
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

115 | P a g e

www.ijacsa.thesai.org

A DIY Approach to Uni-Temporal Database

Implementation *

Haitao Yang, Fei Xu, Lating Xia

GuangDong Construction Information Center (GDCIC)

Guangzhou, China

Abstract—when historical versions of data are concerned for a

MIS (Management Information System) we naturally might

resort to temporal database products. These bi-temporal

products, however, are often extravagant and not easily mastered

to most of MIS practitioners. Hence we present a plain DIY (do it

yourself) solution, the Audit & Change Logs Mechanism-based

approach--ACLM, to meet the uni-temporal requirement from

restoring historical versions of data. With ACLM programmers

can code SQL scripts on demand to trace and replay any

snapshot of historical data version via RDBMS built-in functions,

they need not to shift away from their usual way of coding stored

procedures for data maintenance. Besides, the ACLM approach

is compatible with meta-data change, and its additive overhead

was instantiated imperceptible for throughputs of routine access

with a typical scenario.

Keywords—DIY solution; recurrence; historical snapshot; uni-

temporal database; MIS

I. INTRODUCTION

Recent years’ practices in developing web creditable MIS
for numerous users made us all realized that maintaining
enormous records of users-oriented data are an unbearable task
to anybody (individuals or organs). Regarding that it is users or
clients’ own right and responsibility to keep their delivered data
valid and complete, we were looking forward to an interactive
and sharing pattern that all users involved should honestly
maintain their information themselves, which is perhaps the
only workable approach. Then, there comes the risk of abuse of
self-maintenance right. To prevent such a risk we have no
feasible solutions of instant response but can build a final line
of defense by an ex post facto measure that is, logging all
behaviors of maintaining data and offering a facility to restore
or reveal any historical version of concerned data and the
responsible manipulators. Herewith we get to the field of uni-
temporal database application, and might assume products of
temporal DBMS (in short, tDBMS) as a matter of course.
tDBMS products, however, are bi-temporally-oriented, and not
familiar to most of practitioners in ordinary MISs. Even worse,
such products often offer extra functions well beyond need and
bring with much greater complexity and higher cost than
expected. Upon these considerations, we turned to explore an
exercisable and methodological approach (that why we refer to
it as DIY -- do it yourself).

II. RELATED WORK AND OUR DIRECTION

In realistic applications, data recorded in databases all have
certain time properties either explicit or implicit, at least those
indicate when the data are valid and when they are recorded [6]

— the former is a time property with data semantics, classified
as the valid-time property, and the latter is a time property with
data operation, categorized into the transaction-time (time of
manipulating data) property. Contemporary RDBMS products
have granted us the ability to straightly store and manage all
relational data including temporal data in the same database,
notice that data’s time property is also a datum. To certain
extent, temporal data is an issue of data versions that concerns
with data recordation at different times. It is not feasible for all
time versions of data are treated in equivalence, since
eventually the ever-increasing amount of historical versions
will become overwhelming on all aspects of data storage and
usage. Approaching such a problem and its related, a study of
temporal DBMS has been developed for decades [1]. Despite
lots of research on tDBMS, practical tDBMS products are rare,
and even more, most of them are in fact an extension of
traditional RDBMS

[11], in general developing a tDBMS

application is still a tough and often individualized task for a
MIS (Management Information System) developer team.

In usual practices of developing MIS, we normally design
and develop a database application around usage of the newest
data version, because in default, people much concern with the
current status rather than those historical. If no requirement of
recalling a historical “snapshot” (we use this term to refer to a
picture of data at a historical time), historical statuses of data
will be updated or overlaid by the newest one, and everything
is just simple as usual. But if the responsibilities of conducting
data change is of the concern, e.g., they must be audited or
traced afterwards (a lot of crucial MIS applications have this
requirement), in which historical statuses of data need to be
carefully and explicitly addressed, we actually step in the scope
of tDBMS. Up to now, tDBMS approaches in mainstream, such
as the famous ATSQL2 proposal are conducted in a direction of
treating time properties of data as an abstract or super attribute
with special disposal [10], and they are based on relational data
processing, of which the most concerned are often associated
with their special temporal data type, temporal manipulation on
table or column-level, and dedicated temporal relation
constraints etc. In these practices, accordingly, special time
attribute-oriented extensions to SQL must be introduced to and
well supported by tDBMS. Despite temporal SQL-compliant
research has been very comprehensive these days, however, the
related SQL-level support mechanism, temporal database
model theories, etc., are sophisticated and too much for most of
applications just involved with some plain temporal
requirements as in ordinary MIS. Most of MIS practitioners
would rather treat temporal parts of MIS applications in a
similar way as in ordinary DBMS programming practice, e.g.,

* This work is sponsored by Guang-Dong Construction Information Center.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

116 | P a g e

www.ijacsa.thesai.org

assigning each intended time property of data into a concrete
data attribute, and so on. Thereby, we prefer a system mode of
“traditional RDBMS” + “software”. Here ,the “software” could
be programs as a part of the hosting application itself, or in an
embedded type as a third-product software product (often as a
middleware), e.g., the well-known TimeDB [12] is a RDBMS-
based embedded middleware for temporal data applications,
TimeDB runs as a frontend to the hosting RDBMS (e.g.,
Oracle) and supports the temporal query language ATSQL2,
where finally ATSQL2 statements are compiled by TimeDB
into (sequences of) SQL-92 statements which are executed by
the underlying RDBMS backend. The pure temporal disposal
part (software) of TimeDB is to interface between the temporal
usages (delivered in ATSQL2 statements by users) and SQL-92
executions.

