
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

22 | P a g e
www.ijacsa.thesai.org

Review on Aspect Oriented Programming

Heba A. Kurdi

Computer Science Department

Imam Muhammad Ibn Saud Islamic University

Riyadh, Saudi Arabia

Abstract—Aspect-oriented programming (AOP) has been

introduced as a potential programming approach for the

specification of nonfunctional component properties, such as

fault-tolerance, logging and exception handling. Such properties

are referred to as crosscutting concerns and represent critical

issues that conventional programming approaches could not

modularize effectively leading to a complex code. This paper

discusses AOP concept, the necessity that led to it, how it

provides better results in code quality and software development

efficiency, followed by stating challenges that developers and

researchers face when dealing with this approach. It has been

concluded that AOP is promising and deserves more attention

from developers and researchers. However, more systematic

evaluation studies should be conducted to better understand its
implications.

Keywords—Aspect Oriented Programming; software

engineering; AspectJ

I. INTRODUCTION

This A typical program code is composed of several distinct
components. Each of these components is responsible for
accomplishing a core function required by the system. Some
concerns, though, such as error handling, security and
synchronization, are important for the entire system and they
therefore crosscut multiple components. Implementing these
crosscutting concerns is considered to be a challenging issue
that conventional programming approaches, such as Object-
Oriented Programming (OOP) and Procedural-Oriented
Programming (POP), can not modularize very effectively. Lack
of code modularity usually results in a tangled and complex
code. As a result, Aspect-Oriented Programming (AOP) has
recently emerged as a promising new approach to handle this
issue. The term was coined by Gregor Kiczales in1997 [1] as a
complement to the OOP rather than as a replacement to it [2].

From the linguistic meaning of the word “aspect”, a general
idea of the technical meaning would arise. AOP is a
programming approach that aims to solve crosscutting concerns
throughout better modularization of the code. It enhances
system features such as modularity, readability and simplicity
by better handling of crosscutting concerns [3]. Based on this
definition, it is clear that AOP makes a clear distinction
between two types of concerns in the software development
process:

 Primary concern: represents real world components or
objects. In OOP, a class represents each of these
components.

 Crosscutting concerns: refers to a programme design
feature that is required by multiple software

components. Therefore, its implementation is scattered
and/or repeated among them, severely affecting code
modularity [4].

For instance, in a banking system, primary concerns include
customer and account management, statement generation,
transaction tracking … etc. These concerns are usually
implemented as procedures (operations), or classes in
conventional programming approaches, i.e. OOP and POP.
Examples of crosscutting concerns would include exception
handling, authentication and security aspects, which are usually
considered essential parts of many procedures or classes in
conventional approaches. Therefore, they are handled in
multiple locations within the same program, causing a drastic
decrease in the quality, readability and modularity of the
software [12]. Aspects are treated differently in AOP. They are
considered an extended version of the class with additional
features [5]. Figure 1 shows the central concepts in each of the
three programming approaches and how they are related to
each other.

Fig. 1. The relationship between POP, OOP and AOP

Even though an increasing number of programmers and
software engineers started adopting the AOP approach, a lot of
concerns and challenges are still hindering wider adoption [2].
Therefore, this paper reviews the sate-of-the-art in AOP and
sheds some light on its related issues, starting with its
terminologies and implementation approaches in section 2. The
needs that led to the introduction of AOP and its potential
benefits are presented in section 3. Section 4 then goes on to
provide an overview of previous works that conducted
evaluation studies of AOP. In section 5, possible threats and
challenges of AOP are discussed and, finally, section 6
provides the conclusion, summarizing the paper and spotting
some future research directions.

AOP
(aspects:

extended classes)

OOP
(classes)

POP
(operations only)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

23 | P a g e
www.ijacsa.thesai.org

II. AOP IMPLEMENTATION APPROACHES

Unlike traditional programming approaches AOP provides
explicit support for modularizing programs; rather than
scattering the code related to a non-functional requirement or a
concern throughout a program [19], developers can place it
within a separate segment [15]. This required introducing new
programming concepts and terminologies such as:

 Crosscutting concern: is a purpose that a program
wants to achieve. However, this purpose should be is
scattered among many classes or methods.

