
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

1 | P a g e
www.ijacsa.thesai.org

An Autonomic Auto-scaling Controller for Cloud

Based Applications

Jorge M. Londoño-Peláez

Escuela de Ingenierías

Universidad Pontificia Bolivariana

Medellín, Colombia

Carlos A. Florez-Samur

Netsac S.A.

Medellín, Colombia

Abstract— One of the key promises of Cloud Computing is

elasticity – applications have at their disposal a very large pool of

resources from which they can allocate whatever they need. For

any fair-size application the amount of resources is significant

and both overprovisioning and under provisioning have a

negative impact on the customer. In the first case it leads to over

costs and in the second case to poor application performance

with negative business repercussions as well. It is then an

important problem to provision resources appropriately.

In addition, it is well known that application workloads

exhibit high variability over short time periods. This creates the

necessity of having autonomic mechanisms that make resource

management decisions in real time and optimizing both cost and

performance. To address these problems we present and

autonomic auto-scaling controller that based on the stream of

measurements from the system maintains the optimal number of

resources and responds efficiently to workload variations,

without incurring in over costs for high churn of resources or
short duration peaks in the workload.

To evaluate the performance of our system we conducted

extensive evaluations based on traces of real applications

deployed in the cloud. Our results show significant improvements

over existing techniques.

Keywords—autonomic resource management; cloud computing

I. INTRODUCTION

Cloud Computing has radically changed the way we
provision computing resources. In The Cloud one can allocate
resources in a matter of seconds, use them for as long as they
are needed and then release them, making it possible a pricing
model where you pay for what you use. The possibility of
allocating and releasing resources on demand from what seems
an unlimited pool is called elasticity. Both characteristics pose
interesting new problems for system administrators: How to
efficiently manage resources in a cloud environment.

Ideally, the burden of dynamically managing resources in a
cloud environment should be automatized so that system
administrators do not have to worry for the significant
workload changes that may occur in a short term basis,
typically minute by minute. To do so, some service providers
offer some form of auto-scaling controller that takes as input a
set of measurements from the system and makes decisions
about allocating or releasing resources as needed. The auto-
scaling controller itself depends on a set of control parameters
that determine how fast it will react to changes, how well the

allocated resources will match the workload on the system, and
how much will it cost to operate the whole system.

Determining an optimal set of parameters for the auto-
scaling controller is not a trivial task and it commonly done by
trial and error. The main contribution of this paper is posing the
auto-scaling parameter determination problem as an
optimization problem that can be numerically solved and used
in practical systems so that the auto-scaling controller operates
in a self-managed manner. We also present an implementation
of the system and tests performed on real workload traces that
show it benefits.

In §II we present our problem and its application scenario.
§III describes the design of our auto-scaling controller and §IV
explains the self-tuning technique adopted for our controller. In
§V we present the evaluation of the system based on traces of
actual cloud workloads. Finally, in §VI we review the related
work and highlight the differences with respect to our
mechanism.

II. CONTEXT

We consider the problem of dynamically allocating
resources for an application deployed in the cloud when
resource requirements are not known in advanced, exhibit high
variability, and are difficult to predict. This context precludes
the use of schedule-based allocation mechanisms. Henceforth,
we concentrate in the problem of dynamically allocating
resources in an Infrastructure as a Service (IaaS) cloud taking
as input various performance measurements of the system.

A. Resource allocation and measurment

It is customary that IaaS providers handle resource
allocation in the form of Virtual Machines (VMs). There are
usually several VM sizes and the cloud provider has no access
to the guest OS running on those VMs. Therefore the
monitoring infrastructure only registers variables available at
the hypervisor level. We refer to this kind of measurements as
blackbox metrics. It is also possible to have monitoring agents
running inside the VMs which would have access to
application dependent metrics. In this case they would be
called whitebox metrics.

