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Abstract— In this paper an ensemble of supervised machine 

learning methods has been investigated to virtually and 

dynamically calibrate the cosmic ray sensors measuring area 

wise bulk soil moisture. Main focus of this study was to find an 

alternative to the currently available field calibration method; 

based on expensive and time consuming soil sample collection 

methodology.  Data from the Australian Water Availability 

Project (AWAP) database was used as independent soil moisture 

ground truth and results were compared against the 

conventionally estimated soil moisture using a Hydroinnova 

CRS-1000 cosmic ray probe deployed in Tullochgorum, 

Australia. Prediction performance of a complementary ensemble 

of four supervised estimators, namely Sugano type Adaptive 

Neuro-Fuzzy Inference System (S-ANFIS), Cascade Forward 

Neural Network (CFNN), Elman Neural Network (ENN) and 

Learning Vector Quantization Neural Network (LVQN) was 

evaluated using training and testing paradigms. An AWAP 

trained ensemble of four estimators was able to predict bulk soil 

moisture directly from cosmic ray neutron counts with 94.4% as 

best accuracy. The ensemble approach outperformed the 

individual performances from these networks. This result proved 

that an ensemble machine learning based paradigm could be a 

valuable alternative data driven calibration method for cosmic 

ray sensors against the current expensive and hydrological 

assumption based field calibration method. 

Keywords—Cosmic Ray sensor; Ensemble supervised machine 

learning;   Area wise bulk soil moisture. 

I. COSMOZ DATA AND SYSTEM 

The Australian Cosmic Ray Sensor Soil Moisture 
Monitoring Network (CosmOz) (Figure 1) [1-2] is a near-real 
time continental scale soil moisture monitoring system 
originally inspired by the United States Cosmic-ray Soil 
Moisture Observing System (COSMOS) [3-5]. CosmOz aims 
to test the utility of Hydroinnova CRS-1000 cosmic ray soil 
moisture probes [3] (Figure 2) for water management, water 
information, hydrological process research applications and 
test the feasibility and utility of a national near-real time soil 
moisture measurement network.  

The cosmic ray soil moisture probe measures the neutrons 
released when cosmic rays interact with hydrogen atoms in 
water molecules found in the soil and atmosphere. The number 
of fast neutrons emitted into the atmosphere is inversely 
correlated with soil moisture. Figure 3 shows the fundamental 
principal behind these cosmic ray probes [5-6].  

Data from the Hydroinnova CRS-1000 cosmic ray soil 
moisture probe deployed in the Tullochgorum site in Tasmania, 
Australia was used for this study. It consists of two neutron 
detectors: a bare detector that responds mainly to thermal 
neutrons and a polyethylene-shielded detector that responds 
mainly to epithermal-fast neutrons. Each counter has its own 
high-voltage power supply and a pulse module to analyse the 
signal generated by the neutron detector tube. An Iridium 
satellite modem then transmits the data at one hour time 
intervals to the CosmOz CSIRO data server [7-8].  

 

Fig. 1. CosmOz has already deployed Hydroinnova CRS-1000 cosmic ray 
soil moisture probes at 11 different locations throughout Australia. 

Tullochgorum CosmOz cosmic ray sensors were calibrated 
using soil samples collected around the probe.  Soil moisture 
was measured using the oven-drying method, and area-average 
soil moisture was computed for all samples [9]. Finally the 
average soil moisture content within the footprint of the probe 
was used to convert neutron counts into soil moisture [10-11]. 
Figure 4 shows the rainfall, pressure corrected neutron count 
profile, and conventionally estimated soil moisture profile for 
the period chosen for this study (July 2011 to May 2013) at the 
Tullochgorum site. 
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Fig. 2. The Australian Cosmic Ray Sensor Network‘s Hydroinnova CRS-

1000 cosmic ray soil moisture probe deployed at the Tullochgorum site. 

 

 

Fig. 3. Schematic flow diagram of the fundamental principal behind this 

cosmic ray probes. 

