux, located at the University of Malaya.
The cluster performance has high memory bandwidth with a
message passing supported by MPI [13]. The program is
written in C and provides access to MPI through calling MPI
library routines. The platform contains more computations on
varying set of mesh sizes. Performance in the platform
concerns the resource assessment and code placement on
computing resources [5]. The 3-DTEL with ADI scheme is
implemented on the GCC cluster, with an objective to evaluate
the overhead it introduces with ability to exploit the inherent
parallelism of the computation. We observed the scalability
across the varying number of processors and mesh sizes, to
enable the speedup we need convergence in fewer than N
iterations.

B. Domain Decomposition

The parallelization of the computations is implemented by
means of grid partitioning technique. The computing domain
is decomposed into many blocks with reasonable geometries.
Along the block interfaces, auxiliary control volumes
containing the corresponding boundary values of the
neighboring block are introduced, so that the grids of
neighboring blocks are overlapped at the boundary. When the
domain is split, each block is given an I-D number by a
“master” task, which assigns these sub-domains to “slave”
tasks running in individual processors. In order to couple the
sub-domains’ calculations, the boundary data of neighboring
blocks have to be interchanged after each iteration. The
calculations in the sub-domains use the old values at the sub-
domains’ boundaries as boundary conditions. This may affect
the convergence rate; however, because the algorithm is
implicit, the blocks strategy can preserve nearly same accuracy
as the sequential program.

The DD is used to distribute data between different
processors; the static load balancing is used to maintain same
computational points for each processor. The partitioning and
load balancing is done in the pre-processing stage giving no
room for extra storage when the parallel program is executed.
Data parallelism originated the SPMD [17], thus, the finite
difference approximation used in this paper can be treated as
an SPMD problem. Same computation is performed for
multiple data sets, and the multiple data are different parts of
the overall grid.

C. Parallel ADI with MPI

We focus on computational domain partitions in
implementing the parallel 3-DTEL ADI scheme on GCC
platform. We need divide the dimensions into sub-domains
with no unique way of partitioning the domain of computation.
The case of making a balance between the implementation of
the algorithm and the communication efficiency is paramount
to balance. The partitioning considered is the orientation of
slices changing with the sweeps according to [4].

The ADI 3-DTEL Algorithm

Input = kjivv n

kji

n

kji ,,, 1

,,,, 

Output = kjivn

kji ,,1

,, 

Begin

 Sub-Iteration 1:

kji

vCvCvAA

vvv

n

kji

n

kjio

n

kji

n

jix

n

kjix

n

kjix

,,

)2()(

)21(

1

,,1,,

(*)1

,,32

)1(1

,1

)1(1

,,

)1(1

,,1















 

 Sub-Iteration 2:

kjivAv

vvv

n

kji

n

kji

n

kjiy

n

kjiy

n

kjiy

,,.

)21(

(*)1

,,2

)1(1

,,

)2(1

,1,

)2(1

,,

)2(1

,1,













 

 Sub-Iteration 3:

kjivAv

vvv

n

kji

n

kji

n

kjiz

n

kjiz

n

kjiz

,,.

)21(

(*)1

,,3

)2(1

,,

)3(1

1,,

)3(1

,,

)3(1

1,,













 

End

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

125 | P a g e
www.ijacsa.thesai.org

After x-sweeps, the orientation changes to the y or the z
direction. In this process each processor owns three data
domains, one for each direction. Implementing the parallel
algorithm for solving (3.1) is based on: indication of sweeping
direction for each sub-domain. Sweeping direction of each
sub-domain must be in opposite direction of its neighbors. For
example, we must use left right direction for odd sub-domains
and right left direction for even sub-domains. Updating start
node of each sub-domain with (3.14) and (3.16), each
processor of the parallel machine works only on its specific
portion of the grid and when processor needs information from
the nearest neighbor a message is passed through the MPI
message passing library. For the best parallel performance,
one would like to have optimal load balancing and as little
communication between processors as possible. Considering
load balancing first, one would like each processor to do
exactly the same amount of work, hence, each processor is not
idle. For the finite difference code, the basic computational
element usually is the node; it makes sense to partition the grid
such that each processor gets an equal number of nodes to
work on. The second criterion is that the amount of
communication between processors be made as small as
possible. To minimize communication, the program must
divide the domain in a way that minimizes the length of the
touching faces in the different sub-domains. The number of
processors that one processor has to communicate with also
contributes to additional communication time, because of the
latency penalty for starting the new message. At first step, we

divide the spatial computational domain to 321 PPPP  .

