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Abstract— One of the key promises of Cloud Computing is 

elasticity – applications have at their disposal a very large pool of 

resources from which they can allocate whatever they need. For 

any fair-size application the amount of resources is significant 

and both overprovisioning and under provisioning have a 

negative impact on the customer. In the first case it leads to over 

costs and in the second case to poor application performance 

with negative business repercussions as well. It is then an 

important problem to provision resources appropriately. 

In addition, it is well known that application workloads 

exhibit high variability over short time periods. This creates the 

necessity of having autonomic mechanisms that make resource 

management decisions in real time and optimizing both cost and 

performance. To address these problems we present and 

autonomic auto-scaling controller that based on the stream of 

measurements from the system maintains the optimal number of 

resources and responds efficiently to workload variations, 

without incurring in over costs for high churn of resources or 
short duration peaks in the workload. 

To evaluate the performance of our system we conducted 

extensive evaluations based on traces of real applications 

deployed in the cloud. Our results show significant improvements 

over existing techniques. 
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I. INTRODUCTION 

Cloud Computing has radically changed the way we 
provision computing resources. In The Cloud one can allocate 
resources in a matter of seconds, use them for as long as they 
are needed and then release them, making it possible a pricing 
model where you pay for what you use. The possibility of 
allocating and releasing resources on demand from what seems 
an unlimited pool is called elasticity. Both characteristics pose 
interesting new problems for system administrators: How to 
efficiently manage resources in a cloud environment. 

Ideally, the burden of dynamically managing resources in a 
cloud environment should be automatized so that system 
administrators do not have to worry for the significant 
workload changes that may occur in a short term basis, 
typically minute by minute. To do so, some service providers 
offer some form of auto-scaling controller that takes as input a 
set of measurements from the system and makes decisions 
about allocating or releasing resources as needed. The auto-
scaling controller itself depends on a set of control parameters 
that determine how fast it will react to changes, how well the 

allocated resources will match the workload on the system, and 
how much will it cost to operate the whole system. 

Determining an optimal set of parameters for the auto-
scaling controller is not a trivial task and it commonly done by 
trial and error. The main contribution of this paper is posing the 
auto-scaling parameter determination problem as an 
optimization problem that can be numerically solved and used 
in practical systems so that the auto-scaling controller operates 
in a self-managed manner. We also present an implementation 
of the system and tests performed on real workload traces that 
show it benefits. 

In §II we present our problem and its application scenario. 
§III describes the design of our auto-scaling controller and §IV 
explains the self-tuning technique adopted for our controller. In 
§V we present the evaluation of the system based on traces of 
actual cloud workloads. Finally, in §VI we review the related 
work and highlight the differences with respect to our 
mechanism. 

II. CONTEXT 

We consider the problem of dynamically allocating 
resources for an application deployed in the cloud when 
resource requirements are not known in advanced, exhibit high 
variability, and are difficult to predict. This context precludes 
the use of schedule-based allocation mechanisms. Henceforth, 
we concentrate in the problem of dynamically allocating 
resources in an Infrastructure as a Service (IaaS) cloud taking 
as input various performance measurements of the system. 

A. Resource allocation and measurment 

It is customary that IaaS providers handle resource 
allocation in the form of Virtual Machines (VMs). There are 
usually several VM sizes and the cloud provider has no access 
to the guest OS running on those VMs. Therefore the 
monitoring infrastructure only registers variables available at 
the hypervisor level. We refer to this kind of measurements as 
blackbox metrics. It is also possible to have monitoring agents 
running inside the VMs which would have access to 
application dependent metrics. In this case they would be 
called whitebox metrics.  

For the purpose of our proposed system we will be using 
only blackbox metrics; although we hypothesize the general 
principles stated in this paper could be extended to handle the 
case of whitebox metrics as well. Validation of this hypothesis 
is left for future work. 
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B. Cost model 

Standard per hour pricing policy is to charge a fixed 
amount per hour or fraction of resource usage. The hourly rate 

      is determined by the type of the ith resource, namely T(i). 

Thus, the cost of n resources is the summation 

              
                       

    
  

     (1) 

 

where          and                are the times at which the ith 
resource is started and terminated, respectively. The ceil 
operation captures the fact that the customer is charged the 
hourly rate if the resource is used for a fraction of an hour. The 
key observation from this equation is that churn is very 
inefficient. For example, launching two instances for a few 
minutes each would cost twice as much as launching one 
instance for one hour. This insight will be fundamental in 
supporting the termination policy used by our controller, as 
discussed in the next section. 