As we know, tDBMS products such as TimeDB often store
the transaction-time of data in the same data tuple. Such a
device is inefficient for OLTP (On-Line Transaction
Processing), considering that if data items are frequently
updated, the data table where these items reside will soon be
overwhelmed by historical versions of data, which we figured
as a so-called 99 to 1 % phenomenon, i.e., 99% (symbolizing
most) data records are for past statuses while 1% (symbolizing
a little proportion) for the current or latest status, while most of
accesses to the data table are just for the 1% records. On this
aspect, we believe that many MIS practitioners like us would
rather try an on-hand and less costly scheme than take an
abstruse academic approach or purchase an often too costly or
heavy tDBMS product.

For generality and practicability, basing on the above
consideration and rules of engineering we believe that a good
approach for the issue discussed should be a methodological
one with ease of use or duplication, in the other word, a DIY
(Do It Yourself) type, and which should adopt an outline
pattern of separating historical versions of data from the current
one, and provide guidelines for designing fundamental
maintenance, management and utility services of data. Along
this direction, we start our approach by introducing several key
concepts in a simple but typical example about temporal data
recordation:

P1 = (“John”, 2000, interval_1) | a data record with its valid
time indicating John has a salary of two thousands dollar.

P2 = (P1, 11/5/2012 4:44 PM) | the above data record P1
was created or updated at 11/5/2012 4:44 PM.

The statement from P1 is true only for its valid time period
interval_1, but what from P2 that recorded a fact is always true.
The valid period interval_1 can be definite as [time1, time2], or
indefinite as [time1, unknown] that spans from time1 until
something happens (e.g., John’s salary is changed or he is
dismissed, etc.) when the unknown becomes a certain value.
Generally we are not likely to maintain valid time properties
via an automatic mechanism since they are associated with
concrete semantics of the data they modify, as in the above
simple example, when and how to make the unknown time
known is up to the intelligence of realizing the corresponding
event and its relevancy; but it is different with transaction time
properties since they simply denote a data manipulation event
that can be monitored via certain DBMS built-in mechanisms.

We doubt in nature there is any universal automatic scheme to
cope well with storage, management and usage of valid time
property of data, despite lots of techniques on related issues. In
the other side, for a real relation object its valid time attribute
and its other attributes are all in an equal position with respect
to relational data theory and application semantics, thus they
could be and should be treated equally if convenient.

Further, we clarify three key facts which are often ignored:
1) the valid-time property of data virtually can only be
actively determined by who understanding the data meaning,
perhaps an intelligent software can do this, but developing an
intelligent software is far beyond the scope of applied tDBMS
research; 2) for web data applications, the responsibility audit
about data manipulation could not be done within DBMS since
conventionally different web users share a common DBMS
account; 3) data structure changes cannot be excluded in real
applications, for instance, adding or retiring a field in a data
table (in practices, a relation is often instantiated as a table of
records, an attribute as a field of record in the table) for one or
other reason is allowable.

Accordingly, we have three keynotes for a feasible tDBMS
implementation: (1) the valid-time property of data should be
considered in the context of data application; (2) the
responsibility audit of data manipulation needs participation
from higher layers of application outside DBMS; (3) a good
implementation mechanism for tDBMS should be compatible
with ordinary structure change of data tables. Following these
guidelines, towards a generic design scheme for tDBMS-
related MIS applications we focus on the transaction-time
property of data (so we call this approach as of the uni-
temporal database implementation) and treat it as a common
attribute [9], this is contrasted with the nowadays so-called
“bitemporal database” [11], i.e., a general temporal database.

III. V+A FRAME FOR TDBMS APPLICATIONS

Along the above decided direction of investigation, the
underlying thing is to set up a software frame for tDBMS
applications.

Firstly, concerning temporal evolvement of data content we
noticed two main disposals of transaction-time of data: (1)
using self-contained temporal recordation of data manipulation,
often in a vitae form, i.e., each maintenance manipulation on a
data item should append its execution time to all data records
changed, there is no need for additional logging mechanism;
(2) devising dedicated temporal logging mechanism for
recording data manipulation activities, which notes down the
transaction-time in a log separate from the data table.

Secondly, for the sake of practicability we shall take into
account a common phenomenon of meta-data change —
change to the composition of data table’s PK (primary key),
such as using different component fields or altering the data
type of some component fields — which was often ignored by
most of tDBMS approaches.

Thirdly, Application requirements on storing, managing,
and hereby using time properties of data are versatile, but for
usual cases of MIS they can be classified into two types: the
time property that is used frequently or routinely should be
accessed easily, whereas the others without routine usage can

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

117 | P a g e

www.ijacsa.thesai.org

do with less convenience of access for a much lower cost of
implementation.

 Accordingly, we proposed the Vita + Audit (in short, V+A)
frame. The kernel of V+A frame consists of DRB (direct-
retrieval base) + ACLM (audit & change logging mechanism).
DRB is used to store usual data content, i.e., current-status data
and temporal recordation in a vita form for direct accesses of
routine transactions. Contrasting with DRB ordinary services
for direct content access, ACLM is for dedicated audit accesses
regarding data manipulations with transaction time — it keeps
trace of each activity of data manipulation, memorizes into the
change log the data snapshot of the data version just before the
data manipulation exerts on DRB each time, and at the same
time inserts into the audit log a record about what kind of data
manipulation and who makes that manipulation. Under ACLM
we should not miss any historical version of data being audited
though we could not view directly its content in a single SQL
manipulation.

