
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

74 | P a g e

www.ijacsa.thesai.org

On The Performance of the Gravitational Search

Algorithm

Taisir Eldos

Department of Computer Engineering

Faculty of Computer and Information Technology

Jordan University of Science and Technology

Irbid - Jordan

Rose Al Qasim

Department of computer Engineering

Faculty of Engineering and Technology

Al Balqa Applied University

Amman, Jordan

Abstract—Gravitational Search Algorithms (GSA) are

heuristic optimization evolutionary algorithms based on

Newton's law of universal gravitation and mass interactions.

GSAs are among the most recently introduced techniques that

are not yet heavily explored. An early work of the authors has

successfully adapted this technique to the cell placement

problem, and shown its efficiency in producing high quality

solutions in reasonable time. We extend this work by fine tuning

the algorithm parameters and transition functions towards better

balance between exploration and exploitation. To assess its

performance and robustness, we compare it with that of Genetic

Algorithms (GA), using the standard cell placement problem as

benchmark to evaluate the solution quality, and a set of artificial

instances to evaluate the capability and possibility of finding an

optimal solution. Experimental results show that the proposed

approach is competitive in terms of success rate or likelihood of

optimality and solution quality. And despite that it is

computationally more expensive due to its hefty mathematical

evaluations, it is more fruitful on the long run.

Keywords—Optimization; Gravitational Search; Genetic

Algorithms; Cell Placement

I. INTRODUCTION

GSA is a heuristic stochastic swarm-based search
algorithm in the field of numerical optimization, based on the
gravitational law and laws of motion. Like many other nature
inspired algorithms, it needs refinements to maximize its
performance in solving various types of problems. In addition
to the problem encoding that sometimes can be a challenge,
fine tuning its parameters play a significant role balancing the
search time versus solution quality. This algorithm is
relatively recent and not heavily explored.

Cell placement is one of four consecutive steps in physical
design process of VLSI circuits, namely: partitioning,
placement, routing and compaction. In the placement stage,
the description of the physical layout of the chip is introduced,
by assigning geometric coordinates to the cells. The objective
of the placement algorithm is to find a layout that minimizes a
cost function, whose major part is the area, but quite often
involves the aspect ratio, to make the chip as close to square
as possible and hence increase the die yield.

II. LITERATURE REVIEW

Approaches to solve cell placement problem are generally
classified into two classes; constructive and iterative
improvement methods. Several heuristic optimization

strategies for solving placement problem have been
implemented via a set of diversified algorithms; evolution-
based placement like Genetic Algorithms [5] and Simulated
Annealing [6], and a comprehensive summary of those
strategies is presented in [1].

Gravitational Search Algorithms (GSAs) are novel
heuristic optimization algorithms introduced in [2], and
researched in the past few years, as a flexible and well-
balanced strategy to improve exploration and exploitation
methods. In [3], the binary gravitational search algorithm was
developed to solve different nonlinear problem. A new multi-
objective gravitational search algorithm was proposed in [4].
The GSA shows satisfactory results for solving many
problems in a various applications; Solving Symmetric
Traveling Salesman Problem [7], solving the flow shop
scheduling problem [8], in feature selection [9], image
enhancement [10], solving DNA sequence design problem
[11], and optimize the filter modeling parameters [12]. A
hybrid algorithm was derived from both Genetic Algorithms
and Gravitational Search Algorithm for feature set selection
[13].

In this paper, we enhance our implementation of the
gravitational search technique, to solve the cell placement,
with the intention compare its performance with well know
evolutionary algorithms in future work. The results show that
the algorithm can improve the solution quality in a reasonable
amount of time. This paper is organized as follows: Section 2
gives a formal description of the GSA theory, Section 3 gives
a brief description of the cell placement problem, section 4
demonstrates the proposed gravitational search algorithm for
cell placement, In section 5 we discuss the performance of this
algorithms in solving standard problems as compared to the
well know genetic algorithm, and section 6 wraps up our
work.