II. CALIBRATION PROBLEM SPACE 

The current field calibration method for cosmic ray sensors 
is significantly time consuming and expensive. For the current 
method, it is also essential to conduct at least two field 
calibrations (dry calibration during summer and wet calibration 
during winter) to complete the minimum requirement for of the 
calibration process. Ideally monthly calibration is required, 
which makes the current calibration process very expensive 
and impractical. Within the current calibration method, 
corrective equations are presently used to nullify the effects of 
universal cosmic radiation, lattice water in soil, pressure and 
humidity. However, there are uncertainties and questions about 
the effectiveness of these calibration equations in order to 
produce real-time accurate soil moisture estimations. The 
process is prone to human error as it is based on limited 
experimental data, hard manual field sampling protocol, and 
theoretical assumptions [1-9].  

 

 

Fig. 4. CosmOz Data from the period July 2011 – May 2013 were used for 

testing and validation for this research study, (a) Daily rain fall, (b) Pressure 

corrected neutron counts, (c) Estimated bulk soil moisture profile for 

Tullochgorum site – converted from pressure corrected neutron count data 

generated by the Hydroinnova CRS-1000 cosmic ray soil moisture probe.. 

The main focus of this study was to investigate the 
possibilities of a complete data driven virtual sensor calibration 
approach which could be well suited for this purpose. We 
proposed an ensemble machine learning based alternative 
method to capture the behavioural aspect of the neutron count 
observations compared with the real soil moisture 
measurements. The aim was to develop a virtual calibration 
method, cross validated against an external ground truth data 
source, independent of CosmOz network. The Australian 
Water Availability Project (AWAP) data base [12] has been 
used for this purpose. 

III.  EXPERIMENTAL DATA SETS DESIGN 

The AWAP soil moisture data base [12] was used as an 
external data source, independent of CosmOz network to 
develop the virtual calibration method [2]. The AWAP 
database monitors the state and trend of the terrestrial water 
balance of the Australian continent, using model-data fusion 
methods to combine both measurements and modeling. The 
AWAP database provides 16 environmental attributes from 
which Radiation (MJ/m2), Max Temperature (degC), Min 
Temperature (degC), Rainfall (mm), Soil Evaporation (mm), 
Local Discharge (Runoff+Drainage) (mm), Surface Runoff 
(mm), Open Water Evaporation ('pan' equiv) (mm), Deep 
Drainage (mm), Sensible Heat Flux (MJ/m2) and Latent Heat 
Flux (MJ/m2). These attributes were used as part of the 
training and testing input for the machine learning algorithms. 
Selection of these inputs from the whole AWAP data set was 
based on expert domain knowledge and principal component 
analysis (PCA) as feature selection method, where eleven least 
correlated attributes (covering 99% of data variance) were 
selected for the experimental design.  Figure 5 shows the 
training and testing inputs from AWAP. The pressure corrected 
fast neutron count time series from CosmOz was also 
considered as part of the whole training and testing input sets 
(Figure 4). On the other hand Upper Layer Soil Moisture (%) 
and Lower Layer Soil Moisture (%) were used as the training 
target for the data experiments (Figure 5). An AWAP data 
adaptor was developed and used to download and unzip all 
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AWAP folders, process the sequential NetCDF gridded data 
files, and to extract all the time series. Various training and 
testing data sets were formed based on a randomized 
incremental optimization algorithm to evaluate the 
generalization capability of the proposed individual and 
ensemble machine learning architectures. Combinations of % 
training data and % testing data were varied from {10%-90%} 
to {50%-50%} to identify the best possible training-testing 
data balance to achieve maximum prediction accuracy with 
highest possible sensitivity and specificity. 

 

 
 

Fig. 5. Individual time series were extracted from the AWAP gridded maps 

based on pixel values corresponding to the latitude- longitude information of 

Tullochgorum site in Tasmania, Australia. Various training and testing data 
sets were formed based on a randomized incrementing optimization algorithm. 