For the purpose of our proposed system we will be using
only blackbox metrics; although we hypothesize the general
principles stated in this paper could be extended to handle the
case of whitebox metrics as well. Validation of this hypothesis
is left for future work.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

2 | P a g e
www.ijacsa.thesai.org

B. Cost model

Standard per hour pricing policy is to charge a fixed
amount per hour or fraction of resource usage. The hourly rate

 is determined by the type of the ith resource, namely T(i).

Thus, the cost of n resources is the summation

 (1)

where and are the times at which the ith
resource is started and terminated, respectively. The ceil
operation captures the fact that the customer is charged the
hourly rate if the resource is used for a fraction of an hour. The
key observation from this equation is that churn is very
inefficient. For example, launching two instances for a few
minutes each would cost twice as much as launching one
instance for one hour. This insight will be fundamental in
supporting the termination policy used by our controller, as
discussed in the next section.

III. IMPROVED AUTO-SCALING TECHINIQUE

Fig. 1 shows the overall architecture of an auto-scaling
system. Its main components are:

1) Smoothing: It is responsible of obtaining measurements
from the monitoring service, applying a smoothing filter
(e.g. SMA, EWMA), and computing an estimate of the
workload to be used for auto-scaling decisions. Other
proposals [1] include the use auto regression techniques to
compute these estimates.

2) Controller: Given the estimated workload it determines the
optimal number of instances required. The optimizer
solves the problem of minimizing the total cost of the
service while satisfying the application requirements.

3) Resource allocator: Takes the number of instances
requested by the controller and instructs the management
infrastructure to launch/terminate instances as required.

Fig. 1. Architecture of the auto-scaling system

A. Smoothing

Workload measurements typically exhibit high variability
which makes resource management at small time-scales not
feasible. Launching a new instance typically takes from tens of
seconds to minutes and the workload contains many short
duration spikes. Instead of making allocation decisions based

on short duration spikes the controller needs to identify
workload variations that will persist for long enough periods of
time in order to launch or terminate VMs.

Low-pass filters such as the Simple Moving Average
(SMA) or the Exponentially Weighted Moving Average
(EWMA) are commonly used to smooth the inputs. The SMA
filter is defined as the average of the last m samples of a
metric, being m the parameter to be optimized. Large values of
m represent a large smoothing effect and slow response to
changes. On the other hand, for small values of m the
smoothed signal will closely follow the metric and give fast
response to rapid changes. The EWMA filter weights the
history of the signal by a series of exponentially decreasing
factors. An exponential factor close to one gives a large weight
to the first samples and rapidly makes old samples negligible.
On the other size, a factor closer to zero gives little weight to
the last samples and makes the contribution of old samples
more significant, producing a more smoothed output.

With either filter, there is a tradeoff between how fast the
filter reacts to persistent changes in the input and how well it
smooth out short duration spikes. Hence, the optimal filter
parameter is one of the key variables to be determined using
the tuning technique to be described in §IV.

B. Controller

It is responsible for keeping the right number of VMs in the
cluster so that the resource requirements of the application are
satisfied. Overprovisioning increases the cost, so the
controller’s job is to find the minimum number of VMs needed
by the application. In addition to the number of VMs, there
may be additional type restrictions, e.g. on the amount of
memory, or number of cores per VM.

For the controller, we adopt a simple hysteresis controller1
with the following parameters:

 Thresholds: Upper and lower fractions of the resource’s
capacity used to trigger the launch/termination of a VM.

 Update policy: How to increase/decrease the number of
instances when needed. In either case, the policy can be
additive or multiplicative.

Determining the optimal parameters of the controller will
be part of the job of our tuning technique.

C. Resource allocator

The resource allocator communicates with the cloud
management services to launch/terminate virtual machines as
indicated by the controller. As observed in §II.B, there is no
point in terminating a VM if the amount of time it has been
running for is not a multiple of an hour. For this reason we
adopt a lazy termination policy that only terminates a VM if it
has been running just below a multiple number of hours and
the controller is requesting a lower number of VMs. In the
meantime these instances contribute to handling the workload
in the cluster, thus reducing response times and providing some
buffer capacity to handle short load spikes at no extra cost.