We can use the non-blocking message passing for this
communication stage to reduce computing time by allowing
work to be done while communication is in progress.

D. Load Balancing

With static load balancing, the computation time of parallel
subtasks should be relatively uniform across processors;
otherwise, some processors will be idle waiting for others to
finish their subtasks. Therefore, the domain decomposition
should be reasonably uniform. A better load balancing is
achieved with the pool of tasks strategy, which is often used in
master – slave programming [2]: the master task keeps track of
idle slaves in the distributed pool and sends out the next task
to the first available idle slave. With this strategy, the
processors are kept busy until there is no further task in the
pool. If the tasks vary in complexity, the most complex tasks
are sent out to the most powerful processor first. With this
strategy, the number of sub-domains should be relatively large
compared to the number of processors.

Otherwise, the slave solving the last sent block will force
others to wait for the completion of this task; this is especially
true if this processor happens to be the least powerful in the
distributed system. The block size should not be too small
either, since the overlap of nodes at the interfaces of the sub-
domains become significant. This results in a doubling of the
computations of some variables on the interfacial nodes,
leading to a reduced efficiency. Increasing the block number
also lengthens the execution time of the master program,
which leads to a reduced efficiency.

E. Speedup and Efficiency

A simple speedup analysis with reference to [2] produces
the following:

 ,
)1(KKNr

N


 (4.1)

where r is the ration of the time taken by coarse
propagation to fine propagation over the same time interval, K
is the number of iterations required for convergence, and
communication overhead is ignored. In the limit

,,0
K

N
r   therefore, the efficiency will be .

1

K
 The

algorithm for the scheme is performed on a distributed
memory system of p processors, assumes that each processors
initially stores n = N/p objects distributed over the entire
physical domain. In the first iteration of the algorithm, the
domain is decomposed into two sub-domains so that the
difference between the sums of the weight of the sub-domain
is as small as possible. Then the same process is applied to two
sub-domains in parallel, and process is repeated recursively,
for log p iteration. In other words, during iteration i,

1 logi p,  the p processors are group into
12 i

groups of

1/ 2ip 
processors each. At the beginning of the iteration, the

problem domain is already partitioned into
12i

sub-domains
and the objects in each sub-domain are stored in single group
of processors. At the end of the iteration, each processor group
is divided into two groups, and the corresponding sub-domain
is divided into two sub-groups with the object in one sub-
domain residing in one half the processors and the other
objects in the other sub-domain residing in the other half of
processor

V. RESULTS AND DISCUSSION

Consider the Telegraph Equation of the form:

 v
t

v

t

v

z

v

y

v

x

v

























2

2

22

2

2

2

 (5.1)

the boundary condition and initial condition posed are:

 0

100)1,,(

0)0,,(

100),1,(

0),0,(

100),,1(

0),,0(






























t

yxv

yxv

zxv

zxv

zyv

zyv

 (5.2)

 ,),,(xyzezyxv  (5.3)

A. Parallel Efficiency

The speedup and efficiency obtained for various sizes, for
70x70x6 to 210x210x6, are for various numbers of sub-
domains, for B = 50 are listed in Tables 2 – 4. In the Tables

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

126 | P a g e
www.ijacsa.thesai.org

we also listed the wall (elapsed) time for the master task, ,WT

(this is necessarily greater than the maximum wall time

returned by the slaves), the master CPU time, ,MT the

average slave computational time, ,SCT and the average slave

data communication time, ,SDT all in seconds. The speedup

and efficiency versus the number of processors are shown in
Fig. 1 and Fig. 2, respectively, with block number B as a
parameter.

The results in the Tables show that the parallel efficiency
increases with increasing grid size for given block number,
and decreases with the increasing block number for given grid
size. As the number of processors increase, though this leads
to a decrease in execution time, but a point is reached when
the increased processors will not have much impact on total
execution time. Hence, when the numbers of processors
increase, balancing the number of computational cells per
processors will become a difficult task due to significant load
imbalance. The gain in increasing execution time for certain
mess sizes is due to uneven distribution of the computational
cell, and the execution time has a very small change due to DD
influence on performance in parallel computation.

The total CPU time is composed of three parts: the CPU
time for the master task, the average slave CPU time for data
communication and the average slave CPU time for

computation, .SCSDM TTTT 

TABLE II. THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T,
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF

70X70X6, WITH B = 50 BLOCKS AND NITER = 100.