IV. SUPERVISED ESTIMATORS  

Four supervised estimators, namely Sugano type Adaptive 
Neuro Fuzzy Inference System (S-ANFIS) [17-18], Cascade 
Forward Neural Network (CFNN) [19-21], Elman Neural 
Network (ENN) [22-23] and Learning Vector Quantization 
Neural Network (LVQN) [24-25] were selected for this study. 
In previous work related to this topic S-ANFIS was used for 
soil moisture estimations [1].  

A. Rationale 

The main rationale behind selecting these four supervised 
estimators was to conduct a comparative study on significantly 
varied neural network architectures predicting soil moisture 
based on the same fast neutron counts to identify a better 
architecture for this calibration purpose [26-27]. In the later 
stage of this paper, an ensemble approach has been proposed 
for better soil moisture estimation and dynamic cosmic ray 

probe calibration. In an ensemble approach selection of widely 
varied supervised estimators was another essential rationale to 
achieve much better prediction generalization and higher 
calibration accuracy.  Ultimate goal was to have a parallel 
processing of the neutron count data using multiple ANNs to 
capture significant data behavioural variance in relation to the 
soil moisture and also in the predicted time series; so that 
ensemble generalization can perform better than one individual 
ANN, hence they could complement each other on a dynamic 
range. The MATLAB programming environment was used to 
train and test these estimators. Individual performances were 
evaluated based on the common training and testing paradigms 
at any given time. 

B. Performance Evaluation 

Performance assessment was conducted using a point to 
point comparative study between the soil moisture time series 
output from the trained estimators during testing and the soil 
moisture time series output obtained from the existing field 
calibration methodology. Higher percentage similarity between 
these two time series was essential to justify the effectiveness 
of the individual estimator based alternative method before 
further improvement could be achieved. Each point on the both 
time series was representing a single day, so point to point 
comparison provided a daily comparison.  

A predictive performance estimation mechanism based on 
time series cross correlation and auto correlation was applied to 
measure percentage accuracies of the predictions. High 
correlation between expected soil moisture profile and the 
predicted one represented better prediction performances. 
Finally, performances of these estimators were quantified by 
prediction accuracy ((TP + TN) / (TP + FN + FP + TN) where 
true positives =TP, true negatives =TN, false positives = FP, 
false negatives = FN). The evaluation process also included 
sensitivity (TP / (TP + FN)); specificity (TN / (FP + TN) 
calculations to justify the estimation correctness. As in 
hydrology ± 3% tolerance limit is acceptable in soil moisture 
measurements, point to point comparison between two time 
series provided us TP, TN, FP, and FN estimates [4-6].  

C. S-ANFIS Estimator 

S-ANFIS is a neural network method based on the Takagi–
Sugeno fuzzy inference system. Since it integrates both neural 
networks and fuzzy logic principles, it has the potential to 
capture the benefits of both in a single framework [17]. S-
ANFIS uses only differentiable functions thus standard 
learning procedures from neural network theory can easily be 
used. The parameters are propagated again, and in this epoch 
back-propagation is used to modify the antecedent parameters 
or the membership functions, while the consequent parameters 
remain fixed [18]. The generation of the rule base is 
unsupervised followed by supervised learning to update the 
rule parameters. In this study the supervised part of the S-
ANFIS estimator was a multi-layered perceptron network 
(MLPN). A sigmoid activation function in the form of a 
hyperbolic tangent has been used in this estimator. 

D. CFNN Estimator 

CFNN is similar to feed-forward networks, but include a 
connection from the input and every previous layer to the 
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following layers. As with feed-forward networks, a two-or 
more layered cascade-network can learn any finite input-output 
relationship arbitrarily and predict time series sequences well;   
provided it has enough hidden neurons [17, 19-21]. Sigmoid 
activation function with normalization between -1 and 1 has 
been used. 