 Aspect: is a modularized implementation for a
crosscutting concern. It amalgamates the distributed
code that of a crosscutting concern in one module.

 Join point: is a well-defined position in a program, such
as throwing an exception or invoking a method.

 Advice: is a class of functions that can modify other
functions. It is applied at a given join point of a
program.

 Pointcut: is a general term for a set of joint points
whenever reached the corresponding advices will be
executed.

 Weaving: is the process in which an aspect is added
into an object. It can be executed in the compiling time
or during the running of the program [6].

There are two approaches for implementing AOP:

A programming language that has been developed
specifically for AOP, such as AspectJ: AspectJ
[22][23] is the first and most popular tool that AOP
developers use for creating software. It is an extension
for the Java programming language and uses a Java-
like syntax [13]. It is available for download as part of
Java software development kit (SDK) that supports it
from the official website. All Java programmes are
valid in AspectJ, in addition to a special extended
version of a class, which is called an aspect [17]. An
aspect contains all components of a regular class, as
well as some additional entities such as pointcuts and
advices [4]. AspectJ needs a special compiler to
generate Java byte code. The java class file generated
by AspectJ compiler has no difference compared to
general Java byte code files [6]. Figure 2 presents an
example of AOP in AspectJ.

 Techniques provided by already available programing
languages to supports aspect implementation:

 Many programming framework have released additions
to support ASP[18][20], such as .NET [8] and Spring.
Figure 3 illustrates an example of ASP in Spring AOP.

A detailed survey of AOP implementation techniques is
provided in [6].

III. AOP ADVANTAGES

According to Kiczales [1] the OOP and POP have many
programming problems that did not allow these approaches to

clearly capture some design elements which are important for
software implementation. Therefore, AOP presented itself as a
promising approach and as a solution for conventional
programming approaches problems. However, solutions
provided by AOP do not necessarily come in terms of lower
compilation time or less memory usage. Rather, according to
Laddad [9], using AOP for implementing software systems will
certainly enhance software quality in many ways including:

 Clear responsibilities for individual modules: AOP
offers better modularisation, by gathering the code that
deals with the same aspect in one module avoiding the
redundancy of crosscutting concerns. This also leads to
a better programming development process because
each developer could use his/her expertise with the
module he/she knows better.

 Consistent implementation: Unlike traditional
implementations of crosscutting concerns, which are
conspicuous in their inconsistency, AOP provides
consistent implementation by having each aspect
handled once.

 Improved reusability: AOP isolates core concerns from
the crosscutting ones, enabling more mixing and
matching, and therefore improving the overall
reusability in both modules. In contrast, traditional
methods do not have this kind of separation between
concerns.

 Improved skill transfer: The concepts of AOP are
reusable and transferable. Therefore, developers
training time and cost will be minimised even if they
need to learn more than one language. This is because
core concerns and design patterns are universal.
However, this is not the situation in other frameworks,
where developers have to learn from the beginning
each time, wasting considerable time and money on
training.

 System-wide policy enforcement: AOP allows
programmers to enforce a variety of contracts and
provide guidance in following “best” practices by
creating reusable aspects.

 Logging-fortified quality assurance: The disability of
replicating a bug is one of the major disappointments
for traditional methods’ developers, because it is such a
ponderous process and thus barely used. On the other
hand, AOP enables quality-assurance persons to attach
the bug paper with its log, easing the reproduction of
the behaviour by the developer.

 Better simulation of the real world through virtual
mock objects: Software quality testing is enhanced in
AOP application by using mock objects. Some
scenarios often are not tested because of their
complexity that requires an effort to simulate faults
such as a network failure. AOP makes the difficult and
cumbersome testing process easier without the need to
compromise the core design for testability.

 Nonintrusive what-if analysis: Dissimilar to non-AOP
approaches, AOP does not waste time and space by

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

24 | P a g e
www.ijacsa.thesai.org

checking whether functionality is needed by running
what-if analysis every time before changing the system

behaviour.