1
 essentially the same one available in Amazon Web Services (AWS)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

3 | P a g e
www.ijacsa.thesai.org

Another feature (found for example in AWS) is the cool-
down period. The cool-down period prevents the resource
allocator of making any changes to the system for certain
amount of time. The motivation behind is to avoid frequent
creation/termination of instances when the workload exhibits
high variability, as this would have a negative impact on the
cost of the service. We also implemented this feature in order
to evaluate its importance and the associated tradeoffs.

IV. PARAMETER TUNING

Clearly, the performance of the auto scaling system
depends on the setting of all the adjustable parameters. In our
system we have one parameter for the smoothing filter, four
parameters for the controller (fixing the update policy) and one
extra parameter for the cooling period. We represent the
parameters as the parameter vector τ.

In order to determine the optimal setting of these
parameters, we pose the following optimization problem:

 , (2)

where is the cost of the service as defined in (1)
and is a measure of the workload that exceeded the
allocated capacity, i.e. it measures by how far and for how long
the presented workload exceeded the allocated capacity, as
given by

 , (3)

with being the workload at time t, being the allocated
capacity at time t, and a weighting factor. For the purpose of

the experimental evaluation we set so that a unit

of excess workload costs the same as a unit of capacity. In our
model time is quantized and arrival of samples from the
monitoring system and the action of the controller occur with
the same sampling period (5 min in our traces).

Ideally, for tuning the controller all we need to do is to
solve the optimization problem (2) for the optimal value of τ
over all possible inputs to the system. Unfortunately, there is
no closed form description of the input and it is easy to show
that the optimal solution is not unique. Instead we adopted the
following technique: Given a set of traces, we split them into a
training set and a testing set.

The training set is used to conduct a numerical optimization
in order to find the parameter vector , and the test set is used
for evaluating its performance. The numerical optimization
uses simulated annealing, and starting from some initial
parameter vector uses a temperature parameter to obtain
neighbor parameter vectors.

The minimum among the neighbors is chosen as the
starting point for the next iteration. At the end of each iteration,
the algorithm reduces the temperature, thus reducing the range
for choosing random neighbors. After a given number of
iterations of not finding improved parameter vectors, the
optimization finishes.

V. EXPERIMENTAL EVALUATION

For the evaluation of the system we used a set of traces
taken from actual deployments of EC2 instances in AWS. The

traces cover a period of about 15 days and include all the
metrics captured by the CloudWatch service, among others,
CPU utilization, disk I/O, and network utilization. In these
traces disk I/O activity was minimal, thus we made no further
use of these data. From these traces we took a 50hr interval as
training interval, and used other intervals as test cases. As the
workload in the trace is relatively small, we scaled it up by a
constant factor in order to simulate larger environments.

We implemented in Matlab the standard auto-scaling
system offered by AWS and our improved system. The first
one will give a baseline for comparison purposes. We then
used our controller tuning technique (see §IV) to obtain the
optimal parameter vector for both systems with the same
training trace. Then, running the test trace in both systems we
obtained the performance metrics for our analysis. The
standard auto-scaling controller is setup to use a SMA
smoothing filter and multiplicative increase/decrease policies.
Our controller uses an EWMA filter and multiplicative
increase/decrease policies. Both systems implement the cool-
down policy.

A. Number of active instances over time

A first experiment evaluates the number of active instances
over time and their liveness period, i.e. the amount of time they
existed in the cloud. Fig. 2 shows the number of compute units
(CU)2 for an illustrative test case. It shows both cases, standard
and improved auto-scaling.

Although both track the workload (plus a safety margin as
defined by the upper threshold), it is noticeable that the
improved auto-scaling tracks more closely the peaks and the
valleys and reacts faster to changes. This is especially
remarkable in the valleys where the lazy termination policy
keeps instances alive for up to a multiple of one hour, but still
does a better job tracking the valleys than the cool-down
policy.

The effect of the lazy termination policy is shown in Fig. 3
which shows the histogram of the liveness period of instances
for the same test cases. For standard auto-scaling they take
arbitrary lengths, and for improved auto-scaling they always
take a multiple of twelve sampling periods minus one (12n−1).
The minus one is due to our implementation terminating
instances one sampling period before the hour to avoid using
any fraction of the next hour.