In general, data query operations need not being logged in
the audit log except for applications with extremely high safety
demand since they do not create any new version of data,
neither content of an insert operation needs recordation since it
has no previous version. But the insert operation itself shall be
recorded in the audit log in order to restore historical versions
of data table before the operation timestamp. One main usage
of the audit log is to record the responsible subjects of data
maintenance – the actual operators from client end (terminal
users) instead of those common DBMS accounts on the web
data layer. In convention of software industries, user identity
certification for web applications is fulfilled before calling
functions of web data layer, and normal accesses to a web
DBMS are requested via some shared DBMS account. To log
the identity of a user (who instructed DBMS to execute a data
manipulation) into a record of the audit log, the web user
certification information should be passed into a corresponding
inner procedure of the web DBMS. Manipulation of changing
data content (Update, Delete, or iNsert) and its recordation in
the audit and change logs should be treated within a single
DBMS transaction as an atomic action (either both succeeded
or anything they did will be withdrawn completely afterwards).
Such transactions shall be coherently fulfilled through a stored
procedure of DBMS script on the intermediate layer.

A. Audit Log

For each application the audit log is unitary, it is used in a
way similar to keeping accounts of any change or comment on
any data record of DRB: (1) recording any SQL-update, delete,
and insert manipulation; and (2) logging any responsible
comment on a data snapshot. The former is oriented to generic
syntactic audit while the latter is about important semantic
audit. The audit log in ACLM is application-oriented, i.e., all
data tables from the same application share a unitary audit log.
The structure of the audit log is defined as relation Adt_log
described in Table I (data type in this paper are all given as in
Oracle DBMS). Complementarily, a PK specification defined
as relation PK_spec in Table II is introduced for all involved
versions of PK structure of each data table from the same
application, where one row of specification is for a member
attribute of a PK.

TABLE I. AUDIT LOG (RELATION ADT_LOG)

Seq. Attribute name Data type Remark

1 Audit_ID Varchar(32) The PK attribute

2 D_table_name Varchar(32)

3 D_key_value Varchar2(128) Convert to String

4 timestamp date Time and day

5 comments Varchar2(512)

6 Operation_type Char(1) C/D/U/N

7 Operator_id Varchar(20)

8 signature Varchar(172) Sha1RSA

TABLE II. PK SPECIFICATION (RELATION PK_SPEC)

Seq. Attribute name Description Data type

1 D_table_name Be referred in Table I Varchar(30)

2 PK_attribute_name PK member attribute Varchar(512)

3 PK_attribute_seq
Sequence number of

this member attribute
Integer>=0

4 Struct_Valid_S_time
When this PK structure

became valid
Date

Further explanation of the audit log’s definition and related
usage are detailed as follows:

1) The basic design of the audit log is applied directly to

data tables with a single attribute PK (unitary PK). In relation

Adt_log, attributes D_table_name is used to store the name of

the data table being audited, D_key_value is used to store the

PK value of the data record being audited. As to data tables

without a unitary PK, more additive disposal is needed, see

later in section IV. In relation PK_spec, PK_attribute_seq=0 is

corresponding for unitary PK cases, while PK_attribute_seq>0

for non-unitary PK cases.

2) In fact, all MISs should know the PK composition of

their data tables via something like PK_spec in advance of

executing data maintenance. With PK_spec we need not

include PK_attribute_name in Adt_log, which can prevent a

transition dependency <D_table_name, PK_attribute_name>

occurs in Adt_log.

3) To cope with meta-data changes, Struct_Valid_S_time

attribute of relation PK_spec is set to indicate the start time

that a version of PK composition became valid. The expired

time of a valid PK composition is given subsequently by a next

value of Struct_Valid_S_time in sequences for the same data

table.

4) Attribute Operation_type has a set of basic values {D

(Delete), U (Update), N (iNsert)} and an extended value C

(Comment). Attribute Comment is used to record any

responsible literal comment (including endorsement) on the

data record being audited, it is left empty (assigned a null

value) when Operation_type<>C. Value usages of attribute

Comment can be extended and further categorized if needed in

applications, e.g., classified into Censor and Verification, etc.

5) Attribute Timestamp is used to note down the time when

the current audit record was created. To avoid ambiguity it is

stipulated that the time of a web server’s clock be adopted, and

relevantly-logged data changes take effect just after the instant

of Timestamp.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

118 | P a g e

www.ijacsa.thesai.org

6) Signature is for storing the result of RSA calculation of

Hash value of objects being signed by terminal users with their

private key [8, 3]. A signed object consists of all content

attributes (except maintenance and auxiliary attributes) of the

data record under audit, and attributes from seq. 1 to 7 in

Adt_log. The Hash value of a signed object is computed on the

concatenated contents (all converted into the string type) of

each involved attribute.

7) Any Update manipulation to alter a PK’s value shall be

equivalently decomposed into a Delete manipulation on the

data record with the present PK value, and a subsequent iNsert

manipulation of the updated data record with a new PK value.
Locking a data table during submitting a comment on its

data record could lower the risk of mismatching the comment
with a newer data version that was being created in the same
time. Of course, freezing the data table for the whole process of
comment action can exclude such a risk completely, but which
will bring along with a more serious problem that normal data
maintenance might be blocked for an uncertain (at worse often
rather long) time by some comment activity, and the situation
probably become even worst if the comment right is abused.
Thus we in practice shall set a threshold of time limit for
locking (e.g., 10 minutes) to avoid involving sophisticated
lock/unlock mechanism. Conclusively, we have several more
principles of using audit log:

 Applicable to record verification results in a generalized
form of literal comment.