E. ENN Estimator 

The ENN is a simple recurrent neural network consisting of 
an input layer, a hidden layer, and an output layer. In this way 
it resembles a three layer feedforward neural network. Elman 
neural networks are very useful for predicting time series 
sequences, since they have a limited short-term memory [17, 
22-23]. Short-term memory provides a unique capability to the 
ENN, by storing the previous learning step which could be 
used to influence the next learning step. At each time step, the 
input is propagated in a standard feed-forward fashion, and 
then a learning rule is applied. The fixed back connections 
result in the context units always maintaining a copy of the 
previous values of the hidden units (since they propagate over 
the connections before the learning rule is applied). Thus the 
network can maintain a sort of state, allowing it to perform 
such tasks as sequence-prediction that is beyond the power of a 
standard multilayer perceptron. 

F. LVQN Estimator 

A LVQNN consists of two layers competitive layer and 
linear layer. The first layer maps input vectors into clusters that 
are found by the network during training. The second layer 
merges groups of first layer clusters into the classes defined by 
the target data. The total number of first layer clusters is 
determined by the number of hidden neurons. The larger the 
hidden layer the more clusters the first layer can learn, and the 
more complex mapping of input to target classes can be made 
[17, 24-25]. 

V. GENERALISATION RESULTS AND DISCUSSION 

The CFNN network required typically 2,000 training 
iterations, ENN required only 750 training iterations and 
LVQNN needed only 1400 training iterations. The CFNN 
(with learning rate equal to 0.42 and a momentum term equal 
to 0.5) with eleven inputs, ten hidden and one output neuron 
was able to reach a best success rate of 84.3% (rates varied 
between 67% - 84.3% for various training-testing paradigms as 
describe in section 3) in correct soil moisture prediction while 
using {75% training – 25% testing} paradigm. The ENN with 
same architecture (with an additional recurrent layer with tap 
delay 1:5, where hidden later size was 50, and 'trainlm' as 
training function) was able to reach a best success rate of 86% 
(rate varied between 75% - 86%) while using {70% training – 
30% testing} paradigm. In the LVQNN, neurons were added to 
the network until the sum-squared error (SSE) falls beneath an 
error goal (0.001), or a maximum number (172) of internal 
neurons was reached. It was important that the spread 
parameter was large enough so that the hidden neurons respond 
to overlapping regions of the input space, but not so large that 
all the neurons respond in essentially the same manner. The 
spread parameter was set to 0.79. The LVQNN was able to 
achieve a maximum of 80% prediction accuracy using {65% 
training – 35% testing} paradigm. S-ANFIS training was 
fastest among all of the estimators. S-ANFIS was able to 

predict bulk soil moisture at an accuracy of 87% while using 
{80% training – 20% testing} paradigm (accuracy varied from 
72% - 87%).  

TABLE I.  COMPARATIVE PREDICTION ACCURACY RESULTS  

 

Optimum 

Experimental 

Paradigm where Best 

Individual 

Performances were 

Recorded 

S-ANFIS 

% 

Accuracy 

CFNN 

% 

Accuracy 

ENN 

% 

Accuracy 

LVQNN 

% 

Accuracy 

{75% training – 

25% testing} 

83 84.3 78.4 73 

{70% training – 

30% testing} 

76.5 67 86 77 

{80% training – 

20% testing} 

87 75 75 74 

 

{65% training – 

35% testing} 

72 

 

79.5 76.3 80 

Best Sensitivity 

Recorded (%) 
81 75 73 72 

Best Specificity 

Recorded (%) 
76 84 70 79 

Best False 
Positive (%) 

6.91 12 9.23 11.2 

Best True 

Negative (%) 
89.5 87.6 85 82 

 

S-ANFIS was the overall best performer compared to the 
other three estimators whereas LVQNN was able achieves 
maximum prediction accuracy with least amount of data being 
used from training. TABLE 1 summarizes all the generalization 
results using all four SML estimators in terms of correct 
percentages of soil moisture prediction. Results are presented 
for four different experimental scenarios with different 
combination of training-testing, where individual supervised 
estimator had maximum prediction accuracy. It was evident 
that although prediction accuracies were significantly high, but 
there was no best architecture as individual estimator’s 
performance sensitivity and specificity were quite mixed with 
no clear winner. Ultimately supervised neural network based 
alternative virtual calibration could only be useful if a better 
prediction accuracy along with higher sensitivity and 
specificity could be achieved than what is recorded in the 
TABLE 1. 