III. METHODOLOGY

The Gravitational Search Algorithm (GSA) was proposed
by Rashedi [2], as a simulation of Newton’s gravitational
force behaviors. In this algorithm, possible solutions of the
problem in hand are considered as objects whose performance
(quality) is determined by their masses, all these objects attract
each other by the gravity force that causes a global movement
of the objects towards the objects with heavier masses. The
position of each object corresponds to a solution of the
problem, and inertial masses are determined by a fitness
function. The heavy masses, which represented a good

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

75 | P a g e

www.ijacsa.thesai.org

solutions, move more slowly than lighter ones, this represents
the exploitation of the algorithm.

The GSA starts with a set of agents, selected at random or
based on some criteria, with certain positions and masses
representing possible solutions to a problem, and iterates by
changing the positions based on some values like fitness
function, velocity and acceleration that gets updated in every
iteration. To relate those values and parameters, let us
demonstrate the relations among them.

In a system with N agents, the position of the i
th

 agent is
defined as:

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑, … , 𝑥𝑖
𝑛) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (1)

Where 𝑥𝑖
𝑑 present the position of the i

th
 agent in the d

th

dimension, and n is dimension of the search space.

At the time t a force acts on mass i from mass j. This force
is defined as follows:

𝐹𝑖𝑗
𝑑 = 𝐺(𝑡)

𝑀𝑝𝑖 (𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗+𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) (2)

Where Maj is the active gravitational mass of agent j, Mpi is
the passive gravitational mass of agent i, G(t) is gravitational
constant at time t, ε is a small constant, and Rij(t) is the
Euclidian distance between two agents i and j:

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡). 𝑋𝑗(𝑡)‖ (3)

The total force acting on massi in the d

th
 dimension in time

t is given as follows:

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑

𝑁

𝑗𝜖𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

(𝑡) (4)

Where randj is a random number in the interval [0, 1], K
best is the set of first K agents with the best fitness value.

The acceleration related to mass i in time t in the d
th

dimension is given as follows:

𝑎𝑖
𝑑 =

Fi
d(t)

Mii(t)
 (5)

Where Mii is the inertial mass of i

th
 agent.

The next velocity of an agent could be calculated as a
fraction of its current velocity added to its acceleration.
Position and velocity of agent is calculated as follows:

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (6)

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (7)

Where randi is a uniform random variable in the interval

[0, 1].

Gravitational constant, G, is initialized at the beginning of
the search and will be reduced with time to control the search
accuracy as follows:

𝐺(𝑡) = 𝐺0𝑒−𝛼
𝑡
𝑇 (8)

Where T is the number of iteration, G0 and α are given

constant.

The gravitational mass and the inertial mass are updated
by the following equations:

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖 , 𝑖 = 1, 2, … . , 𝑁 (9)

𝑚𝑖 (𝑡) =
𝑓𝑖𝑡𝑖 (𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (10)

𝑀𝑖 (𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

 (11)

Where fiti(t) represent the fitness value of the agent i at

time t, and, worst(t) and best(t) are given as follows for a
minimization problem:

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,..,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (12)

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡) (13)

IV. CELL PLACEMENT PROBLEM

We use the Normalized Polish Notation (RPN) [14] to
describe any arrangement representing a possible solution; for
n cells, a string with n modules (cells) and n-1 operators of the
* or + type, to mean above or next to. As an example, the
string (2 3 * 1 + 4 5 + 6 7* + *) is an encoding for the
arrangement in Figure 1. Here, relaxed means the case where
the area is that of the minimal rectangle enclosing the cells,
while the restricted means the case where the area is that of
the minimal square enclosing the cells.

Fig. 1. (a) Relaxed and (b) Restricted area

Such a configuration is an agent in gravitational search
algorithm; new agents are generated from the existing ones by
applying certain operators which are described in [14] and
[15]. New solutions are assigned fitness values that reflect
their quality. We propose the following fitness measure:

F = α
A

SL
+ (1 − α)

S

L
 (14)

Where L and S are the long and short sides of the rectangle
enclosing all the cells and A is the algebraic sum of the areas

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

76 | P a g e

www.ijacsa.thesai.org

of all cells regardless of the placement, and the product SL
represents the area associated with the solution. The factor α is
a number between 0 and 1, introduced to dictate the relative
significance of the aspect ratio to the actual area; to favor
square arrangements we use smaller values of α. If α=1 then
aspect ratio is not optimized.