III. IMPROVED AUTO-SCALING TECHINIQUE 

Fig. 1 shows the overall architecture of an auto-scaling 
system. Its main components are:  

1) Smoothing: It is responsible of obtaining measurements 
from the monitoring service, applying a smoothing filter 
(e.g. SMA, EWMA), and computing an estimate of the 
workload to be used for auto-scaling decisions. Other 
proposals [1] include the use auto regression techniques to 
compute these estimates.  

2) Controller: Given the estimated workload it determines the 
optimal number of instances required. The optimizer 
solves the problem of minimizing the total cost of the 
service while satisfying the application requirements.  

3) Resource allocator: Takes the number of instances 
requested by the controller and instructs the management 
infrastructure to launch/terminate instances as required.  

 

Fig. 1. Architecture of the auto-scaling system 

A. Smoothing 

Workload measurements typically exhibit high variability 
which makes resource management at small time-scales not 
feasible. Launching a new instance typically takes from tens of 
seconds to minutes and the workload contains many short 
duration spikes. Instead of making allocation decisions based 

on short duration spikes the controller needs to identify 
workload variations that will persist for long enough periods of 
time in order to launch or terminate VMs. 

Low-pass filters such as the Simple Moving Average 
(SMA) or the Exponentially Weighted Moving Average 
(EWMA) are commonly used to smooth the inputs. The SMA 
filter is defined as the average of the last m samples of a 
metric, being m the parameter to be optimized. Large values of 
m represent a large smoothing effect and slow response to 
changes. On the other hand, for small values of m the 
smoothed signal will closely follow the metric and give fast 
response to rapid changes. The EWMA filter weights the 
history of the signal by a series of exponentially decreasing 
factors. An exponential factor close to one gives a large weight 
to the first samples and rapidly makes old samples negligible. 
On the other size, a factor closer to zero gives little weight to 
the last samples and makes the contribution of old samples 
more significant, producing a more smoothed output.  

With either filter, there is a tradeoff between how fast the 
filter reacts to persistent changes in the input and how well it 
smooth out short duration spikes. Hence, the optimal filter 
parameter is one of the key variables to be determined using 
the tuning technique to be described in §IV. 

B. Controller 

It is responsible for keeping the right number of VMs in the 
cluster so that the resource requirements of the application are 
satisfied. Overprovisioning increases the cost, so the 
controller’s job is to find the minimum number of VMs needed 
by the application. In addition to the number of VMs, there 
may be additional type restrictions, e.g. on the amount of 
memory, or number of cores per VM. 

For the controller, we adopt a simple hysteresis controller1   
with the following parameters:  

 Thresholds: Upper and lower fractions of the resource’s 
capacity used to trigger the launch/termination of a VM.  

 Update policy: How to increase/decrease the number of 
instances when needed. In either case, the policy can be 
additive or multiplicative.  

Determining the optimal parameters of the controller will 
be part of the job of our tuning technique. 

C. Resource allocator 

The resource allocator communicates with the cloud 
management services to launch/terminate virtual machines as 
indicated by the controller. As observed in §II.B, there is no 
point in terminating a VM if the amount of time it has been 
running for is not a multiple of an hour. For this reason we 
adopt a lazy termination policy that only terminates a VM if it 
has been running just below a multiple number of hours and 
the controller is requesting a lower number of VMs. In the 
meantime these instances contribute to handling the workload 
in the cluster, thus reducing response times and providing some 
buffer capacity to handle short load spikes at no extra cost. 

                                                        
1
 essentially the same one available in Amazon Web Services (AWS) 
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Another feature (found for example in AWS) is the cool-
down period. The cool-down period prevents the resource 
allocator of making any changes to the system for certain 
amount of time. The motivation behind is to avoid frequent 
creation/termination of instances when the workload exhibits 
high variability, as this would have a negative impact on the 
cost of the service. We also implemented this feature in order 
to evaluate its importance and the associated tradeoffs. 

IV. PARAMETER TUNING 

Clearly, the performance of the auto scaling system 
depends on the setting of all the adjustable parameters. In our 
system we have one parameter for the smoothing filter, four 
parameters for the controller (fixing the update policy) and one 
extra parameter for the cooling period. We represent the 
parameters as the parameter vector τ. 

In order to determine the optimal setting of these 
parameters, we pose the following optimization problem: 

                            ,  (2) 

where         is the cost of the service as defined in (1) 
and            is a measure of the workload that exceeded the 
allocated capacity, i.e. it measures by how far and for how long 
the presented workload exceeded the allocated capacity, as 
given by 

                        
 
   ,  (3) 

with    being the workload at time t,    being the allocated 
capacity at time t, and   a weighting factor. For the purpose of 

the experimental evaluation we set           so that a unit 

of excess workload costs the same as a unit of capacity. In our 
model time is quantized and arrival of samples from the 
monitoring system and the action of the controller occur with 
the same sampling period (5 min in our traces). 