TABLE III. THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T,
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF

120X120X6, WITH B = 50 BLOCKS AND NITER = 100.

TABLE IV. THE WALL TIME TW, THE MASTER TIME TM, THE SLAVE

DATA TIME TSD, THE SLAVE COMPUTATIONAL TIME TSC, THE TOTAL TIME T,
THE PARALLEL SPEED-UP SPAR AND THE EFFICIENCY EPAR FOR A MESH OF

210X210X6, WITH B = 50 BLOCKS AND NITER = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 1245 38 4 522 564 1.000 1.000

2 621 36 3 281 320 1.761 0.881

3 318 36 3 188 227 2.482 0.827

4 257 36 3 158 197 2.865 0.716

5 238 36 3 131 170 3.324 0.665

6 219 36 3 107 146 3.864 0.644

7 206 36 3 92 131 4.321 0.617

8 205 36 3 76 115 4.918 0.615

12 183 36 3 60 96 5.921 0.493

16 176 36 3 44 83 6.824 0.427
20 155 36 3 28 67 8.211 0.411

24 138 36 3 25 64 8.926 0.372

28 125 36 3 21 60 9.412 0.336

32 112 36 3 14 53 10.896 0.341

N Tw Tm Tsd Tsc T Spar Epar

1 2721 119 13 1589 1721 1.000 1.000

2 1292 113 13 822 948 1.818 0.909

3 694 113 13 497 623 2.764 0.921

4 482 113 13 347 473 3.641 0.910

5 449 113 13 325 451 3.817 0.763

6 408 113 13 243 369 4.663 0.777

7 396 113 13 225 351 4.912 0.702

8 385 113 13 167 293 5.873 0.734

12 371 113 13 135 261 6.618 0.552

16 372 113 13 97 223 7.738 0.484

20 348 113 13 59 185 9.328 0.466

24 322 113 13 37 163 10.611 0.442

28 308 113 13 28 154 11.322 0.404

32 284 113 13 12 138 12.589 0.393

N Tw Tm Tsd Tsc T Spar Epar

1 13825 378 55 8086 8519 1.000 1.000

2 6439 374 54 4189 4617.3 1.845 0.923

3 3427 374 54 2662 3090 2.757 0.919

4 2718 374 54 1909 2337 3.646 0.914

5 2589 373 54 1548 1975 4.315 0.863

6 2443 373 54 1286 1713 4.974 0.829

7 2094 373 54 1124 1551 5.495 0.785

8 2019 373 54 970 1398 6.184 0.773

12 1924 373 54 562 989 8.616 0.718
16 1918 373 54 396 823 10.352 0.647

20 1710 373 54 278 705 12.1 0.605

24 1621 373 54 230 656.6 12.984 0.541

28 1597 373 54 163 591 14.448 0.516

32 1481 373 54 132 558 15.264 0.477

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

127 | P a g e
www.ijacsa.thesai.org

Fig. 1. Speedup versus the number of processors for mesh

70x70x6,120x120x6 and 210x210x6

Fig. 2. Parallel efficiency versus the number of processors for mesh

70x70x6, 120x120x6 and 210x210x6

B. Numerical Efficiency

The numerical efficiency includes the DD efficiency and
convergence rate behavior. The DD efficiency includes the
increase of floating point operations induced by grid overlap at
interfaces and the CPU time variation generated by DD
techniques. In Table 5, we listed the total CPU time
distribution over various grid sizes and block numbers running
with only one processor. In Table, the DD efficiency can be
calculated, and the result as shown in Fig. 3. Note that the DD
efficiency can be greater than one, even with one processor.
Fig. 3 also shows that the optimum number of sub-domains,

which maximizes the DD efficiency EDD, increases with the
grid size. The convergence rate behavior, the ratio of the
iteration number for the best sequential CPU time on one
processor and the iteration number for the parallel CPU time
on n processor, describes the increase in the number of
iterations required by the parallel method to achieve a
specified accuracy, as compared to the serial method. This
increase is caused mainly by the deterioration in the rate of
convergence with increasing number of processors and sub-
domains. Because the best serial algorithm is not known
generally, we take the existing parallel program running on
one processor to replace it. Now the problem is that how the
decomposition strategy affects the convergence rate? The
results are summarized in Table 6 and Fig. 4, and Table 7 and
Fig. 5.