Fig. 2. An Aspect for papering unhandled exception in AspectJ [7]

Fig. 3. An Aspect for papering unhandled exception in Spring AOP [7].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

25 | P a g e
www.ijacsa.thesai.org

IV. EVALUATION APPROACHES

Due to the potential benefits of AOP in software
engineering and the tremendous advantages claimed by its
supports, many studies have emerged to systematically
evaluate the AOP approach and compare it to conventional
programming approaches.

Ali et al. [10] have made a systemic review of comparative
evidence of aspect-oriented programming. They discussed, in
detail, the benefits and limitations of AOP based on the
following criteria: performance, code size, modularity,
evolvability, cognition and language mechanism. Each
criterion was studied and was concluded with one of four
possible results:

 Positive – when they note enhancement of the criterion
with AOP compared to non-AOP implementations.

 Negative – when the implications of introducing
aspects are not advantageous in the context.

 Insignificant – when AOP solution does not produce
better results than earlier solutions, or there is no
noteworthy evidence of enhancement.

 Mixed – when the study concludes with a combination
of above three statement types and does not deliver any
aggregated statement about the effect that AOP had on
the studied characteristic.

The outcomes after evaluation each criteria are as follows:

 Performance: The results were Mixed results having
AOP generating positive outcomes in regards to
execution performance by improved response time and
minimising the usage of both memory and hardware
costs. However, the results were Insignificant when
AOP was tested in Unix OS to evaluate runtime cost.
The result of using AOP for optimising a network
simulator was the same. This outcome made some
researchers question if AOP can influence the
performance.

 Code size: From the beginning, the founder of AOP,
Kiczales [1], promised that his approach would create a
tangible reduction in the size of code because of the
separation of crosscutting concerns as mentioned in
earlier sections. According to the research finding in
this matter, there was a notable reduction in code size
by approximately 40%, which means that there was a
reduction in the line of code (LoC) as well. In addition,
there was a reduction in certain types of codes such as
exception handling. However, in some particular cases,
AOP did not remarkable affect the LoC numbers. This
led to the conclusion that AOP is actually effective in
minimising the code size positively most of the time. If
not, it will be more or less the same as non-AOP
approaches.

 Modularity: Modularity results were positive,
especially in Separation of Concerns (SoC). However,
there was a lack of evidence in some studies, which
suggests the need of more research in this area.

 Evolvability: Evolvablitiy means AOP’s ability to
adapt to the continuous change in the user requirements
and operational environment. Results were positive for
this matter.

 Cognition: The cognitive outcomes were measured
through looking at the development time and
understandability, which is the degree to which
developers/evaluators understand a system or
component. Obtained results were insignificant so
three studies were reviewed but results are
not encouraging

 Language mechanism: The way that AOP deals with
the code is certainly different from traditional
approaches. Exception handling was taken as an
example and compered in both OOP and AOP
approaches. Results found were positive.

To evaluate the effectiveness of AOP in separation of
concerns, Tsang et al. [14] applied a code quality metrics suite,
developed in [18] to compare between real systems developed
based on AOP and OOP in terms of system properties. They
used the amount of reduction in coupling and cohesion values
of the CK metrics as performance measures. The results
showed better modularity of AOP systems over OOP systems,

Madeyski and Szala [4] have also made an empirical study
of the impact of AOP on software development efficiency and
design quality. Although their study has an obvious weakness,
which is the small sample size (three programmers, only one of
which is using AOP while the other two used OOP), it does
gives some research background for future studies. They asked
the programmers to develop a web-based application for
manuscript submission and reviewing. The goals of the study
include:

 Evaluating the AOP impact on code quality.

 Evaluating the AOP impact on software development
efficiency.

The researchers concluded their study by stating that the
impact of AOP in software development efficiency was not
confirmed. This is firstly because of the disability of applying
statistical tests to analyze it due to the limited number of
participants, as mentioned earlier. Secondly, it is because the
statistical tests that they could execute for internal metrics
showed insignificant results. That was also the case for the
AOP impact on code quality: according to the researcher, the
only positive impact in code quality was modularity.