V. GRAVITATIONAL SEARCH ALGORITHM ADAPTATION

Cell placement can be viewed as a two-dimensional bin
packing problem, where the goal is to arrange a number of
cells with different sizes in a way that reduces the area
enclosing them and producing near square die while providing
enough space for efficient routing. In this sense, we propose a
new algorithm for cell placement problem by means of GSA,
in which each mass will be an agent looking for an optimal
solution in the search space.

Since cell placement needs meet simultaneously several
constraints, it is difficult to be solved by the traditional GSA.
For this reason, the definition of distance between solutions
(positions) and their update are modified as will be shown in
the following procedure:

𝑚𝑎𝑠𝑠𝑖(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡

∑ (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑡) − 𝑤𝑜𝑟𝑠𝑡)𝑁
𝑗=1

 (15)

𝑓𝑜𝑟𝑐𝑒𝑖𝑗(𝑡) = 𝐺(𝑡)
𝑚𝑎𝑠𝑠𝑖(𝑡)×𝑚𝑎𝑠𝑠𝑗(𝑡)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗(𝑡)+𝜖
, where €=0.1 (16)

𝐺(𝑡) = 𝐺𝑖𝑛𝑖(1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
), where Gini=100 (17)

𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑖(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗 × 𝑓𝑜𝑟𝑐𝑒𝑖𝑗(𝑡)

𝑁

𝑗=1

 (18)

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) =
𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑖(𝑡)

𝑚𝑎𝑠𝑠𝑖(𝑡)
 (19)

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡)
+ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖(𝑡)

(20)

𝑝𝑟𝑜𝑝𝑎𝑝𝑖𝑙𝑖𝑡𝑦𝒊 = |tanh (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖(𝑡 + 1)| (21)

However, the position updating equation (7) cannot be

applied in our case, because we are working in a string form to
present the solution. Therefore, Rashedi [3] proposed the
Binary GSA for nonlinear problem, which has the same
formulation presented above, but with a different equation for
updating the position of each agent. In order to update our
solution, the formulation of binary GSA is used as shown in
step 3.6. However, the stopping criteria can be based time
budget or number of iterations, or reaching a target fitness or
cost function (area in cell placement), or an improvement rate
less than a threshold.

VI. THE ALGORITHM OUTLINE

The gravitational search algorithm is outlined as follows:

1. Generate initial population of N agents at random

2. Compute G(t), Best Fitness and Worst Fitness

3. For each agent i, do:

3.1. Evaluate Fitnessi

3.2. Evaluate Massi

3.3. Evaluate Force of Massi

3.4. Evaluate Acceleration of Massi

3.5. Update Velocity of Massi

3.6. Find new Position of Agenti

If (Probabilityi > Threshold)

 {

 If (Randi < Probabilityi)

 Then Pair Solutioni with the Best

Fit Solutions

 Else Impose some minor change to

Solutioni

 }

4. If Stopping Criteria Not Met, Go To 2 Else Stop

VII. RESULTS

We carried two kind of tests; one on standard benchmark
problems to evaluate the quality of the solutions, and another
on artificial problems with known optimal solutions to
measure the possibility of finding the optimal solution. The
algorithm has achieved good results regarding the solution
quality and success rate in finding optimal solution.

In the first study, three MCNC benchmarks; Xerox with 10
cells, Ami33 with 33 cells, and Ami49 with 49 cells, selected
from MCNC and tested. Table1 1, 2, and 3 summarize the
results of running the two algorithms on one of the benchmark
problems in Table 1. For each case, 10 runs with different
initial solutions are performed, for fixe number of iterations
each. The number of iterations is set to a value proportional to
the problem size. Clearly, GSA outperformed GA in the best,
worst and mean waste as a measure all the time, and the aspect
ratio most of the time.