 To log each behavior of deleting, inserting, updating or
verifying a data record, and the manipulator’s digital
signature about the essential content of the audit record
in the same audit record.

 Separating historical data’s storage, i.e., they are kept
elsewhere (in the change log).

B. Change Log

The direct usage of change log is to record any data version
just before it become outdated, which enables the occurrence of
any historical data snapshots later. We shall record in the
change log the current value of each data attribute bound for a
content change just before the change operation is carried out,
and the change operation being taken shall be noted down in
the audit log at the same time. The data structure of change log
is as defined in Table III, where attribute valbfchg stores the
value-before-change for attribute chgfldname that stores the
name of an attribute undergoing a value change, while the
expiration time of content of valbfchg is indicated by attribute
timestamp from a correlated record (being correlated through
the value of Audit_ID) in the audit log Adt_log. For example,
Adt_log.timestamp=″time1″, Chg_log.chgfldname=″name″ and
Chg_log.valbfchg=″John smith″ specified that data attribute
name had a value of ″John smith″ just before time ″time1″.

The value-before-change of each data attribute (indicated
with the content of chgfldname) that underwent a value change,
except of lob type (Clob/Blob) shall be consistently converted
into the string type and then put in attribute valbfchg. If a
changed attribute is of lob type, its value-before-change shall
be deposited in attribute lob_value while valbfchg is left empty.

For data attributes of binary lob type, we shall use an additive
attribute ContentType [4] to further specify their content type to
facilitate web applications for presenting such content.

TABLE III. CHANGE LOG (RELATION CHG_LOG)

Attribute name Description

Audit_ID a PK attribute

Chgfldname a PK attribute

valbfchg Direct value before change

datatype String/clob/blob

Lob_value If dataype=C/Blob

ContentType For lob type data

Hash For lob type data

Chg_act U/D

C. ACLM Operation

The procedure of ACLM operation is outlined as follows:

1) A web service of data maintenance calls a DBMS stored

procedure [7] to execute a dedicated data manipulation (iNsert

| Update | Delete | Comment), noticing that C type operation is

writing to the comment attribute of the audit record;

2) The DBMS stored procedure fulfills the data change on

each target data table and correspondingly inserts a new audit

record into the audit log with the matched type assigned to the

attribute Operation_type within a single transaction;

3) Triggers of each target data table are ignited

[7] to

insert corresponding log records into the change log.
This software mechanism is illustrated as Fig.1.

In
se

rt

Data table

Insert{A
ud

it_
ID

,

Tim
es

ta
m

p}

Regular view

Change logAudit log

A
ud

it
 v

ie
wDBMS stored

procedure

Historical

snapshot

trigger

service of data
maintenance

Fig. 1. Diagram of tDBMS software operation

Under ACLM, whenever calling a DBMS stored procedure
to fulfill a process of data change (Update, Delete, iNsert) or
data inspection (Comment) it is requested to specify whether to
simultaneously write the audit and change logs, if yes (ACLM
function enabled normally) then the calling program shall also
ascertain the timestamp of logging a record into the audit log
through an interface of the invoked DBMS stored procedure,
regarding that a web server’s clock is adopted, see paragraph 5)
of subsection III.A. Since digital signature can only be made in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

119 | P a g e

www.ijacsa.thesai.org

client ends where user private keys are available, and attribute
timestamp in relation Adt_log is one of digital signature
objects, thus the client end must get the time of web server just
before user making digital signature. An individual ACLM
operation involves two basic actions: A1 — exerting data
changes, and A2 — logging such actions in both the audit and
change logs. We propose not to execute A1 and A2 in separate
web services, since combining two web services as a
transaction (all done or nothing) will involve very sophisticated
disposal, e.g., if A1 is successful but A2 is not, A1 has to be
rolled back, then we have to pay off the cost of rolling back A1
due to A2; and what is more, sometimes (due to poor
communication qualities) we cannot judge if A2 is successful
or not (it might succeed but its reply was lost or simply
delayed), unless we decide according to a time limit, but
specifying a time limit is a trade-off issue, often very subtle.

Thus, we shall request a DBMS to conduct both A1 and A2
via a single web service call, which means whenever
submitting a data change call we should have the companying
signature value prepared for the audit record at the same time
(must in advance obtain the values of timestamp and Audit_ID
as parts of content to sign).

The above description implies a sequence of steps for
carrying out a data change manipulation under ACLM: (1) pre-
read content of a target data record to prepare the change
action, (2) get the web server’s time for digital signature, (3)
submit the manipulation request to the hosting DBMS via a
web service, (4) log the manipulation into the audit and change
logs. Here, we have an order of timestamps: timestamp (pre-
read) < timestamp(sign) < timestamp(submit) < timestamp(log).
For better uniform simplicity, timestamp (pre-read) is adopted
to substitute the rest of timestamps. This is because:

(1) it wouldn’t influence consistency of retrospecting
historical snapshots; (2) be competent for re-showing historical
snapshots for cases without demand of extremely precise
accuracy; (3) it is impossible within a one-off web calling to
include into the digital signature a precise time of writing data
table. Regarding that the web server functions as the centrum
of ACLM, it is proper to grant attribute timestamp with the
reading of the web server’s clock.