Ideally, for tuning the controller all we need to do is to 
solve the optimization problem (2) for the optimal value of τ 
over all possible inputs to the system. Unfortunately, there is 
no closed form description of the input and it is easy to show 
that the optimal solution is not unique.  Instead we adopted the 
following technique: Given a set of traces, we split them into a 
training set and a testing set.  

The training set is used to conduct a numerical optimization 
in order to find the parameter vector  , and the test set is used 
for evaluating its performance. The numerical optimization 
uses simulated annealing, and starting from some initial 
parameter vector    uses a temperature parameter to obtain 
neighbor parameter vectors.  

The minimum among the neighbors is chosen as the 
starting point for the next iteration. At the end of each iteration, 
the algorithm reduces the temperature, thus reducing the range 
for choosing random neighbors. After a given number of 
iterations of not finding improved parameter vectors, the 
optimization finishes. 

V. EXPERIMENTAL EVALUATION 

For the evaluation of the system we used a set of traces 
taken from actual deployments of EC2 instances in AWS. The 

traces cover a period of about 15 days and include all the 
metrics captured by the CloudWatch service, among others, 
CPU utilization, disk I/O, and network utilization. In these 
traces disk I/O activity was minimal, thus we made no further 
use of these data. From these traces we took a 50hr interval as 
training interval, and used other intervals as test cases. As the 
workload in the trace is relatively small, we scaled it up by a 
constant factor in order to simulate larger environments. 

We implemented in Matlab the standard auto-scaling 
system offered by AWS and our improved system. The first 
one will give a baseline for comparison purposes. We then 
used our controller tuning technique (see §IV) to obtain the 
optimal parameter vector for both systems with the same 
training trace. Then, running the test trace in both systems we 
obtained the performance metrics for our analysis. The 
standard auto-scaling controller is setup to use a SMA 
smoothing filter and multiplicative increase/decrease policies. 
Our controller uses an EWMA filter and multiplicative 
increase/decrease policies. Both systems implement the cool-
down policy. 

A. Number of  active instances over time 

A first experiment evaluates the number of active instances 
over time and their liveness period, i.e. the amount of time they 
existed in the cloud. Fig. 2 shows the number of compute units 
(CU)2 for an illustrative test case. It shows both cases, standard 
and improved auto-scaling.  

Although both track the workload (plus a safety margin as 
defined by the upper threshold), it is noticeable that the 
improved auto-scaling tracks more closely the peaks and the 
valleys and reacts faster to changes. This is especially 
remarkable in the valleys where the lazy termination policy 
keeps instances alive for up to a multiple of one hour, but still 
does a better job tracking the valleys than the cool-down 
policy. 

The effect of the lazy termination policy is shown in Fig. 3 
which shows the histogram of the liveness period of instances 
for the same test cases. For standard auto-scaling they take 
arbitrary lengths, and for improved auto-scaling they always 
take a multiple of twelve sampling periods minus one (12n−1). 
The minus one is due to our implementation terminating 
instances one sampling period before the hour to avoid using 
any fraction of the next hour. 

It is important to notice that our parameter tuning algorithm 
set the cool-down period to 3 sampling periods in the case of 
the standard auto-scaling and to 0 in the case of the improved 
auto-scaling technique. This is the result of solving the 
optimization (2), which in the first case is forced to keep the 
cool-down period larger than zero to void the problem of 
frequent termination/creation, which would significantly 
increase the cost.  

In the second case, the cool-down period does not play any 
role in determining the cost of the service, as termination of 
instances is governed by the lazy termination policy. 

                                                        
2
 For our analysis we set 100 CU equal to 1 Amazon’s ECU 
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a) Standard auto-scaling 

 

b) Improved auto-scaling 

Fig. 2. Number of active instances over time 

B. Cost and penalty improvements 

Fig. 4 shows the costs and penalties for all the test cases 
considered. Overall the improved technique has a small 
reduction of service cost, albeit a few exceptions. However, the 
comparison of penalties shows a significant reduction of the 
penalty with the improved algorithm. Considering all test 
cases, the average reduction of the cost was 6.3% and the 
average reduction of the penalty was 55.5%. 

VI. RELATED WORK 

Existing literature considers various approaches for 
handling the allocation of resources in a cloud computing 
environment. Although some approaches have some features in 
common with our solution, there are also important 
differences. Following we present a brief description of the 
most relevant approaches and highlight the main differences 
with respect to our work. 