At this point it was a natural progression to apply an 
ensemble learning paradigm where several supervised 
estimators could be jointly used to calibrate cosmic ray 
sensors. In the next section two layered ensemble approach 
was applied to combine and complement these four estimators 
in order to explore any possible improvement in soil moisture 
estimation and virtual calibration of these cosmic ray sensors.  
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VI. SUPERVISED ENSEMBLE APPROACH  

A. Two Layered Ensemble Methodology 

Two layered ensemble approach has been proposed and 
developed in this study to explore the possibility of overall 
improvement. In the first layer global training was performed 
on all four supervised estimators (S-ANFIS, CFNN, ENN and 
LVQNN) using a common training and target set. Once trained 
all the estimators were simulated (tested) using the same 
training inputs, but without the targets to generate four 
individual predictions.  

 

(a) 

 

(b) 

Fig. 6. (a) The schematic design for the layer 1 of the proposed ensemble 

supervised machine learning approach for cosmic ray sensor calibration, where 

individual supervised estimators are being trained in parallel; (b) Second layer 

of the ensemble approach, where SOMN is applied to decorrelate the training 

predictions against the training targets to select the highly correlated ones, and 
throw away the least correlated predictions. 

The next layer of this proposed approach was constructed 
using a self-organizing map network (SOMN) and weighted 
averaging block. A self-organizing map (SOMN) is a type of 
artificial neural network that is trained using unsupervised 
learning to produce a low-dimensional (typically two-
dimensional), discretized representation of the input space of 
the training samples, and called a map. SOMN may be 
considered a nonlinear generalization of PCA, where cross 
correlation among various inputs get projected on an empirical 
orthogonal plane based proportion of data variance captured 
along different components. SOMN was selected to decorrelate 
the predictions from the ANNs as it has more generalization 
capability to cover data variance than PCA or any cross 
correlation based methods, so less amount of data variance 
remains unexplained [33-34]. Individual ANN is providing 
single dimensional prediction. Four predicted time series from 
four different estimators are combined as inputs to the SOM.  

Once trained initial SOM grid (the 100 neurons with 
network size 10 X 10) was re-distributed among the data 
points, distributed concentration of the trained neurons formed 
natural separated clusters. Two clusters were highly correlated 
if they were comparatively closely positioned - hence they 
were selected. Least correlated ones were thrown out. An 
objective function based on intra cluster distance measure was 
used to determine the cluster correlations (Figure 7).   

 

Fig. 7. The representation of initial cluster positioning of the predicted time 

series from the four different supervised estimators. SOMN was applied to 

decorrelate these clusters to select fewer highly correlated clusters (typically 
first two in most of the cases).  

SOM decorrelate these inputs to create individual pattern 
maps (and clusters) for individual input time series based on 
training weights (Fig. 8). Based on the SOMN natural 
clustering (or natural grouping of the predicted values) on the 
predictions from the layer 1 and the training targets, highly 
correlated ones were selected as they had statistically similar 
fluctuations. Euclidian distance among the SOM clusters were 
used to define the number of similar clusters hence highly 
correlated. Data points which belonged to the similarly 
positioned clusters were then marked and traced back to flag 
the corresponding original supervised estimators together as 
highly correlated. Data points belong to those selected clusters 
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were then traced back to the corresponding ANN methods, and 
predictions from those methods were selected for averaging to 
form the final one dimensional prediction. Initial prediction 
values proposition in an initialized SOMN are depicted in 
Figure 8. 