Note:

1) Triggers of data table need to read contents of attribute

Audit_ID and timestamp from the corresponding record of the

audit log. Each record of the change log correlates to a unique

record of the audit log, whereas each record of the audit log

correlates to a group of records of the change log except those

audit records of non-change type (no changing any existent

data, e.g., insert or comment type), records from both logs are

correlated via values of a common attribute Audit_ID.

2) If a round of data change process begins at a halfway

phase (one or several rounds of data change were executed

before, but none of them are regarded complete, i.e., all of their

execution results are halfway, and saved into their DRB data

table temporarily), then we strongly suggest that only enabling

ACLM logging function for the first round of operation process

since all midway versions of data change in the same process

transaction need not logging.

3) We shall not enforce ACLM function indiscriminately

for all data tables without considering the additive overhead.

For example, when all historical data versions of a data table

are in fact presented as direct content, there is no need to log

data changes anyway. In developing ACLM for MIS, we

suggest to set up a configuration table of data change audit

individually per application to specify together all involved

data tables and their involved fields whose value’s change need

to be logged.

D. Typical Applications of Audit & Change Logs

1) Restore a record’s snapshot at an audit timestamp
Let’s take a scenario of reverting to a historical snapshot of

data record at an audit timestamp. For data table Tx, let Ax be
the audit log record with the timestamp ts, Kx be the PK value
of Tx’s data record Rx that was audited by Ax at ts. If Ax is of C
type, we have to track down along the time axis to the point (if
any) when Rx underwent a change (update or deletion) after ts,
see Fig. 2.

Fig. 2. Snapshot Recurrence Scene concerning a Specific Attribute

Fig. 3. Recurence of Rx snapshot just before Rx’s first deletion after ts

Regarding that Ax’s existence implies Rx existed at ts, so
we can restore the snapshot of Rx at ts through the following
processes (be succinct, no datum of lob type is involved here):

Step 1: We shall check if Rx underwent a D type change or
a PK value change after ts — the later is equal to a D type
change being followed by a N type one, since in ACLM it is
implemented by deleting the current record and subsequently
inserting a record with the new PK value — if yes, then we
shall firstly restore the snapshot of Rx just before Rx’s first
deletion after ts, e.g., just before point A as in Fig.2.

 ts

Time axis

No change

A: 1st deletion of the record

B: 1st update (if any) before A (if any)

Create table snapshot(fieldname string not null, value string null, auditID

string null, chgtime timestamp null);

snapshot_D obj=new snapshot_D(ts, Tx, Kx);
Class snapshot_D {

Var timestamp D_time=null;

Public snanpshot_D(timestamp tstamp, string tname, string keyval) {
Insert into snapshot (fieldname) select column_name from cols where

table_name=tname;

Var string audiID=null;
Select min(a.timestamp) into D_time From adt_log a Where

a.timestamp>=tstamp and a.D_table_name=tname and

a.D_key_value=keyval and Operation_type="D";
If D_time=null then exit; /* after tstamp Rx was not ever deleted */

Select a.Audit_ID into auditID From Adt_log a Where a.timestamp=D_time

and a.D_table_name=tname and a.D_key_value=keyval and
a.Operation_type="D";

Update snapshot s Set s.value = (Select b.valbfchg from chg_log b Where

b.Audit_ID=auditID and b.Chgfldname=s.fieldname);}}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

120 | P a g e

www.ijacsa.thesai.org

Fig. 4. Reverting to Rx’s snapshot at time ts

The process of this step is illustrated by a procedure as
coded in a pseudo-java+SQL language in Fig.3, where it is
fulfilled by creating a class instance obj=snapshot_D(ts,Tx,Kx)
regarding that obj.D_time!=null indicates yes.

Step 2: We shall search the earliest U type change during
[ts, obj.D_time) for each attribute of Rx, and roll back
together such a change (if any, e.g., at point B as showed in
Fig.2) for any attribute whose value was changed during [ts,
obj.D_time) to get the snapshot for Rx at time ts. The task of
this step is illustrated by a procedure as coded in a pseudo-
java+SQL language in Fig.4, where it is carried out by setting
roll_obj=snapshot_rollback(ts,obj.D_time,Tx,Kx), regarding
that obj.D_time=null means no change of D type was on Rx
after ts, and then not(a.timestamp>=Dtime) becomes true
accordingly due to Dtime=null.

Notice: different fields of a data record might undergo a
content change at different times. The correctness of executing
SQL scripts in Fig. 3 and 4 (where the procedure of opening
database is omitted) rests with that all audits on the same object
are sequential, i.e., no more than one audit action exerting on
the same object is allowed at the same time.

2) Recuring to a table’s snapshot at arbitrary time
To recur to the snapshot of table Tx at a given time ts is to

restore exactly all data records that appeared at ts. Supposed
ACLM has been functioning since ts, and then the recurring
procedure can be outlined as follows:

a) To retrieve those Tx’s records that have not

undergone any change since ts, we have

S1={select * from Tx where (Tx’s PK) not in (select D_key_value

from adt_log where D_table_name="Tx" and operation_type<>"C" and

timestamp>=ts)}.

b) To restore S2={those Tx’s records that existed at ts

and underwent a change after ts}, we shall collect the set Sc of

any audit record that logged the first change data operation on

the same data record after ts:

Sc={select Audit_ID,operation_type from adt_log where timestamp in
(select min(timestamp) from adt_log where D_table_name="Tx" and
operation_type<>"C" and timestamp>=ts group by D_key_value)};

and then we exclude those audit IDs whose audit records
logged a N type operation (As to a data record, after ts the first

change data operation is of N type implies that the data record
didn’t exist at ts otherwise it can not been inserted):

Sa={select Audit_ID from Sc where operation_type<>"N"}.

c) For any audit record Ax whose ID is in Sa we restore

the snapshot of the corresponding data record at Ax’s

timestamp through a process described in subsection III.D.1).