It is important to notice that our parameter tuning algorithm
set the cool-down period to 3 sampling periods in the case of
the standard auto-scaling and to 0 in the case of the improved
auto-scaling technique. This is the result of solving the
optimization (2), which in the first case is forced to keep the
cool-down period larger than zero to void the problem of
frequent termination/creation, which would significantly
increase the cost.

In the second case, the cool-down period does not play any
role in determining the cost of the service, as termination of
instances is governed by the lazy termination policy.

2
 For our analysis we set 100 CU equal to 1 Amazon’s ECU

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

4 | P a g e
www.ijacsa.thesai.org

a) Standard auto-scaling

b) Improved auto-scaling

Fig. 2. Number of active instances over time

B. Cost and penalty improvements

Fig. 4 shows the costs and penalties for all the test cases
considered. Overall the improved technique has a small
reduction of service cost, albeit a few exceptions. However, the
comparison of penalties shows a significant reduction of the
penalty with the improved algorithm. Considering all test
cases, the average reduction of the cost was 6.3% and the
average reduction of the penalty was 55.5%.

VI. RELATED WORK

Existing literature considers various approaches for
handling the allocation of resources in a cloud computing
environment. Although some approaches have some features in
common with our solution, there are also important
differences. Following we present a brief description of the
most relevant approaches and highlight the main differences
with respect to our work.

a) Standard auto-scaling

a) Improved auto-scaling

Fig. 3. Histogram of instance liveness period

Bodík et al [2] present a technique that uses statistical
machine learning to fit a non-linear performance model on the
most recent set of samples. This model produces a target
number of servers to satisfy the existing Service Level
Agreements (SLAs), and this value is filtered through a
hysteresis filter to avoid oscillations in the controller. The
model captures the relationship between the number of request
that fail the SLA’s threshold and the current number of servers
and workload. This technique does not take into account the
cost of the service and under high variability on the workload
would lead to frequent creation and termination of VMs, the
churn problem that our technique avoids while minimizing the
operational cost of the service.

Bi et al [3] developed a technique that uses a hybrid
queueing model as the basis to provision resources for multi-
tier applications running in a cloud data center. Their technique
takes as inputs the request arrival rate, the service rate of the
VMs for each tier, and the response time from the application.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

5 | P a g e
www.ijacsa.thesai.org

Feeding this information into the model, makes it possible
to determine the number of VMs required. The main difference
with our system is that this technique relies on application level
measurements, which may not always be available or could
require and additional development and integration effort.

a) Comparison of costs

b) Comparison of penalties

Fig. 4. Comparison of costs and penalties

Padala et al [4] adopt a blackbox approach that uses control
theory to manage the virtual resources assigned to the
application. The controller in this system assigns entitlements
of the physical resources to the VMs they host, in such a way
that the application performance meets the preset SLAs. The
main difference with our work is the assumption that
entitlements to physical resources can be adjusted online.
Although this functionality is available in several virtualization
frameworks, it is not commonly offered by public IaaS
providers, which prefer to offer a set of predefined instance
sizes.

Turner et al [5] explore a system that builds an empirical
model of the application performance. Their system is tailored
for multi-tier applications running on a virtualized

infrastructure. Data collected by the monitoring system
includes resource consumption and application response time.
A regression algorithm fits a model to the collected data and
this model is used to adjust allocation of resources to the
different virtual machines. Sangpetch et al [6] further develop a
close-loop controller system that uses the model and a target
Service Level Objective (SLO) to adjust the allocation of
resources to each VM in the system. The controller uses both, a
long term and a short term prediction to adjust the resource
allocation to each of the VMs. These systems also rely on the
assumption that the customer has control over the amount of
resources assigned to each VM, which is not usually the case
with IaaS providers.