TABLE I. PERFORMANCE COMPARISON: (XEROX 10), 15000

ITERATIONS

 GA GSA

Best wasted area, Aspect

ratio

5.9 %, 1.83 4.2 %, 1.63

Worst wasted area, Aspect

ratio

8.3 %, 1.22 6.7 %, 1.05

Mean wasted area 7.0 % 5.4 %

TABLE II. PERFORMANCE COMPARISON: (AMI33), 30000 ITERATIONS

 GA GSA

Best wasted area, Aspect

ratio

8.6 %, 2.12 6.1 %, 1.45

Worst wasted area, Aspect

ratio

14.2 %, 1.78 9.1 %, 2.11

Mean wasted area 11.2 % 7.2 %

TABLE III. PERFORMANCE COMPARISON: (AMI49), 50000 ITERATIONS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

77 | P a g e

www.ijacsa.thesai.org

 GA GSA

Best wasted area, Aspect

ratio

13.1 %, 2.4 8.1 %, 1.56

Worst wasted area, Aspect

ratio

18.2 %, 2.3 13.2 %, 1.21

Mean wasted area 16.1 % 9.8 %

Fig. 2 shows the progress of the two algorithms over time;
wasted area of the best solution in hand after multiple
thousands of iterations. Same initial set of solutions (with 42%
waste best case) evolved relatively at the same rate in the first
few thousands of iterations, and then the GSA starts having
better progress.

The second test is carried out on three artificial problems
with 10, 20 and 30 cells of known optimal solutions, where a
square is split into smaller squares and rectangles to generate
instances with the target size, as shown in Figure3. Both GSA
and GA are run 6 times with different initial solutions.

Fig. 2. Search Progress; Waste area for Ami49 versus Iterations (GSA solid,

GA dashed)

Fig. 3. Artificial Instances for Know Optimal Solutions

The algorithm is brought to stop if an optimal solution is
achieved or the number of iterations equals 15000, 30000 and
50000 for the 10, 20 and 30 cells respectively. Table 4 shows
the success rate or the likelihood of optimality. Again, GSA
beats GA in for the small medium and large size, with
significant outperformance of 100% in the 10 cells instance

TABLE IV. SUCCESS RATE OF ARTIFICIAL PROBLEMS (GSA VS. GA)

 Success Rate

No. of Cells No. of Iterations GSA GA

10 15,000 6 out of 6 4 out of 6

20 30,000 3 out of 6 1 out of 6

30 45,000 2 out of 6 1 out of 6

A major drawback of thi technique is its computational
requirement; each iteration needs to many computations
compared to other evolutionary algorithms like genetic
algorithms for example. However, the effectiveness of this
search and its balance between exploration and exploitation
overcome this drawback. Table 5 shows the time taken by the
GSA and GA to solve a 20-cell artificial instance with known
optimal solution, running with same initial set of solutions on
a personal computer with moderate specs. Both algorithms are
made to stop when they reach a solution with some target
quality; 5%, 10% 15% and 20% of wasted area relative to the
optimal area.

TABLE V. TIME REQUIREMENTS FOR 20 CELLS INSTANCE

 Time (Minutes)

Wasted Area GSA GA

5% 42.3 54.3

10% 34.8 42.9

15% 31.2 30.6

20% 23.1 23.8

VIII. CONCLUSION

The GSA power of solving a relatively complex problem,
such as Cell Placement, is investigated using both benchmark
and artificial instances with various sizes. Comparative tests
have shown that GSA outperforms GA as a well known
evolutionary algorithm, in terms of solution quality, i.e. the
wasted area of the best configuration, aspect ratio, and the
likelihood of finding optimal solutions. It is quite significant
to note that although iterations take longer time in GSA
compared to GA, the total time required to achieve a target
solution quality is less when we target higher quality
solutions. While the two algorithms take nearly the same
amount of time to find decent solutions, targeting high quality
solutions; 5% waste or less, can be achieved in 75% of the
time with GSA. After the first few thousands of iterations,
GSA outperforms GA by 10% to 40% in terms of wasted area.

REFERENCES

[1] K. Shahookar and P. Mazumder, "VLSI Cell Placement Techniques."
ACM Computer Survey, vol.23, no. 2, pp. 143–220, June 1991.