It is easy to prove that xS2 (ySa) that y logged the first U

or D change of x after ts, whereasySa (xS2)
that the first

U or D type change of x after ts was logged by the audit

record with ID = y. As a result of the above process, we can

regain each member of S2. The S1∪S2 is the wanted.

3) Practical simplicity for efficiency
The above applications are generally-oriented that each

time a data record underwent a U type change the ACLM
logged only those attributes that had undergone actual content
change and their values. In practice, however, it was very
clumsy to tell which field’s value of data input interface has
actually been made different from its existent value in a web
submission of data maintenance input, and if such actual value
change is judged within a trigger procedure then the execution
efficiency of the trigger and thereby the hosted DML operation
will be greatly abated. For the sake of simplicity and efficiency,
the data input submitted (if accepted) is directly delivered to
DBMS for an update operation to replace the existent values of
the object attributes respectively without further distinguishing
the existent and new values. In addition, to make easier the
snapshot recurrence we should set ACLM to log all attributes
and their existent values into the change log at the same time
whenever a U type operation encountered though at more cost
of storage space. Such a disposal can save a lot of computation,
regarding that in this way each time an audit record closest
behind to the given time is enough for snapshot recurrence
without bothering to dig out all involved audit records for all
attributes’ snapshots that were logged at different timestamp.

IV. TESTING ACLM’S INFLUENCE ON DBMS OPERATIONS

Applying ACLM means appending certain additional audit
and log tasks to normal DML operations in exchange for the
competence of tracing versions and their responsible persons.
There comes an issue of evaluating additive overheads from
ACLM. Intuitively, we have two plain measurements for this
evaluation: (1) the perceptible performance decline, (2) the
increment in comparative execution time. In fact, as for MIS
applications featuring human-computer interaction it is the
measurement (1) much more suitable than (2) though the latter
is more precise than the former. The perceptible performance
decline can be well evaluated in terms of success ratios of
maintenance operation per unit time for a normal range of
request throughput into the hosting DBMS. On this aspect we
made a succinct test to checkout if the ACLM influence is
acceptable or not: per one minute how many percentage of
update or delete operations succeeded for a large scope of
operations throughput. The data table for test is defined in
Table IV, its content attributes (Citizen_ID_num, Reg_name,
Reg_text) were under audit of ACLM. For comparison, during
the test twin instances of relation Cer_Reg were created such
that one instance is ACLM-enabled while the other is non-
ACLM, and both were exerted hundreds of thousands Update

snapshot_rollback roll_obj=new snapshot_rollback(ts, obj.D_time, Tx, Kx);
Class snapshot_rollback{

Public snanpshot_rollback(timestamp tstamp, timestamp Dtime, string

tname, string keyval) {
SET ANSI_NULLS OFF;

Create view aud_chg_v AS /* (var >= null) == false */

Select a.Audit_ID, a.D_table_name, a.D_key_value, a.timestamp,
b.Chgfldname, b.valbfchg From adt_log a, chg_log b Where

a.D_table_name=tname and a.D_key_value=keyval and

a.timestamp>=tstamp and not(a.timestamp>=Dtime) and
a.Operation_type="U" and a.audit_ID=b.audit_ID

Update snapshot s Set s.chgtime = (Select min(c.timestamp) From

aud_chg_v c Where c.chgfldname=s.fieldname);
Update snapshot s Set s.auditID = (Select c.Audit_ID From aud_chg_v c

Where c.timestamp=s.chgtime and c.chgfldname=s.fieldname);

Update snapshot s Set s.value = Coalesce((Select b.valbfchg From chg_log
b Where b.Audit_ID=s.auditID and b.chgfldname=s.fieldname),

s.value);}}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

121 | P a g e

www.ijacsa.thesai.org

and Delete operations. The test results were depicted in Fig. 5
and 6.

TABLE IV. CER_REG

Seq. Attribute name Data type ACLM

1 Citizen_ID_num Number(18) X

2 Reg_name Varchar(32) X

3 Reg_text Varchar(1024) X

4 timestamp timestamp

5 Process_Status Char(1)

6 Lock_Person Varchar(32)

7 Operator_id Varchar(20)

8 signature Varchar(172)

For a widely comparison of significance, we simulated a
broad range of data maintenance frequencies covering and well
beyond the statistic scope of page view (PV) of our web site (a
well known industry website in our province) whose home
page was accessed about 350 times per minute (on average the
frequency of home page access corresponds to that of the web
underlying DBMS inner DML request in the case of data
maintenance) at its all time peak -- in Fig.5 and 6 the peak PV
value was indicated by the vertical green line. Both Fig.5 and
Fig 6. actually recorded how many operations were
successfully fulfilled within one minute.