It can be seen that the convergence rate decreases with
increasing block number and increasing number of processors
for given grid size. The larger the grid size, the higher the
convergence rate.

TABLE V. THE TOTAL COMPUTATIONAL TIME T FOR 100 ITERATIONS

AS A FUNCTION OF VARIOUS BLOCK NUMBERS

 B = 1 B = 8 B =

16

B =

24

B =

50

70x70x6 411 437 481 509 564

120x120x6 572 641 987 1394 1721

210x210x6 3493 4168 4928 6294 8519

Fig. 3. The DD efficiency versus the number of sub-domains for various

meshes.

TABLE VI. THE NUMBER OF ITERATION TO ACHIEVE A GIVEN

TOLERANCE OF 10
-3

 FOR A GRID OF 70X70X6

N B = 1 B = 16 B = 50

1 1796 1987 2129

2 1796 2206 2346

4 1796 2293 2492

8 1796 2371 2524

0

2

4

6

8

10

12

14

16

18

1 3 5 7 12 20 28

70x70x6
B=50

120x120x6,
B=50

210x210x6,
B=50

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 12 16 20 24 28 32

70x70x6,
B=50

120x120x6,
B=50

210x210x6,
B=50

0

0.2

0.4

0.6

0.8

1

1.2

1 8 16 24 50

70x70x6

120x120x6

210x210x6

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

128 | P a g e
www.ijacsa.thesai.org

12 1796 2396 2598

16 1796 2417 2609

28 1796 3214 4968

32 1796 3486 5291

TABLE VII. THE NUMBER OF ITERATION TO ACHIEVE A GIVEN

TOLERANCE OF 10
-2

 FOR A GRID OF 120X120X6

N B = 1 B = 16 B = 50

1 2138 2313 2434

2 2138 2329 2518

4 2138 2348 2531
8 2138 2461 2687

12 2138 2461 2692

16 2138 2518 2698

28 2138 3763 5321

32 2138 3775 5711

Fig. 4. Convergence behavior with domain decomposition for mesh 70x70x6

Fig. 5. Convergence behavior with domain decomposition for mesh

120x120x6

VI. CONCLUSION

The results presented in this paper show the study on the
parallel design and analysis for 3-D TEL ADI scheme with
MPI. The objective is to present a design for the GCC for
distributed computation, because they depend on empirical
concern. The system allows a parallel collection of
overlapping communication to avoid unnecessary
synchronization and to have the impact of parallel
convergence. In addition to the use of ease of our platform,
compared to other approaches show negligible overhead with
effective load scheduling over various mesh sizes, which
produce the expected inherent speedups. It was also confirmed
that flexible scheduling for the overlapping communication are
important, and this is easy on with SPMD model as seen from
the Tables and Figures. Computational results obtained have
clearly shown the benefits of parallelization. The DD greatly
influences the performance of the 3-DTEL ADI scheme on the
parallel computers. On the basis of the current parallelization
strategy, more sophisticated models can be attacked
efficiently. Similarly, we are interested in improving our
algorithms and testing implementations on additional
architectures.

VII. FUTURE WORK

The description of 3-DTEL with the use of ADI method on
GCC Cluster System with MPI employing the SPMD
technique has been carried out. This paper allows a parallel
collection of overlapping communication to avoid unnecessary
synchronization and to have the impact of parallel
convergence. We suggest future work to be carried out on the
3-DTEL employing the used of Iterative Alternating Direction
Implicit (IADE) method. Parallel implementation for the
scheme could use the Input File Affinity Measure on a tightly
coupled distributed environment with dynamic allocation of
task with varying mesh sizes.

REFERENCES

[1] J. Aguilar, E. Leiss, ‘Parallel Loop Scheduling Approaches for

Distributed and Shared Memory System’, Parallel Process Letter 15 (1 –
2), 2005, pp. 131 – 152

[2] E. Aubanel, ‘Scheduling of tasks in the parareal algorithm’ Parallel

Computing 37 (3), 2011, 172 – 182

[3] W. Barry, A. Michael, ‘Parallel Programming Techniques and
Application using Networked Workstation and Parallel Computers’

2003, Prentice Hall, New Jersy

[4] G. Baolai. On the Performance of Parallel Implementation of an ADI
Scheme for Parabolic PDEs on Shared and Distributed Memory. Shared

Hierarchical Research Computing Network, The University of Western
Ontario.