Recently, Boticki et al. [2] investigated the educational
benefits of introducing AOP paradigm into
programming courses for undergraduates software engineering
students. The study discusses how using the AOP paradigm,
affects students' programs, their exam results, and their overall
perception of the theoretically claimed benefits of AOP. The
research methodology consisted of analyzing of students’
programs, administering surveys, and collecting exam results.
The results showed that the use of AOP as a supplement to
object-oriented programming enhances the productivity of the
students and leads to increased understanding of theoretical
concepts.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Boticki,%20I..QT.&newsearch=true

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

26 | P a g e
www.ijacsa.thesai.org

V. CHALLENGES

So far, AOP has not gained wide adoptions. In addition to
the possible reason related to it still being in infancy stage,
some other disadvantages and challenges associated with it
were highlighted in the following studies.

According to Laddad [9] there are two common oppositions
to AOP, the first being that it makes the debugging process
much harder. The second opposition is the fact that crosscutting
modules implementation requires understanding the core
module implementation details and vice versa. This is not the
case in the OOP approach, though, where understanding is only
required of the exposed abstraction between two classes.
Moreover, Luca and Depsi [11] have discussed the challenges
that AOP faces as a new programming approach in the
following points:

 Lack of expertise: The community members of AOP
are approximately only 2000 programmers worldwide,
and only 10-15% of them are experienced enough to
use AOP in an OOP environment.

 Concerns: Although AOP came to provide and to
deliver a better separation of concerns (SoC), in reality,
when a system reaches a certain degree of complexity,
such separation is very hard to achieve, if not
impossible.

 Standardisation: AOP introduced new dimensions and
standards to programming. This, in general, creates
complexity and possible resistance, but it was also the
case when the OOP was introduced after the POP,
which indicates that this is a normal scenario.

VI. CONCLUSION

AOP is a programming approach that aims to solve
crosscutting concerns by offering better modularization of the
code. This paper provided a brief overview of the state-of-the-
art in AOP, starting with its definitions and example usages. It
then went on to highlight the needs that led to the introduction
of AOP. These can be summarized as the desperate demand for
improved software quality. After that, an overview of previous
works that have conducted evaluation studies of AOP were
presented. The studies discussed the benefits and limitations of
AOP based on performance, code size, modularity,
evolvability, cognition, language mechanism and efficiency.

However, obtained results could not prove or disprove the
effectiveness of AOP, except in two measures: language
mechanisms and code size. AOP showed positive outcomes in
these two measures. Possible threats and challenges associated
with AOP were also discussed. They included making the
debugging process harder and requiring more understanding of
the core module and crosscutting concerns implementation. All
these issues were not presented in conventional programming
approaches.

All of the referenced research had a common conclusion,
declaring the need of further in-depth studies and more
research of AOP and its impact, which shows that this
approach is still relatively new and unpopular. However, the
developers who used this approach feel very confident and they

talk assertively about its enrichment to software quality. The
empirical studies, though, had another thing to say, and it was
not always in favor of AOP.

To conclude, it has been found that AOP is a very
interesting topic that needs to take its righteous place in the
programming community. Only then could researchers study
AOP effectively and efficiently.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.Videira Lopes, J.-
M. Loingtier, J. Irwin, “Aspect Oriented Programming”, In Proc. Europ.

Conf. on Object-Oriented Prog.(ECOOP), Finnland, Springer Verlag
LNCS 1241, June 1997.

[2] I. Boticki, M. Katic, S. Martin, “Exploring the Educational Benefits of
Introducing Aspect-Oriented Programming Into a Programming

Course,” , IEEE Transactions on Education, vol.56, no.2, pp.217-226,
May 2013.

[3] T. Zukai, P. Zhiyong, “Survey of Aspect-Oriented Programming

Language , Journal of Frontiers of Computer Science and Technology,
2010, vol.4, no.1, pp 1-19.

[4] L. Madeyski, L. Szala, “Impact of aspect-oriented programming on

software development efficiency and design quality: an empirical
study,” IET Software, 2007 , vol. 1, no.5, pp. 180-187.