Fig. 5. Test results on Update (U) operations

Fig. 6. Test results on Delete (D) operations

As in Fig. 5, both the ACLM-enabled (labeled ACLM) and
ACLM-disabled (labeled non-ACLM) cases had similar
performance lines (all in values of logarithm to base 10) for
Update operations. Their success ratios hold 100% from the
start at lower throughput of data operations up to some
thresholds well above the site peak PV frequency, and then
dropped rapidly as the impact of access throughput became
very heavy. Although the success ratio of the ACLM-enabled

system dropped relatively earlier, its abrupt decrease point only
came about as the access frequency reached an extremely high
level, say 150,000 times of inner update operations requested
per minute in the test, which is pretty rare for a normal website
and can be referred to as an ultra situation. Fig.6 told the same
thing about Delete operations, where, the ACLM-enabled one
encountered a threshold of success-ratio drop at 70,000 times
of inner delete operations per minute, and the test case should
be referred to as covering ultra situations too. Moreover, the
higher the computing power of server and client ends became,
the less the MIS performance loss from ACLM would be,
regarding that the hardware configuration of the test is quite
low (the hosting Oracle 9i DBMS was mounted on a Dell
PowerEdge2950 PC server -- Xeon E5430 CPU with a 2.66
GHz frequency and 1G memory), all these showed that the
performance decline of routine DBMS operation due to ACLM
is normally acceptable or even neglectable.

V. FURTHER CONCERNS ABOUT ATTRIBUTES OF LOGS

A. Log Attributes’ Minimization

First, relation Adt_log cannot be more simple, the reasons
are: (1) attributes other than Audit_ID are semantic and all
indispensable to specify a data manipulation; 2) the auxiliary
attribute Audit_ID serves as a foreign key in Chg_log to
correlate together all data attributes being logged there for the
same data manipulation. Next, it is easy to verify that Adt_log
is in the third normal form (3NF), while Chg_log is nearly of
3NF except a functional dependency <Lob_valueHash>.
Although <Lob_valueHash> brings some redundancy (a list
of Hash result), it in return offers a well-balanced performance
or efficiency in the value comparison of judging if the content
of lob type attribute underwent an actual change, regarding that
a lob type attribute could have an unlimited variety of content
data sequence length, but it can be stood for by its fixed length
Hash value in comparison computing.

B. Logs Construction’s Completeness

The proposed audit & change logs enable restoring any data
record’s value (if existed) at an arbitrary given time ts for data
tables under ACLM governing: at first with them we can check
if the data record underwent a change manipulation after ts; if
no, the current status of the data record is the wanted, otherwise
we can take steps as described in subsection III.D.1) to restore
the data record’s value at ts.

C. Compatibility with data structure change

First, adding or retiring a non-PK attribute would make no
difference on restoring historical snapshots since the name and
value of newly added or historical attributes had been recorded
in attribute chgfldname of chg_log if they underwent a value
change. Secondly, altering data type of a non-PK attribute
would not mislead comprehension of the relevant record
content (if any) logged by the change log, since the attribute’s
previous content was always recorded in a uniform type of
character string (via toString translation) each time the attribute
content underwent a value change. Besides, an alteration of
data type without change content is of application-specific
disposal which is none of the business of ACLM. Notice:
normally retiring a data table field means that the field is no
longer maintained but its previous values are still kept there.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

O
p

e
r
a

ti
o

n
 S

u
c
c
e
ss

 R
a

ti
o

Logarithm(U Operation Times)

Non-ACLM

ACLM

Peak PV

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

O
p

e
r
a

ti
o

n
 S

u
c
c
e
ss

 R
a

ti
o

Logarithm(D Operation Times)

Non-ACLM

ACLM

Peak PV

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

122 | P a g e

www.ijacsa.thesai.org

Similarly we can elucidate that ACLM still performs its
normal functions when data tables undergo a structure
alteration in their PK attributes (attributes were added or
retired, or their data type were changed) with the
complementary PK structure specification from relation
PK_spec (see Table II). So, ACLM is compatible with data
structure or meta-data change.

VI. HANDLE PRIMARY KEY OF MULTI-ATTRIBUTES

The above ACLM solution has a precondition: all data
tables governed must have a unitary-attribute PK. In practices,
it is the 1NF [2] instead of a unitary-attribute PK that shall be
the minimal requirement for relational schema designs, i.e.,
there is a PK (probably with multiple attributes) to exclude
duplicate rows -- under 1NF at least all attributes together can
uniquely fix on an instance of tuple. As to a data table without a
unitary-attribute PK we shall introduce an artificial attribute to
stand in as a unitary-attribute PK — named the Stand-In
Unitary key, in short SIU key. Here, we propose two ways to
set up an SIU key:

A. Map Multi-attributes into a unitary one

Let PK=
1 2(F , F , , F)k

, which is an ordered tuple of names

of all attributes from the PK, where the subscript numbers are
defined by the PK_attribute_seq in relation PK_spec regarding

the PK_attribute_name (see Table II). If (chr () str(F))jj d

and (F str(F))j jj we have

1 2 1

=2

(F ,F , ,F) (F) (chr()+str(F)) SIU
k

k j

j

str d .

Where, chr(d) denotes the character whose decimal ASCII
code is d providing that chr(d) shall not appear in content of
any involved relation attributes on high level MIS applications,
“+” is the concatenating operator of character string, str(X) is
the function that converts the value of variable X into a
character string, “ ” stands for a one-to-one mapping

relation. Normally we choose d=24 for chr(24) is a non-
printable character for a cancel signal in hardware control.
Further, we recommend to turn SIU into a fixed length by Hash
(SIU) for a better space efficiency and well balanced
performance of comparative computation. Often a hash
algorithm named SHA1 is adopted to map different SIU values
into distinct strings of 40 hexadecimal characters.