 

Fig. 8. Example of trained SOMN based de-correlated individual weight maps 

for the four supervised estimators. In this instance predictions from ANFIS and 

LVQNN have been selected for final stage of prediction estimation, while 80% 
data is used for training. 

The average of the output of several different models 
     could be called as an ensemble model which will take the 

form of                
 
     The idea of averaging different 

outputs from different models was developed in the neural 
network community [28-29]. Later it was also established by 
Krogh et al. [30] that the generalization error of the ensemble 
could be lower than the mean of the generalization error of the 
single ensemble members. It has also been reported in the 
literature that the generalization error of an ensemble model 
could be improved if the predictors on which averaging is done 
disagree and if their fluctuations are uncorrelated [31-32]. 
Development of the ensemble approach was primarily focused 
on establishing a mechanism where decomposition of several 
predictions could be done in order to establish the highly 
correlated ones and throw away the uncorrelated ones.  

Selected predictions were then averaged to form the final 
prediction. Sorted corresponding cross correlation coefficients 
were used to perform the weighted average. Based on the SOM 
weight maps correlation coefficient between [-1 and +1] were 
generated. Ensembles with higher coefficients are given higher 
weighting in the prediction. This additional processing was 
used to refine the final outcome in more realistic way. First two 
highly correlated predictions were used to perform the 
weighted average to form the final outcome. Based on the 
nature of dynamically available time series different estimators 
were selected based on SOM based de-correlation and 
selection processes.  

B. Ensemble Performance Evaluation 

Performance of this newly proposed ensemble architecture 
was evaluated using rigorous testing paradigms. As described 
in section 3 amount of data used in testing was varied from 
10% to 50%. Evaluation of the generalization performance 

concluded that the best bulk soil moisture prediction was 
achieved while 30% data was used for testing with 70% being 
used for training. Selected ANNs during ensemble training 
phase were then used in the testing phase as it was obvious that 
they had the best generalization capabilities for that particular 
training-testing paradigm instance. Accuracies were calculated 
based on the final testing prediction and the ground truth 
testing targets. Overall accuracy was 94.4% with 91% 
sensitivity, 90% specificity, 2% false positive and 95% true 
negative. Results based on ensemble show a clear improvement 
from the prediction point of view, which also proved the 
intended effectiveness of the proposed ensemble approach. 
Figure 9 shows the prediction performance based on ensemble 
approach. 

 

Fig. 9. Ensemble approach based soil moisture prediction performance, (red 

curves while blue represents testing target ground truth). 

C. Ensemble Calibration Evaluation 

Based on ensemble performance evaluation results it was 
evident that ensemble approach could be able to provide a 
unique platform for calibrating cosmic ray sensors on a 
dynamic basis. Two layered ensemble approach could be used 
as frequently as possible to train and capture new neutron 
counts data to estimate soil moisture profile. Higher 
performance accuracy with very low false positive results 
during testing phase shows the high level of reliability on this 
approach. Ensemble based approach is a virtual approach with 
high degree of flexibility which offers high frequency remote 
sensor calibration compared to the expensive field soil 
sampling method. This dynamic machine learning based virtual 
calibration could be a benchmarking methodology for 
calibrating cosmic ray sensors measuring area wise bulk soil 
moisture. 

VII. CONCLUSION 

    This study concluded the ensemble of supervised 
machine learning algorithms could be an effective alternative 
calibration method for remote area wise estimation of bulk soil 
moisture using the cosmic ray sensor’s fast neutron count 
readings. Using the AWAP database it was possible to train the 
ensemble supervised estimator with historical ground truth soil 
moisture data, which provided better generalization capability 
to predict accurate soil moisture from the cosmic neutron 
counts. Prediction results were very encouraging. Potentially 
this could help us to develop a web based remote virtual sensor 
calibration mechanism. This way the cosmic ray sensor could 
be monitored and calibrated virtually and continuously. 
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