 

a) Standard auto-scaling 

 

a) Improved auto-scaling 

Fig. 3. Histogram of instance liveness period 

Bodík et al [2] present a technique that uses statistical 
machine learning to fit a non-linear performance model on the 
most recent set of samples. This model produces a target 
number of servers to satisfy the existing Service Level 
Agreements (SLAs), and this value is filtered through a 
hysteresis filter to avoid oscillations in the controller. The 
model captures the relationship between the number of request 
that fail the SLA’s threshold and the current number of servers 
and workload. This technique does not take into account the 
cost of the service and under high variability on the workload 
would lead to frequent creation and termination of VMs, the 
churn problem that our technique avoids while minimizing the 
operational cost of the service. 

Bi et al [3] developed a technique that uses a hybrid 
queueing model as the basis to provision resources for multi-
tier applications running in a cloud data center. Their technique 
takes as inputs the request arrival rate, the service rate of the 
VMs for each tier, and the response time from the application.  
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Feeding this information into the model, makes it possible 
to determine the number of VMs required. The main difference 
with our system is that this technique relies on application level 
measurements, which may not always be available or could 
require and additional development and integration effort.  

 

a) Comparison of costs 

 

b) Comparison of penalties 

Fig. 4. Comparison of costs and penalties 

Padala et al [4] adopt a blackbox approach that uses control 
theory to manage the virtual resources assigned to the 
application. The controller in this system assigns entitlements 
of the physical resources to the VMs they host, in such a way 
that the application performance meets the preset SLAs. The 
main difference with our work is the assumption that 
entitlements to physical resources can be adjusted online. 
Although this functionality is available in several virtualization 
frameworks, it is not commonly offered by public IaaS 
providers, which prefer to offer a set of predefined instance 
sizes. 

Turner et al [5] explore a system that builds an empirical 
model of the application performance. Their system is tailored 
for multi-tier applications running on a virtualized 

infrastructure. Data collected by the monitoring system 
includes resource consumption and application response time. 
A regression algorithm fits a model to the collected data and 
this model is used to adjust allocation of resources to the 
different virtual machines. Sangpetch et al [6] further develop a 
close-loop controller system that uses the model and a target 
Service Level Objective (SLO) to adjust the allocation of 
resources to each VM in the system. The controller uses both, a 
long term and a short term prediction to adjust the resource 
allocation to each of the VMs. These systems also rely on the 
assumption that the customer has control over the amount of 
resources assigned to each VM, which is not usually the case 
with IaaS providers. 

Chandra et al [1] present a technique that combines 
measurements, a generalized processor sharing model, and 
time-series analysis to determine the fraction of the resources 
to assign to each of the application components. The allocated 
resources assure that the application meets its Quality of 
Service (QoS) constraints. This technique applies to the case of 
VMs sharing a host in which the entitlement of resources for 
each component is adjustable and the controller has access to 
internal performance metrics of the application. However, it is 
different to the problem we are handling because we deal with 
predetermined instance sizes, our goal is minimizing the 
service cost and penalty, and we restrict to blackbox metrics. 

It is also worth noticing that there has been work on 
resource management mechanisms based on the idea of 
migrating VMs, as for example [7]. In this study migration was 
not considered as our focus is a public IaaS cloud, where 
migration services are not commonly available. 

The problem of determining the optimal set of resources of 
various types with multiplicity been shown to be NP-Complete 
by Chang et al [8]. They also present an approximation 
algorithm. This algorithm considers the problem in a static 
setting, thus it is not applicable in the dynamic environment we 
consider. A related work by Dougherty et al [9] considers the 
auto-scaling problem from the point of view of minimizing the 
cost and energy consumption. In their work they used a Model 
Driven Engineering (MDE) approach combined with a 
constraint satisfaction technique to find the set of instances that 
supply the application requirements while minimizing cost and 
energy. This work assumes a static context where the 
application requirements remain stable over time. 

VII. CONCLUSIONS 

We have presented an autonomic auto-scaling controller 
specifically designed for allocating resources in a cloud 
datacenter under dynamic workloads. Our controller reduces 
the service cost and the performance penalties when compared 
to the optimized standard hysteresis controller commonly 
available from public cloud providers. Both characteristics are 
highly desirable for whoever deploys an application in an IaaS 
cloud.  

Our controller departs from well-known auto-scaling 
controllers by incorporating a fast response smoothing filter, a 
numerical optimization technique for finely tuning the 
controller parameters, and implementing the lazy termination 
policy, which postpones the decision to terminate an instance 
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until the very last moment possible without extra charges. 
Also, our experiments showed that the lazy termination policy 
effectively makes the cool-down period unnecessary. The cool-
down period limits the response time in the event of large 
workload changes, thus increasing performance penalties. On 
the other hand, the cool-down period does not reduce the 
service cost when using our improved controller 
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