B. Create a DBMS self-maintained field as SIU key

Such built SIU key is normally self-incremental, it can label
distinctly data records existed, and grant each newly inserted
data record with a unique identity. In semantics, a SIU key is
equal to its original PK for all Update manipulations except
those altering any existent PK value. Whenever a data record
underwent first a Delete and subsequently an iNsert operation
(an equivalence of the Update operation altering an existent PK
value), it will be assigned a new SIU key value different from
its previous ones.

In this sense, any audit record of N type does not link to a
historical snapshot of the data record it audited with respect to
the PK value of that data record, because the PK value of the
newly-inserted data record should not appeared before (the

audit timestamp). As usual, the audit records of N type are used
to exclude data records that are inserted after a given historical
time in restoring the historical snapshot of a whole data table
from its current status. But for restoring a specific data record
with a given PK value (each member attribute value is given) at
a given time it turns to be rather clumsy: we need to search the
change log thoroughly for any Audit_ID value that is with each
member attribute of the PK in change log records, and each
member attribute from these records at least matched one time
with their given value, this is because we don’t know directly
the SIU value at that given moment. But, if ACLM is merely
oriented to the time property of data maintenance and historical
snapshots of data table, this SIU key approach is to some extent
simple and feasible.

VII. DISCUSSION AND CONCLUSION

The ACLM function is based on two basic conditions: 1)
accurately logging all timestamps of maintenance operations
that should be governed by ACLM and values of each involved
attribute of the object data record just before each operation of
change data; 2) being able to correlate together the values of all
member attributes in the data tuple of snapshot. As illustrated
in section III, the design and application of audit and change
logs themselves have directly satisfy the second condition, and
such a condition would be hold met ever since it was satisfied
since both the audit and change logs permit only Insert-SQL
maintenance manipulations; while the first condition is met by
enabling DBMS trigger mechanism [5] that surely captures any
event of maintenance operation.

Under ACLM we can flexibly program SQL scripts to
recall any historical snapshot without difficulty. Compared with
those powerful but extravagant tDBMS products, our ACLM-
based solution is economical and exercisable (of DIY type) for
MIS. This is because a) implementing ACLM is plain: three
specific relational tables for logs and PK specification, a short
script additive to usual RDBMS stored procedures of business
logic, and a piece of SQL script (alone or embedded in existent
SQL scripts) added in triggers of each data table audited, and b)
the merits from ACLM: being compatible with changes to
meta-data, and programmers can code in their usual way, e.g.,
implementing data maintenance via RDBMS stored
procedures.

In fact, our ACLM approach does reflect a reality that
actual tDBMS implementation is a workable evolution of
RDBMS application rather than an innovation of nowadays
RDBMS. The most valuable point thereby is, ACLM can be
plainly deployed on current prevailing RDBMSs with less
interference in routine MIS program practices, normal MIS
users except who conduct audit would feel they are working
with a familiar RDBMS for the current version data access as
usual. We can conclude that the ALCM approach is a good
option to replace current bitemporal database solutions for uni-
temporal MIS applications in order to avoid unexpected or
unnecessary cost and complexity.

ACKNOWLEDGMENT

The authors thank all members of their team and correlative
colleagues for applying and validating ACLM in several e-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 9, 2013

123 | P a g e

www.ijacsa.thesai.org

government MIS projects with requirements of uni-temporal
database applications.

REFERENCES

[1] C.J. Date, H. Darwen, and N. Lorentzos, Temporal Data & the
Relational Model, 1st ed. San Francisco, USA: Morgan Kaufmann,
2002.

[2] C. J. Date, “What first normal form really means,” pp. 127–128.
http://www.dbdebunk.com/page/page/629796.htm

[3] D. Eastlake 3rd and P. Jones, US Secure Hash Algorithm 1 (SHA1),
RFC Editor, 2001. http://tools.ietf.org/html/rfc3174

[4] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions
(MIME) - Part One: Format of Internet Message Bodies, RFC 2045, Nov.
1996.

[5] http://en.wikipedia.org/wiki/Database_trigger

[6] C. S. Jensen, “Introduction to temporal database research,” Aalborg
University, Denmark, Tech. Rep: No.1, 2000, pp. 1-27.

[7] J. Celko, Joe Celko's SQL for Smarties: Advanced SQL Programming,
4th ed. San Francisco, USA: Morgan Kaufmann, 2010. ISBN: 978-0-12-
382022-8

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” in Communications of the
ACM, vol 21(2), 1978, pp: 120–126. doi:10.1145/359340.359342

[9] R.T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. San Francisco, USA: Morgan Kaufmann, 1999.

[10] H. Guo, Y. Tang, X. Yang, X. Ye, “Improvement and extension to
ATSQL2,” in Temporal Information Processing Technology and Its
Application, Y. Tang et al, Eds. Tsinghua University Press, Beijing and
Springer-Verlag Berlin Heidelberg, 2010, pp. 245-259.

[11] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann,
“TPC-BiH: a benchmark for bi-temporal databases,” In TPCTC, 2013.

[12] TimeDB–A Temporal Relational DBMS.
http://www.timeconsult.com/software/software.htm

http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/Nikos_Lorentzos
http://www.dbdebunk.com/page/page/629796.htm
http://dl.acm.org/citation.cfm?id=RFC3174&CFID=344136074&CFTOKEN=79813140
http://dl.acm.org/citation.cfm?id=RFC3174&CFID=344136074&CFTOKEN=79813140
http://tools.ietf.org/html/rfc3174
http://en.wikipedia.org/wiki/Joe_Celko
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F359340.359342