[2] E.Rashedi, H.Nezamabadi-pour, and S.Saryazdi, "GSA: A Gravitational
Search Algorithm." Journal of Information of Science 179, 2232-2243,
2009.

[3] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "Binary Gravitational
Search Algorithm." Springer Science + Business Media B.V. 2009

[4] H. R. Hassanzadeh, M. Rouhani, "A Multi-Objective Gravitational
Search Algorithm." International Conference on Computational
Intelligence, Communication Systems and Networks. 24, pp117-122,
2010.

[5] T. W. Manikas, M.H. Mickle, "A Genetic Algorithm for Mixed Macro
and Standard Cell Placement." The 45th Midwest Symposium
on Circuits and Systems, vol. 2, pp 115 - 118, vol.2, August 2002

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Manikas,%20T.W..QT.&searchWithin=p_Author_Ids:38185066300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mickle,%20M.H..QT.&searchWithin=p_Author_Ids:37298278500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8452
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8452

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 8, 2013

78 | P a g e

www.ijacsa.thesai.org

[6] G. Nan, M. Li, D. Lin, J. Kou. Adaptive Simulated Annealing for
Standard Cell Placement. Springer, 2005 Advances in Natural
Computation Vol. 3612, pp 943-947, 2005

[7] A. R. Hosseinabadi, M. yazdanpanah and A. S. Rostami, A New
Search Algorithm for Solving Symmetric Traveling Salesman Problem
Based on Gravity, World Applied Sciences Journal 16 (10): pp 1387-
1392, ISSN 1818-4952, 2012

[8] Gu W X, Li X T, Zhu L, "A gravitational search algorithm for flow
shop schduling. CAAI Transactions on Intelligent Systems". 5(5): 411-
418, 2010.

[9] J.P. Papa, A. Pagnin, S.A. Schellini, A. Spadotto. Feature selection
through gravitational search algorithm. Acoustics, Speech and Signal
Processing (ICASSP), IEEE International Conference on, May 2011,
pp: 2052 – 2055, 2011.

[10] W. Zhaoa, "Adaptive Image Enhancement based on Gravitational
Search Algorithm." Procedia Engineering 15, pp. 3288 – 3292
Published by Elsevier Ltd. 2011.

[11] J. Xiao, Z. Cheng, "Theories and Applications DNA Sequences
Optimization Based on Gravitational Search Algorithm for Reliable
DNA computing." Sixth International Conference on Bio-Inspired
Computing. IEEE Computer Society, 2011

[12] Rashedi E, Nezamabadi-pour H, Saryazdi S, "Filter modeling using
gravitational search algorithm. Engineering." Applicaitons of Artifical
Intelligence, 24, pp. 117-122, 2011

[13] M. Omar and J. Al-Neamy, "Hybrid Gravitational Search Algorithm and
Genetic Algorithms for Automated Segmentation of Brain Tumors
Using Feature_based Symmetric Ananlysis", (IJCSIS) International
Journal of Computer Science and Information Security, Vol. 11, No. 5,
May 2013.

[14] D. F. Wong, and C. L. Liu, A New Algorithm for Floorplan Design,
Proc. DAC, pp.101–107,1986.

[15] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. S. Richards,
“Distributed genetic algorithms for the floorplan design problem,” IEEE
Trans. Computer-Aided Design, vol. 10, pp. 483–492, Apr. 1991.

http://link.springer.com/search?facet-author=%22Guofang+Nan%22
http://link.springer.com/search?facet-author=%22Minqiang+Li%22
http://link.springer.com/search?facet-author=%22Dan+Lin%22
http://link.springer.com/search?facet-author=%22Jisong+Kou%22
http://link.springer.com/book/10.1007/11539902
http://link.springer.com/book/10.1007/11539902
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Papa,%20J.P..QT.&searchWithin=p_Author_Ids:37604389900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pagnin,%20A..QT.&searchWithin=p_Author_Ids:37712110900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schellini,%20S.A..QT.&searchWithin=p_Author_Ids:37712111600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Spadotto,%20A..QT.&searchWithin=p_Author_Ids:37688904600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5916934
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5916934