[5] D. Cyril, M. Fabrice, ‘Jacobi computation using mobile agent’ Int’l
Journal of Computer Science & Information Technologies, 1 (5), 2010,

392 – 401

[6] D.J Evans, B. Hassan, ‘Numerical Solution of the Telegraph Equation by
the AGE Method’, Int’l Journal of Computer Mathematics Vol. 80,

number 10, 2003, pp 1289 – 1297

[7] S. U. Ewedafe, H. S. Rio, ‘Parallelization of 2-D IADE-DY Scheme on
Geranium Cadcam Cluster for Heat Equation’ Int’l Jour. Of Advanced

Research in Artificial Intelligence, 2 (6), 2013, pp. 27 – 33

[8] S. U. Ewedafe, H. S. Rio, ‘Parallelization of 3-D ADI Scheme on
Telegraph Problem using Domain Decomposition with PVM’ Int’l Jour.

Of Applied Information Systems, 4 (11), 2012, pp. 12 – 24

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 28 32

B=1, 70x70x6

B=16,
70x70x6

B=50,
70x70x6

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16 28 32

B=1,
120x120x6

B=16,
120x120x6

B=50,
120x120x6

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

129 | P a g e
www.ijacsa.thesai.org

[9] S. U. Ewedafe, H. S. Rio, ‘Parallel Implementation of 2-D Telegraph

Equation on MPI/PVM Cluster’ Int’l Jour. of Parallel Programming, 39,
Issue 2, 2011, 202 – 231

[10] S. U. Ewedafe, H. S. Rio, ‘Armadillo Generation Distributed Systems &

Geranium Cadcam Cluster for solving 2-D Telegraph Equation’ Int’l
Jour. of Computer Mathematics, 88, Issue 3, 2011, 589 – 609

[11] N. Giacaman, O. Sinnen, ‘Parallel iterator for parallelizing object-

oriented applications’ Intl journal of parallel programming, 39 (2), 2011,
223 – 269, 2011.

[12] Y. Guang-Wei, Long-Jun S., Yu-Lin Z., ‘Unconditional Stability of

Parallel Alternating Difference Schemes for Semilinear parabolic
Systems’ Applied Mathematics and Computation 117, 2001, pp 267 –

283

[13] W. Groop, E. Lusk, A. Skjellum, ‘Using MPI, portable and parallel
programming with the message passing interface,’ 1999, 2

nd
 Ed.,

Cambridge MA, MIT Press

[14] E. Huedo, R. Montero, I. Llorente, ‘A Framework for Adaptive

Execution in Grids’ Software Practice & Experiences 34 (7), 2004, pp.
631 - 651

[15] K. Jaris, D.G. Alan, ‘A High-Performance Communication Service for

Parallel Computing on Distributed System’, Parallel Computing 29,
2003, pp 851 – 878

[16] L, Kale, S. Kumar, J. DeSouza, ‘A malleable-Job System for Time-

Shared Parallel Machines’ Proceedings of the second IEEE/ACM Int’l

Symposium on Cluster Computing, IEEE Computer Society, 2002,

Washington DC, U.S.A,

[17] H. Laurant, ‘A method for automatic placement of communications in
SPMD parallelization’ Parallel computing 27, 2001, 1655 – 1664

[18] J. L. Lions., Y. Maday, G. Turinki, ‘Parareal in time discretization of

PDE’ Comptes, rendus de lacadimie des sciences – series 1 –
mathematics 332 (7), 2011, 661 – 668

[19] D.W Peaceman, H.H Rachford, ‘The Numerical Solution of Parabolic

and Elliptic Differential Equations’ Journal of Soc. Indust. Applied
Math. 8 (1), 1955, pp 28 – 41

[20] Peizong L., Z. Kedem, ‘Automatic Data and Computation

Decomposition on Distributed Memory Parallel Computers’ ACM
Transactions on Programming Languages and Systems, vol. 24, number

1, 2002, pp 1 – 50

[21] T. Rauber, G. Runger, ‘A Transformation Approach to Derive Efficient

Parallel Implementations’, IEEE Transactions on Software Engineering,
26 (4), 2000, pp. 315 - 399

[22] J. Weissman, L. Rao, D. England, ‘Integrated Scheduling: The Best of

both Worlds’, Jour. Parallel & Distri. Computing 63 (6), 2003, pp. 631 -
651

[23] W. Zheng-Su, Z. Baolin, C. Guang-Nan, ‘Design and analysis for finite

difference DD for 2-D heat equation’, ICA3PP – 02, IEEE Computer
Society