Chandra et al [1] present a technique that combines
measurements, a generalized processor sharing model, and
time-series analysis to determine the fraction of the resources
to assign to each of the application components. The allocated
resources assure that the application meets its Quality of
Service (QoS) constraints. This technique applies to the case of
VMs sharing a host in which the entitlement of resources for
each component is adjustable and the controller has access to
internal performance metrics of the application. However, it is
different to the problem we are handling because we deal with
predetermined instance sizes, our goal is minimizing the
service cost and penalty, and we restrict to blackbox metrics.

It is also worth noticing that there has been work on
resource management mechanisms based on the idea of
migrating VMs, as for example [7]. In this study migration was
not considered as our focus is a public IaaS cloud, where
migration services are not commonly available.

The problem of determining the optimal set of resources of
various types with multiplicity been shown to be NP-Complete
by Chang et al [8]. They also present an approximation
algorithm. This algorithm considers the problem in a static
setting, thus it is not applicable in the dynamic environment we
consider. A related work by Dougherty et al [9] considers the
auto-scaling problem from the point of view of minimizing the
cost and energy consumption. In their work they used a Model
Driven Engineering (MDE) approach combined with a
constraint satisfaction technique to find the set of instances that
supply the application requirements while minimizing cost and
energy. This work assumes a static context where the
application requirements remain stable over time.

VII. CONCLUSIONS

We have presented an autonomic auto-scaling controller
specifically designed for allocating resources in a cloud
datacenter under dynamic workloads. Our controller reduces
the service cost and the performance penalties when compared
to the optimized standard hysteresis controller commonly
available from public cloud providers. Both characteristics are
highly desirable for whoever deploys an application in an IaaS
cloud.

Our controller departs from well-known auto-scaling
controllers by incorporating a fast response smoothing filter, a
numerical optimization technique for finely tuning the
controller parameters, and implementing the lazy termination
policy, which postpones the decision to terminate an instance

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 9, 2013

6 | P a g e
www.ijacsa.thesai.org

until the very last moment possible without extra charges.
Also, our experiments showed that the lazy termination policy
effectively makes the cool-down period unnecessary. The cool-
down period limits the response time in the event of large
workload changes, thus increasing performance penalties. On
the other hand, the cool-down period does not reduce the
service cost when using our improved controller

REFERENCES

[1] Abhishek Chandra, Weibo Gong, and Prashant Shenoy, "Dynamic
resource allocation for shared data centers using online measurements,"

SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 300-301, 2003.

[2] Peter Bodík et al., "Statistical Machine Learning Makes Automatic
Control Practical for Internet Datacenters," in HotCloud, 2009.

[3] Jing Bi, Zhiliang Zhu, Ruixiong Tian, and Qingbo Wang, "Dynamic

Provisioning Modeling for Virtualized Multi-tier Applications in Cloud
Data Center," in IEEE International Conference on Cloud Computing,

2010.

[4] Pradeep Padala et al., "Adaptive control of virtualized resources in

utility computing environments," SIGOPS Oper. Syst. Rev., vol. 41, pp.
289-302, 2007.

[5] Andrew Turner, Akkarit Sangpetch, and Hyong S. Kim, "Empirical
Virtual Machine Models for Performance Guarantees," in Large

Installation System Administration Conference (LISA), 2010.

[6] Akkarit Sangpetch, Andrew Turner, and Hyong Kim, "How to Tame
Your VMs: An Automated Control System for Virtualized Services," in

Large Installation System Administration Conference (LISA), 2010.

[7] Mauro Andreolini, Sara Casolari, Michele Colajanni, and Michele
Messori, "Dynamic load management of virtual machines in a cloud

architectures," in IEEE 2009 International Conference on Cloud
Computing, Los Angeles, CA, 2009.

[8] F. Chang, J. Ren, and R. Viswanathan, "Optimal Resource Allocation in

Clouds," in IEEE International Conference on Cloud Computing, 2010.

[9] Brian Dougherty, Jules White, and Douglas C. Schmidt, "Model-driven
auto-scaling of green cloud computing infrastructure," Future Gener.

Comput. Syst., vol. 28, no. 2, pp. 371-378, 2012.