[5] J. Viega, J. Vuas, “Can aspect-oriented programming lead to more

reliable software?,” IEEE Software, 2000, vol.17, no.6, pp. 19-21.

[6] D. Zhengyan, “Aspect Oriented Programming Technology and the
Strategy of Its Implementation,” In Proceedings of International

Conference on Intelligence Science and Information Engineering
(ISIE), 2011, pp.457,460, 20-21.

[7] M. Kersten, AOP@Work: AOP tools comparison, Part 1, accessed

[26/8/2013] [online] available:
http://www.ibm.com/developerworks/library/j-aopwork1/

[8] H. Bing, C. Jiaxing G. Jianye, “An Approach to Implement AOP
Framework Under .NET Platform, Journal of Computer and

Modernization,” 2009, vol.11.

[9] R. Laddad, “Aspect-oriented programming will improve quality,” IEEE
Software, 2003, vol.20, no. 6, pp. 90-91.

[10] M. Ali, M. Babar, L. Chen, K. Stol, “A systematic review of

comparative evidence of aspect-oriented programming,” Information and
Software Technology, 2010, vol.52, no.9, pp. 871-887.

[11] L. Luca, I. Despi, “Aspect Oriented Programming Challenges,” Anale

Seria Informatica, 2005.vol. 2, no. 1, pp. 65-70.

[12] R. D. Dechow (2005), “Advanced Separation of Concerns and the
Compatibility of Aspect- Orientation. accessed [26/8/2013] [online]

[13] http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/29757/Dec

howDouglasR2005.pdf?sequence=1

[14] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,W. G.

Griswold, “Getting Started with AspectJ“, CACM, 2001, vol. 44, no. 10.

[15] S.L. Tsang, S. Clarke, E.L.A. Baniassad, “An evaluation of aspect-
oriented programming for Java-based real-time systems development,”

In Proceedings of the International Symposium of Object-Oriented
Real-Time Distributed Computing ISORC, 2004, Vienna, Austria, pp.

291–300.

[16] K .Lieberherr, D. Orleans, J. Ovlinger, “Aspect-oriented programming
with adaptive methods,” ACM Communication, 2001, vol. 44, no. 10, pp

39-41.

[17] T. Xie, J. Zhao, “A framework and tool supports for generating test
inputs of AspectJ programs,” In Proceedings of AOSD, 2006, pp. 190–

201,

[18] A. Colyer , A. Clement , G. Harley, M. Webster, Eclipse AspectJ:
Aspect-Oriented Programming With AspectJ and the Eclipse AspectJ

Development Tools. Addison-Wesley pp.504, 2004.

[19] S.R. Chidamber, C.F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transaction on Software Engineering, 1994, vol. 20, no.

6, pp. 476–493.

http://www.ibm.com/developerworks/library/j-aopwork1/#author1
http://www.ibm.com/developerworks/library/j-aopwork1/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

27 | P a g e
www.ijacsa.thesai.org

[20] E. M. Novikov, “An approach to implementation of aspect-oriented

programming for C,” Programming and Computer Software,
2013, vol.39, no. 4, pp 194-206.

[21] E. M. Novikov, “One approach to aspect-oriented programming
implementation for the C programming language, Proc. of the 5th

Spring/Summer Young Researchers’ Colloquium on Software
Engineering, Yekaterinburg, 2011, pp. 74–81.

[22] G. Kiezales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G.

Griswold, “An overview of AspectJ,” In Proceedings of the 15th

European Conference on Object-Oriented Programming (ECOOP’01),

2001, pp. 327–353.

[23] AspectJ: an aspect-oriented extension to

Java. http://www.eclipse.org/aspectj/doc/released/progguide/language.ht
ml

[24] Introduction to

AspectJ. http://eclipse.org/aspectj/doc/released/progguide/starting-
aspectj.html

http://link.springer.com/search?facet-author=%22E.+M.+Novikov%22
http://link.springer.com/journal/11086
http://link.springer.com/journal/11086/39/4/page/1
http://link.springer.com/search?facet-author=%22E.+M.+Novikov%22

